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Abstract
The main purpose of this paper is to estimate the thickness of boundary layer for
nonlinear evolution equations with damping and diffusion as the diffusion parameter
β goes to zero. We prove that the thickness of layer is of the order O(βγ ) with
0 < γ < 1, thus improving the corresponding result in (Ruan and Zhu in Discrete
Contin. Dyn. Syst. 32(1) 331-352, 2012) where 0 < γ < 1/2 is obtained.
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1 Introduction
In this paper, we consider the nonlinear evolution equations with damping and diffusion:

⎧
⎨

⎩

ψ
β
t = –(σ – α)ψβ – σθ

β
x + αψ

β
xx,

θ
β
t = –( – β)θβ + μβψ

β
x + ψβθ

β
x + βθ

β
xx,  < x < , t > ,

(.)

with the initial-boundary conditions

(
ψβ , θβ

)
(x, ) = (ψ, θ)(x),  ≤ x ≤ ,

(
ψβ , θβ

)
(, t) =

(
ψβ , θβ

)
(, t) = (, ), t ≥ ,

(.)

where σ ,α,β , and μ are positive constants with α < σ and  < β < . The corresponding
problem of zero diffusion limit as β →  is the following:

⎧
⎨

⎩

ψ
t = –(σ – α)ψ – σθ

x + αψ
xx,

θ
t = –θ + ψθ

x ,  < x < , t > ,
(.)

with the initial-boundary conditions

(
ψ, θ)(x, ) = (ψ, θ)(x),  ≤ x ≤ ,

ψ(, t) = ψ(, t) = , t ≥ .
(.)
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The system (.) was originally proposed by Hsieh in [] to observe the nonlinear in-
teraction between ellipticity and dissipation. In [], Hsieh et al. established a link between
this interaction and chaos. We also refer to [, ] for the physical background of (.). Some
similar problems were studied in [, ] and the references therein.

Our main purpose is to estimate the thickness of boundary layer for problem (.)-(.)
as β → . Before stating the main result, we first recall the concept of BL-thickness in the
sprit of [].

Definition . A function δ(β) is called a BL-thickness for problem (.)-(.) with van-
ishing diffusion if δ(β) ↓  as β ↓ , and

lim
β→

∥
∥ψβ – ψ∥∥

L∞(,T ;L∞[,]) = ,

lim
β→

∥
∥θβ – θ∥∥

L∞(,T ;L∞[δ,–δ]) = ,

inf lim
β→

∥
∥θβ – θ∥∥

L∞(,T ;L∞[,]) > ,

for any T > , where (ψβ , θβ ) (resp. (ψ, θ)) is the solution for problem (.)-(.) (resp.
problem (.)-(.)).

The theory of boundary layers is one of the most fundamental and important issues in
fluid dynamics (cf. [, ]) since the seminal work by Prandtl in . There are a number
of papers dedicated to the questions of boundary layers for the Navier-Stokes equations;
see for instance [, –] and the references therein. Moreover, the boundary layer prob-
lem also arises in the theory of hyperbolic systems when parabolic equations with small
viscosity are applied as perturbations; see for instance [–] and the references therein.

Recently, Ruan and Zhu [], Theorem ., discussed the existence and zero diffu-
sion limit for problem (.)-(.), and proved that the thickness of boundary layer is
of the order O(βγ ) with  < γ < / if (σ+μβ)

(–β) < α < σ and if the initial data satisfy
ψ ∈ H([, ]), θ ∈ H([, ]), (ψ, θ)() = (ψ, θ)() = (, ), and ‖(ψ, θ)‖ is suffi-
ciently small. Here Hl([, ]) denotes the usual lth order Sobolev space with the norm
‖f ‖l = (

∑l
i=

∫ 
 |∂ i

xf | dx)/. In the present paper, we improve the result by extending the
range of γ to (, ). Our main result can be stated as follows.

Theorem . Let  < β <  and (σ+μβ)

(–β) < α < σ . Assume that the initial data satisfy
ψ ∈ H([, ]), θ ∈ H([, ]), (ψ, θ)() = (ψ, θ)() = (, ), and ‖(ψ, θ)‖ is suffi-
ciently small. Then any function δ(β) satisfying δ(β) ↓  and β

δ(β) →  as β ↓  is a BL-
thickness such that

∥
∥θβ – θ∥∥

L∞(,T ;L∞[δ,–δ]) ≤ C
√

β

δ
, ∀δ ∈ (, /), (.)

where T > , and C is a positive constant independent of β and δ.

The proof of Theorem . will be given in the next section.

2 Proof of Theorem 1.2
To prove Theorem ., we need the following result, which can be found in [], Lem-
mas ., ., . and ..
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Lemma . Let the assumptions of Theorem . hold. Then there exists a positive constant
independent of β such that

∫ 



[(
ψβ

x
) +

(
θβ

x
) +

(
ψβ

xx
) + β

(
θβ

xx
)]dx ≤ C, (.)

∫ 



[(
ψ

x
) +

(
θ

x
) +

(
θ

xx
) +

(
ψ

xx
)]dx ≤ C (.)

and

∫ 



[(
ψβ – ψ) +

(
θβ – θ)]dx +

∫ T



∫ 



(
ψβ – ψ)

x dx dt ≤ Cβ . (.)

Proof of Theorem . It suffices to prove (.). Set

uβ = ψβ – ψ, vβ = θβ – θ.

Then it follows from the equation of θβ that

vβ
t = –( – β)vβ + ψβvβ

x + uβθ
x + βvβ

xx + β
(
μψβ

x + θ + θ
xx

)
.

Differentiating the equation, we see that z := vβ
x satisfies

zt = –( – β)z + 
(
ψβz

)

x + 
(
uβθ

x
)

x + βzxx + β
(
μψβ

xx + θ
x + θ

xxx
)
. (.)

Denote ϕε for ε ∈ (, ) and ξδ for δ ∈ (, /) by

ϕε(s) =
√

s + ε, ξδ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x,  ≤ x ≤ δ,

δ, δ ≤ x ≤  – δ,

 – x,  – δ ≤ x ≤ .

It is easy to check that ϕε satisfies

⎧
⎪⎪⎨

⎪⎪⎩

|s| ≤ |ϕε(s)| ≤ |s| + ,

|ϕ′
ε(s)| ≤ ,  ≤ sϕ′

ε(s) ≤ ϕε(s),

ϕ′′
ε (s) ≥ , sϕ′′

ε (s) ≥ ,

and ξδ satisfies

 ≤ ξδ ≤ δ, ξδ() = ξδ() = .

Multiplying (.) by ϕ′
ε(z)ξδ and integrating it over (, ) × (, t), we have

∫ 


ϕε(z)ξδ dx – ε

∫ 


ξδ dx

= –( – β)
∫ t



∫ 


zϕ′

ε(z)ξδ dx dτ + 
∫ t



∫ 



(
ψβz

)

xϕ
′
ε(z)ξδ dx dτ
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+ 
∫ t



∫ 



(
uβθ

x
)

xϕ
′
ε(z)ξδ dx dτ + β

∫ t



∫ 


zxxϕ

′
ε(z)ξδ dx dτ

+ β

∫ t



∫ 


ϕ′

ε(z)ξδ

(
μψβ

xx + θ
x + θ

xxx
)

dx dτ =:
∑

i=

Ej. (.)

Next we estimate Ei(i = , , , , ). From  ≤ sϕ′
ε(s) ≤ ϕε(s), we have

E ≤
∫ t



∫ 


ϕε(z)ξδ dx dτ . (.)

To estimate E, we note, using integration by parts,

E = 
∫ t



∫ 


ψβ

x zϕ′
ε(z)ξδ dx dτ + 

∫ t



∫ 


ψβzxϕ

′
ε(z)ξδ dx dτ

= 
∫ t



∫ 


ψβ

x zϕ′
ε(z)ξδ dx dτ – 

∫ t



∫ 


ϕε(z)ψβ

x ξδ dx dτ

– 
∫ t



∫ 


ϕε(z)ψβξ ′

δ dx dτ

=: E
 + E

 + E
. (.)

By (.) and the embedding W ,[, ] ↪→ L∞[, ], we have

∣
∣ψβ

x (x, t)
∣
∣ ≤

∫ 



∣
∣ψβ

x
∣
∣dx +

∫ 



∣
∣ψβ

xx
∣
∣dx ≤ C, (.)

where C denotes the generic positive constant independent of β , δ, and ε, so

∣
∣ψβ (x, t)

∣
∣ ≤

∫ x



∣
∣ψβ

y (y, t)
∣
∣dy ≤ Cx ≤ Cξδ(x), ∀x ∈ [, δ],

∣
∣ψβ (x, t)

∣
∣ ≤

∫ 

x

∣
∣ψβ

y (y, t)
∣
∣dy ≤ C( – x) ≤ Cξδ(x), ∀x ∈ [ – δ, ].

(.)

By  ≤ sϕ′
ε(s) ≤ ϕε(s) and (.), we obtain

E
 + E

 ≤ C
∫ t



∫ 


ϕε(z)ξδ dx dτ . (.)

By the definition of ξδ and (.), we have

E
 = –

∫ t



∫ δ


ϕε(z)ψβ dx dτ + 

∫ t



∫ 

–δ

ϕε(z)ψβ dx dτ

≤ C
∫ t



∫ δ


ϕε(z)ξδ dx dτ + C

∫ t



∫ 

–δ

ϕε(z)ξδ dx dτ

≤ C
∫ t



∫ 


ϕε(z)ξδ dx dτ .

(.)

Thus

E ≤ C
∫ t



∫ 


ϕε(z)ξδ dx dτ . (.)
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Using integration by parts and noticing ϕ′′
ε ≥  and |ϕ′

ε| ≤ , we have

E = – β

∫ t



∫ 


z

xϕ
′′
ε (z)ξδ dx dτ – β

∫ t



∫ 


zxϕ

′
ε(z)ξ ′

δ dx dτ

≤ – β

∫ t



∫ 


zxϕ

′
ε(z)ξ ′

δ dx dτ

= – β

∫ t



∫ δ


zxϕ

′
ε(z) dx dτ + β

∫ t



∫ 

–δ

zxϕ
′
ε(z) dx dτ

≤ β

(∫ t



∫ δ


|zx|dx dτ +

∫ t



∫ 

–δ

|zx|dx dτ

)

,

and, by Hölder’s inequality and (.), we obtain

E ≤ Cβδ/
[(∫ t



∫ δ


|zx| dx dτ

)/

+
(∫ t



∫ 

–δ

|zx| dx dτ

)/]

≤ Cβ/δ/. (.)

By |ϕ′
ε| ≤ ,  ≤ ξδ ≤ δ, Hölder’s inequality, (.), and (.), we have

E = 
∫ t



∫ 


uβ

x θ
x ϕ′

ε(z)ξδ dx dτ + 
∫ t



∫ 


uβθ

xxϕ
′
ε(z)ξδ dx dτ

≤ Cδ

(∫ t



∫ 



(
uβ

x
) dx dτ

)/(∫ t



∫ 



(
θ

x
) dx dτ

)/

+ Cδ

(∫ t



∫ 



(
uβ

) dx dτ

)/(∫ t



∫ 



(
θ

xx
) dx dτ

)/

≤ Cδβ/. (.)

Finally, we estimate E. By |ϕ′
ε| ≤ ,  ≤ ξδ ≤ δ, and Lemma ., we have

E ≤ Cβδ

∫ t



∫ 



(∣
∣ψβ

xx
∣
∣ +

∣
∣θ

x
∣
∣ +

∣
∣θ

xxx
∣
∣
)

dx dτ

≤ Cβδ. (.)

Combining (.), (.)-(.) with (.) and noticing

ε

∫ 


ξδ dx ≤ εδ,

we obtain

∫ 


ϕε(z)ξδ dx ≤ C

∫ t



∫ 


ϕε(z)ξδ dx dτ + εδ + Cβ/δ/,

so an application of Gronwall’s inequality leads to

∫ 


ϕε(z)ξδ dx ≤ C

(
εδ + β/δ/).
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From this and the definition of ξδ and |z| ≤ ϕε(z), we obtain

∫ –δ

δ

|z|dx ≤ C
(

ε +
√

β

δ

)

.

Letting ε →  yields

∫ –δ

δ

|z|dx ≤ C
√

β

δ
. (.)

From (.), (.), and the embedding W ,([δ,  – δ]) ↪→ L∞([δ,  – δ]) it follows that

∥
∥
(
θβ – θ)(·, t)

∥
∥

L∞[δ,–δ] ≤
∫ 



∣
∣θβ – θ∣∣dx +

∫ –δ

δ

|z|dx

≤ C
√

β

δ
.

Thus (.) is proved, and the proof is complete. �
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