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Abstract
In this paper for interval systems we consider the problem of existence and
evaluation of common diagonal solutions to the Lyapunov inequalities. For second
order systems, we give necessary and sufficient conditions and exact solutions, that is,
complete theoretical solutions. For third order systems, an algorithm for the
evaluation of common solutions in the case of existence is given. In the general case
a sufficient condition is obtained for a common diagonal solution in terms of the
center and upper bound matrices of an interval family.
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1 Introduction
Consider state equation

ẋ = Ax,

where x = x(t) ∈ R
n and A = (aij) (i, j = , , . . . , n) is n × n matrix. In many control system

applications, each entry aij can vary independently within some interval. Such systems are
called interval systems. In other words a–

ij ≤ aij ≤ a+
ij where a–

ij , a+
ij are given. Denote the

obtained interval family by A, i.e.

A =
{

A = (aij) : a–
ij ≤ aij ≤ a+

ij (i, j = , , . . . , n)
}

. ()

Interval matrices have many engineering applications. Due to its natural tie with robust
control system analysis and design, several approach have involved for the stability analysis
of interval matrices (see [–] and the references therein).

Consider n × n real matrix A = (aij). If all eigenvalues of A lie in the open left half plane
(open unit disc) then A is said to be Hurwitz (Schur) stable. A necessary and sufficient
condition for Hurwitz (Schur) stability is the existence of a symmetric positive definite
matrix P (i.e. P > ) such that

AT P + PA < 
(
AT PA – P < 

)
, ()

where B <  means –B >  and the symbol ‘T ’ stands for the transpose. If in () the matrix
P can be chosen to be positive diagonal then A is called diagonally stable.
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Diagonal stability problems have many applications (see [–]). The existence of diag-
onal type solutions is considered in [, , , –] and the references therein.

We are looking for the existence and evaluation of a common diagonal Lyapunov func-
tion that guarantees the diagonal stability of interval systems. In other words, we investi-
gate the problem of existence of a diagonal matrix D = diag(x, x, . . . , xn) with xi >  and
with the property

AT D + DA <  for all A ∈A. ()

For the case n = , we solve the common Schur stability problem as well. The necessary
condition for the existence of a common diagonal solution is the robust diagonal stabil-
ity, that is, diagonal stability of each matrix from the family A. Robust diagonal stability
means that for every A ∈ A there exists a positive diagonal D such that AT D + DA < 
(AT DA – D < ).

Common diagonal stability problems arise, for example, in the study of large-scale dy-
namic systems (see []).

This manuscript addresses the following points:
() Full theoretical solutions of the common diagonal matrix problems for the case

n =  (Section ). Note that for second order systems the existence and evaluation of
common nondiagonal matrix solutions to the Lyapunov inequalities have been
considered in [, ].

() A numerical algorithm for the case n =  where the proposed algorithm gives almost
all common diagonal solutions (Section ).

() Sufficient condition for a common diagonal solution in the general case (Section ).
For a matrix polytope A, it is well known that the problem of a common solution D is

equivalent to the following system of linear matrix inequalities (LMIs):

AT
i D + DAi < 

which in lower dimensions can be solved numerically by the LMIs method (here Ai are the
extreme matrices). Note that LMIs method is an implicit numerical method which gives
only one solution whereas in some problems (see, for example, []) an infinite number
of solutions are required. Note also that in the case of, for example, the  ×  interval
matrix family, the LMIs method fails to give an answer due to the higher dimension (see
Example ).

2 Full solutions for second order systems
2.1 Hurwitz case
For a single  ×  real matrix

A =

[
a a

a a

]

()

an algebraic characterization of diagonal stability is the following.

Theorem  ([, ]) The matrix () is Hurwitz diagonally stable if and only if a < , a < ,
and aa – aa > .
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Consider an  ×  interval family

A =

{[
a a

a a

]

: ai ∈ [
a–

i , a+
i
]
, i = , , , 

}

. ()

Define the following -dimensional box:

Q =
[
a–

 , a+

] × · · · × [

a–
, a+


]
.

Without loss of generality, all  ×  positive diagonal matrices may be normalized to have
the form D = diag(t, ) where t > .

As noted above a necessary condition for the existence of a common diagonal solution
is the robust diagonal stability of (). From Theorem , we have the following.

Proposition  The family () is robust diagonally stable if and only if

a+
 < , a+

 <  and a+
 a+

 – max{aa} > , ()

where the maximum is calculated over the extreme points a–
 , a+

 , a–
 , and a+

 .

Now we proceed to the necessary and sufficient condition for the existence of a common
diagonal solution, i.e. the existence of D = diag(t∗, ) with t∗ >  such that

AT D + DA < 

for all a = (a, a, a, a) ∈ Q = [a–
 , a+

 ] × · · · × [a–
, a+

]. A necessary condition for the exis-
tence of a common diagonal solution is the robust diagonal stability.

Assume that the family () is robust diagonally stable, that is, () is satisfied and we are
looking for conditions of the existence of a common diagonal solution.

The existence of a common D = diag(t∗, ) (t∗ > ) means that

AT D + DA =

[
at∗ at∗ + a

at∗ + a a

]

< 

or

at∗ < , aat∗ > (at∗ + a) ()

for all a = (a, a, a, a) ∈ Q. The first condition of () is satisfied automatically since by
(), a+

 < . The second condition is equivalent to the following:

min
(a,a)

(aa)t∗ > max
(a,a)

(at∗ + a)

or

(
a+

 a+

)
t∗ > max

{(
a–

 t∗ + a–

),

(
a+

 t∗ + a+

)}
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or

(
a+

 a+

)
t∗ >

(
a–

 t∗ + a–

),

(
a+

 a+

)
t∗ >

(
a+

 t∗ + a+

)

or

(
a–


)t

∗ +
(
a–

 a–
 – a+

 a+

)
t∗ +

(
a–


) < ,

(
a+


)t

∗ +
(
a+

 a+
 – a+

 a+

)
t∗ +

(
a+


) < .

()

Consider the function

f (x) =
(
a–


)x +

(
a–

 a–
 – a+

 a+

)
x +

(
a–


) (x ≥ )

which corresponds to the first condition in (). Note that f () ≥  and the coefficient of x
in f (x) is negative by (). If a–

 =  the solution set of f (x) <  is an interval (α,∞). If a–
 �= 

the discriminant is positive by (). Indeed

(
a–

 a–
 – a+

 a+

) –

(
a–

 a–

) = a+

 a+

(
a+

 a+
 – a–

 a–

)

> .

In both cases, the solution set of f (x) <  is a positive interval (α,α). For example, if a–
 �= 

then

α =
(a+

 a+
 – a–

 a–
 ) –

√
(a–

 a–
 – a+

 a+
) – (a–

 a–
 )

(a–
 ) ,

α =
(a+

 a+
 – a–

 a–
 ) +

√
(a–

 a–
 – a+

 a+
) – (a–

 a–
 )

(a–
 ) .

Analogously the exists an open interval (β,β) which is the solution set of the second
condition in () (the discriminant is positive by ()).

Now we give the main result of this section.

Theorem  Let the family () be given. There exists a common diagonal solution to the
Lyapunov inequalities if and only if () is satisfied and the intervals (α,α) and (β,β)
have a nonempty intersection, i.e.

max{α,β} < min{α,β}.

In this case, for every t ∈ (α,α) ∩ (β,β) the matrix D = diag(t, ) is a common solution.

Example  Consider the family

[
[–, –] [, ]
[–, –] –

]

. ()

The family () is robust Hurwitz diagonally stable by Proposition , since a+
 = – < ,

a+
 = – < , a+

 a+
 –max{aa} = (–) · (–)–(–) =  > . Corresponding to () inequalities
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are

x – x +  < , x – x +  < ,

and α =  – 
√

, α =  + 
√

, β =  –
√

, and β =  +
√

. Therefore, (α,α) ∩
(β,β) = ( – 

√
,  +

√
). For every t ∈ ( – 

√
,  +

√
) the matrix D = diag(t, ) is a

common diagonal solution.

Example  Consider the family

[
[–, –] [, ]

– [–, –]

]

.

The family is robust Hurwitz diagonally stable by Proposition , since a+
 = – < , a+

 =
– < , a+

 a+
 – max{aa} = (–) · (–) –  =  > . Inequalities corresponding to () are

–x +  <  and x – x +  <  with common solution interval (/,  +
√

), every t from
this interval gives a common diagonal solution.

2.2 Schur case
Here we give a necessary and sufficient condition for the existence of a common diagonal
solution in the Schur case, i.e. the existence of D = diag(λ∗, ) with λ∗ >  such that

AT DA – D < 

for all a ∈ Q = [a–
 , a+

 ] × · · · × [a–
, a+

].
To have a common diagonal solution a family must be robust diagonally stable.

Proposition  ([, ]) Let the family () be given. The family () is robust Schur diagonally
stable, i.e. every member is Schur diagonally stable if and only if the following six conditions
are satisfied:

 + aa – aa > ,

 + aa – aa > ,

 + aa – a – a – aa > ,

 + a + a + aa – aa > ,

 + a + aa – a – aa > ,

 + a + aa – a – aa > 

()

for all (a, a, a, a) ∈ Q.

These conditions can easily be checked through the extremal points of Q. Again, the
existence of a common D = diag(λ∗, ) (λ∗ > ) means that

AT DA – D =

[
λ∗(a

 – ) + a
 λ∗aa + aa

λ∗aa + aa λ∗a
 + a

 – 

]

< 
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or

λ∗
(
a

 – 
)

+ a
 < ,

[
λ∗

(
a

 – 
)

+ a

][

λ∗a
 + a

 – 
]

– (λ∗aa + aa) > 
()

for all (a, a, a, a) ∈ Q. From the robust Schur diagonal stability, it follows that |a| < 
([], p.). Therefore, the first condition of () gives λ∗ · min( – a

 ) > max(a
), which in

turn gives λ∗ > α = (max a
)/( – max(a

 )). The second condition gives

(
a


)
λ

∗ –
[
a

a
 +

(
a

 – 
)(

a
 – 

)
– aaaa

]
λ∗ + a

 < .

Consider the function

g(x) =
(
a


)
x –

[
a

a
 +

(
a

 – 
)(

a
 – 

)
– aaaa

]
x + a

 (x ≥ ).

Denote two root functions of g(x) by r(a, a, a, a) and r(a, a, a, a). The function r

is continuous on Q, whereas if  ∈ [a–
 , a+

 ] the function r is improper for a = , that is,
r(a, , a, a) = ∞. The function r is continuous except a =  if  ∈ [a–

 , a+
 ].

Denote

γ = max
(a,a,a,a)∈Q

r(a, a, a, a),

γ = min
(a,a,a,a)∈Q

r(a, a, a, a).

We state another main result of this section.

Theorem  Let the family () be given. There exists a common diagonal solution D to the
inequality AT DA – D <  if and only if

(i) () is satisfied,
(ii) γ < γ,

(iii) (α,∞) ∩ (γ,γ) �= ∅.
In this case, for every λ ∈ (α,∞) ∩ (γ,γ) the matrix D = diag(λ, ) is a common solution.

Example  Consider the following interval family:

[
[, 

 ] [– 
 , 

 ]
[– 

 , 
 ] [ 

 , 
 ]

]

.

This family is robust Schur diagonally stable by Proposition :

min
a∈Q

( + aa – aa) = /,

min
a∈Q

( + aa – aa) = /,

min
a∈Q

( + aa – a – a – aa) = /,

min
a∈Q

( + a + a + aa – aa) = /,



Yıldız et al. Journal of Inequalities and Applications  (2016) 2016:255 Page 7 of 12

min
a∈Q

( + a + aa – a – aa) = /,

min
a∈Q

( + a + aa – a – aa) = /,

where Q = [, 
 ] × [– 

 , 
 ] × [– 

 , 
 ] × [ 

 , 
 ]. The maximization of the left root function

r(a, a, a, a) of g(x) over Q gives γ ≈ ., and the minimization of the right root func-
tion r(a, a, a, a) over Q gives γ ≈ .. Since α = /, for every λ ∈ (., .) the
matrix D = diag(λ, ) is a common diagonal solution.

3 Solution algorithm for third order systems
In this section for  ×  interval family, we give necessary and sufficient condition for the
existence of a common diagonal solution and the corresponding solution algorithm in the
Hurwitz case.

Consider  ×  interval family

A =

⎧
⎪⎨

⎪⎩
A =

⎡

⎢
⎣

a a a

a a a

a a a

⎤

⎥
⎦ : ai ∈ [

a–
i , a+

i
]

(i = , , . . . , )

⎫
⎪⎬

⎪⎭
. ()

Without loss of generality, all  ×  positive diagonal matrices diag(x, x, x) with xi > 
(i = , , ) may be normalized to have the form

D = diag(t, , s) =

⎡

⎢
⎣

t  
  
  s

⎤

⎥
⎦

with t > , s > . Is there D = diag(t, , s) with t > , s >  such that

AT D + DA <  ()

for all ai ∈ [a–
i , a+

i ] (i = , , . . . , )?
We write

AT D + DA =

⎡

⎢
⎣

ta ta + a ta + sa

ta + a a sa + a

ta + sa sa + a sa

⎤

⎥
⎦ .

The matrix inequality (), i.e. the negative definiteness of AT D + DA is equivalent to the
following:

(i) a < ,
(ii) (at + a) – aat < ,

(iii) d(t, a, . . . , a) + d(t, a, . . . , a)s + d(t, a, . . . , a)s < .
The functions di (i = , , ) are low order polynomials and can be explicitly evaluated.

(i) is satisfied for all a ∈ [a–
 , a+

 ] if and only if a+
 < . The problem of existence of a

common t satisfying (ii) for all (a, a, a, a) is equivalent to the existence of a common
diagonal solution for  ×  family

[ a a
a a

]
and has been investigated in Section . There,

the whole interval of common t has been calculated. If this interval is empty then there
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is no common D = diag(t, , s) satisfying (). Assume that this interval (α,β) of common
t is nonempty. Then the existence of a common D = diag(t, , s) means that there exist
t ∈ (α,β) and s >  such that (iii) is satisfied for all ai ∈ [a–

i , a+
i ] (i = , . . . , ). This problem

is a minimax problem. Indeed, denote the left-hand side of (iii) by f (t, s, a, . . . , a). Then
(iii) is equivalent to the following minimax inequality:

inf
t∈(α,β),s>

max
(a,...,a)

f (t, s, a, . . . , a) < . ()

To solve the game problem () is difficult in general (see Example ).
We suggest the following approach to check () numerically. This approach is based on

the openness property of the solution set of () []. In other words, the following propo-
sition is true.

Proposition  If there exists a common D = diag(t∗, , s∗) then there exist intervals [t, t]
and [s, s] which contain t∗ and s∗, respectively, such that the matrix D = diag(t, , s) is a
common solution for all t ∈ [t, t], s ∈ [s, s].

Due to this proposition, we suggest the following algorithm for a common diagonal so-
lution.

Algorithm  Let the interval family () be given.
(s) Using the results on  ×  interval systems from Section  calculate the interval

(α,β) for t.
(s) Determine an upper bound s for the variable s from the positive definiteness

condition of a suitable submatrix of –(AT D + DA).
(s) Divide the interval [α,β] into k equal parts [αi,βi] and the interval [, s] into m

equal parts [s–
j , s+

j ].
(s) On each box

[αi,βi] × [
s–

j , s+
j
] × [

a–
 , a+


] × · · · × [

a–
 , a+


]

consider the maximization of the polynomial function f (t, s, a, . . . , a). If there
exist indices i∗ and j∗ such that the maximum is negative then stop. The whole
interval [αi∗ ,βi∗ ] × [s–

j∗ , s+
j∗ ] defines family of common diagonal solutions.

As can be seen, the above game problem () is reduced to a finite number of maximiza-
tion problems in which low order multivariable polynomials are maximized over boxes.
Instead of a single problem () we consider a sequence of solvable problems from step s)
where low order multivariable polynomial functions are maximized over -dimensional
boxes [αi,βi]× [s–

j , s+
j ]× [a–

 , a+
 ]×· · ·× [a–

 , a+
]. These optimizations can be carried out by

MAPLE program or by the Bernstein expansion. The Bernstein expansion is an effective
method for testing positivity or negativity of a multivariable polynomial over a box. The
following example shows that Algorithm  is sufficiently effective.

Example  Consider the interval family
⎡

⎢
⎣

– q 
 – q

q  –

⎤

⎥
⎦ ,
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where q ∈ [, ], q ∈ [, ], and q ∈ [, ]. We obtain

AT D + DA =

⎡

⎢
⎣

–t qt +  t + qs
qt +  – s + q

t + qs s + q –s

⎤

⎥
⎦ .

Positivity of the  ×  leading principal minor gives

t – (qt + ) >  ⇒ t > (qt + ),

max
q∈[,]

(qt + ) = (t + ) < t,

t – t +  <  ⇒ t ∈ (., .).

Hence t – (qt + ) >  for all t ∈ (., .), q ∈ [, ].
The positive definiteness of the submatrix

[
 –(s + q)

–(s + q) s

]

gives s – (s + q) >  or maxq (s + q) < s or (s + ) < s or s – s +  <  and the
upper bound s =  is suitable. The function from (iii), that is, the determinant function
is

f (t, s, q, q, q) = stqq + stq
 + stqqq + sq

 + stq

+ tqq + st + sq + stq + stq + stq

+ sqq + tq
 – st + t + tq + s.

The corresponding game problem () is difficult, since the solution of () requires the
following steps:

(a) Fix (t, s).
(b) Solve parametric maximization of f with respect to (q, q, q). Denote

φ(t, s) = maxq,q,q f .
(c) Solve minimization of φ(t, s) with respect to (t, s).
We divide the intervals [., .] and [, ] into  and  equal parts, respec-

tively, and solve the corresponding maximization problems. In Figure , for this example,
the family of rectangles where each (t, s) from each rectangle gives a common solution is
shown.

It should be noted that the sufficient condition from [], Theorem , is not satisfied for
this example, since for the matrix U from [], Theorem , the maximum real eigenvalue is
positive.

4 Sufficient condition for the general case
In this section, we give sufficient condition for a common diagonal solution in the gen-
eral case. This condition is expressed in terms of the center and upper bound matrices of
interval family.
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Figure 1 Each (t, s) from each rectangle gives common
diagonal solution D = diag(t, 1, s).

Consider the n × n interval family

A =
{

A = (aij) : a–
ij ≤ aij ≤ a+

ij
}

. ()

Define the center and upper bound matrices Ac, Ad by

Ac =
(a–

ij + a+
ij



)
, Ap =

(a+
ij – a–

ij



)
.

Given A = (aij), B = (bij) the symbol A � B means that aij ≤ bij. Also |A| = (|aij|).

Theorem  Let an interval family () be given. Assume that there exists a positive diag-
onal matrix D such that

λmax
(
AT

c D + DAc
)

+ λmax
(
AT

p D + DAp
)

< . ()

Then the matrix D is a common diagonal solution for the family ().

Proof Every matrix A ∈A can be written as

A = Ac + X, ()

where |X|� Ap. The inequality AT D + DA <  for all A ∈A and by () can be written as

λmax
(
AT

c D + DAc + XT D + DX
)

<  for all |X|� Ap. ()

By the known property of λmax the inequality () is satisfied if

λmax
(
AT

c D + DAc
)

+ λmax
(
XT D + DX

)
<  for all |X|� Ap,
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which is equivalent to

max
|X|�Ap

λmax
(
XT D + DX

)
< –λmax

(
AT

c D + DAc
)
. ()

Let us prove that

max
|X|�Ap

λmax
(
XT D + DX

)
= λmax

(
AT

p D + DAp
)
. ()

Since XT D + DX � AT
p D + DAp for all |X|� Ap by [], p.,

ρ
(
XT D + DX

) ≤ ρ
(
AT

p D + DAp
)

= λmax
(
AT

p D + DAp
)

()

(the last equality follows from the fact that the spectral radius of nonnegative matrices is
an eigenvalue, [], p.). On the other hand for a symmetric matrix C, obviously ρ(C) ≥
λmax(C). Using this fact, from () we get

λmax
(
XT D + DX

) ≤ λmax
(
AT

p D + DAp
)

()

for all |X|� Ap, which proves (). From (), () the inequality () follows. �

The left-hand side of () is a convex function in the entries of diagonal matrix D. For
D = diag(x, x, . . . , xn) denote the left-hand side by f (x, x, . . . , xn). Then from Theorem ,
it follows that, by minimization of the function f (x, x, . . . , xn) over the unit rectangle, we
can arrive at a common solution.

Example  Consider the  ×  interval family

A =

⎡

⎢⎢⎢⎢⎢⎢
⎣

[–, –] [–, ] [–, –] [–, ] [–, –]
[–, –] [–, –] [–, –] [–, –] [–, ]
[–, –] [–, –] [–, –] [, ] [–, –]
[–, –] [–, –] [–, ] [–, –] [–, –]
[–, –] [–, ] [–, –] [–, –] [–, –]

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

The center and upper bound matrices are

Ac =

⎡

⎢⎢⎢⎢⎢⎢
⎣

–  –  –
– – – – 
– – –  –
– –  – –
–  – – –

⎤

⎥⎥⎥⎥⎥⎥
⎦

and Ap =

⎡

⎢⎢⎢⎢⎢⎢
⎣

    
    
    
    
    

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

respectively.
The minimization procedure of the convex function f (x, . . . , x) evaluated by the

Kelley cutting-plane method starting with the values x = · · · = x =  after  steps
gives negative value –. for the function f . This value is attained for x = , x =
., x = ., x = ., x = .. Therefore by Theorem , the matrix D =
diag(, ., ., ., .) is a common diagonal solution. Note again that the LMIs
method cannot give a solution: the number of vertices equals .
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5 Conclusion
In this paper, the problem of diagonal stability of interval matrices is considered. This
problem is investigated in the framework of the existence of common diagonal Lyapunov
functions. For second and third order systems necessary and sufficient conditions for the
existence of common diagonal solutions are given. In the general case, a sufficient condi-
tion for the existence of a common diagonal solution is given.
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