
Li and Zaprawa Journal of Inequalities and Applications  (2016) 2016:250 
DOI 10.1186/s13660-016-1185-y

R E S E A R C H Open Access

Applications of the generalised Dirichlet
integral inequality to the Neumann problem
with fast-growing continuous data
Wei Li1 and Muhammad Aslam Zaprawa2*

*Correspondence:
m.zaprawa@outlook.com
2Department of Mathematics and
Computer Science, Faculty of
Science, Alexandria University,
Alexandria, 21511, Egypt
Full list of author information is
available at the end of the article

Abstract
By using the generalised Dirichlet integral inequality with continuous functions on
the boundary of the upper half-space, we prove new types of solutions for the
Neumann problem with fast-growing continuous data on the boundary. Given any
harmonic function with its negative part satisfying similarly fast-growing conditions,
we obtain weaker boundary integral condition.
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1 Introduction
Let Rn denote the n-dimensional Euclidean space, where n ≥ . We denote two points L
and N in Rn by L = (x′, xn) and N = (y′, yn), respectively, where x′ = (x, x, . . . , xn–), y′ =
(y, y, . . . , yn–), xn ∈ R and yn ∈ R. The Euclidean distance of them is denoted by |L – N |.
Let E be a subset of Rn, we denote the boundary and closure of it by ∂E and E, respectively.

The set

{
L =

(
x′, xn

) ∈ Rn; xn > 
}

,

is denoted by Tn, which is called the upper half-space. Let F be a subset of R+ ∪ {}. Then
two sets

{
L =

(
x′, xn

) ∈ Tn; |L| ∈ F
}

and
{

N =
(
y′, 

) ∈ ∂Tn; |N | ∈ F
}

are denoted by TnE and ∂TnE, respectively.
Let Bn(r) denote the open ball with center at the origin and radius r, where r > . By

Sn(r) we denote Tn ∩ ∂Bn(r). When g is a function defined by σn(r) = Tn ∩ Bn(r), the mean
of g is defined by

M(g)(r) =
sn

rn–

∫

σn(r)
g(L) dσL,

where sn is the surface area of Bn() and dσL is the surface element on Bn(r) at L ∈ σn(r).
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Let h(L) be a function on Tn. In this paper we denote h+ = max{h, }, h– = – min{h, } and
[c] is the integer part of c, where c ∈ R. Let ∂/∂n denote differentiation along the inward
normal into Tn. We use the Lebesgue measure dL = dx′ dxn, where dx′ = dx · · · dxn–.

Let f be a continuous function on ∂Tn. If h is a harmonic function on Tn and

lim
L→N∈∂Tn ,L∈Tn(�)

∂h(L)
∂xn

= f (N),

then we say that h is a solution of the Neumann problem on Tn with respect to f .
The uniqueness and the existence of solutions of the Neumann problem on Tn with a

continuous function on ∂Tn were given by Su (see [, ]).

Theorem A (see [], Theorem ) Let f (N) (N = (y′, )) be a function continuous on ∂Tn

such that
∫

∂Tn

∣∣f
(
y′)(∣∣ +

∣∣y′∣∣)–n dy′ < +∞. (.)

Then the Neumann integral

H,n[f ](L) = –ρn

∫

∂Tn

f (N)|L – N |–n dN

is a solution of the Neumann problem on Tn with respect to f satisfying

M
(
H,n[f ]

)
(r) = O()

as r → +∞, where ρn = {(n – )sn}–.

Theorem B (see [], Theorem ) Let k be a positive integer, f be a continuous function on
∂Tn such that (.) holds and h(L) be a solution of the Neumann problem on Tn with respect
to f satisfying

M
(
h+)

(r) = o
(
rk)

as r → +∞. Then

h(L) = H,n(f )(L) +

{
d when k = ,

�(x′) +
∑[ k

 ]
j=

(–)j

(j)! xj
n �j�(x′) when k ≥ ,

for any L = (x′, xn), where d is a constant, �(x′) is a polynomial of degree less than k on ∂Tn

and

�j =
(

∂

∂x


+
∂

∂x


+ · · · +
∂

∂x
n–

)
(j = ,  . . .).

Recently, Ren and Yang (see []) extended Theorems A and B by defining generalised
Neumann integrals with continuous functions under less restricted conditions than (.).
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Meanwhile, they also proved that for any continuous function f on ∂Tn there exists a so-
lution of Neumann problem on Tn. To state them, we need some preliminaries.

Let L and N be two points on Tn and ∂Tn, respectively. By 〈L, N〉 we denote the usual
inner product in Rn. We denote

|L – N |–n =
∞∑

k=

dk,n|N |–k–n+|L|kGk,n(t),

where |N | > |L|,

t = |L|–|N |–〈L, N〉, dk,n =

(
k + n – 

k

)

and Gk,n is the n-dimensional Legendre polynomial of degree k.
As in [], we shall use the following generalised Dirichlet kernel. For a non-negative

integer l, two points L ∈ Tn and N ∈ ∂Tn, we put

Vl,n(L, N) =

⎧
⎪⎨

⎪⎩

–ρn+
∑l–

k= dk,n|N |–n–k+|L|kGk,n(t) when |N | ≥  and l ≥ ,
 when |N | <  and l ≥ ,
 when l = .

(.)

The generalised Neumann kernel Kl,n(L, N) on Tn is defined by (see [])

Kl,n(L, N) = K,n(L, N) – Vl,n(L, N),

where L ∈ Tn, N ∈ ∂Tn and

K,n(L, N) = –αn|L – N |–n.

As for similar generalised Dirichlet kernel in a half plane and smooth cone, we refer the
reader to the papers by Yang and Ren (see []), Zhao and Yamada (see []) and Su (see []).

Let f (N) be a continuous function on ∂Tn. Then the generalised Neumann integral on
Tn can be defined by

Hl,n[f ](L) =
∫

∂Tn

f (N)Kl,n(L, N) dN .

Ren and Yang proved the following results.

Theorem C (see [], Corollary ) Let  < p < ∞, n + β –  > –(n – )(p – ) and

 –
 – β

p
< m <  –

 – β

p
.

Let f (N) (N = (y′, )) be a continuous function on ∂Tn such that

∫

∂H

∣∣f
(
y′)∣∣p( +

∣∣y′∣∣)–β–n dy′ < ∞. (.)
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Then the generalised Neumann integral Hl,n[f ](L) is a solution of the Neumann problem
on Tn with respect to f satisfying

M
(∣∣Hl,n[f ]

∣∣)(r) = O
(|x|+ β–

p secn– θ
)

as r → +∞.

Theorem D (see [], Theorem ) Let  ≤ p < ∞, β >  – p, l be a positive integer and

 –
 – β

p
< m <  –

 – β

p
when p > ,

β ≤ m < β +  when p = .

Let f (N) be a continuous function on ∂Tn satisfying (.). If h(L) is a solution of the Neu-
mann problem on Tn with respect to f such that

lim
r→∞,L=(r,�)∈H

h+(L) = o
(
rl+[+ β–

p ]),

then

h(L) = Nm[f ](L) + �
(
x′) +

[
l+[+ β–

p ]
 ]∑

j=

(–)j

(j)!
xj

n �j�
(
x′)

for any L = (x′, xn), where d is a constant, �(x′) is a polynomial of degree less than l+[+ β–
p ]

on ∂Tn.

From Theorems A, B, C and D, it is easy to see that the continuous boundary function f
grows slowly on ∂Tn. It is natural to ask what will happen if f is replaced by a fast-growing
continuous function on ∂Tn. In this paper, we shall solve this problem and explicitly give
a new solution of the Neumann problem on ∂Tn.

Define

ε = lim sup
r→∞

τ–(r)rτ ′(r) log r < ,

where τ (r) is a nondecreasing and continuously differentiable function satisfying τ (r) ≥ 
for any r ∈ R+ ∪ {}.

From these we see that there is a sufficiently large positive number r such that for any
t > r

τ (e)(ln t)ε+ε > τ (t), (.)

where ε is a sufficiently small positive number satisfying ε + ε < .
Let A� be the set of continuous functions f (N) (N = (y′, )) on ∂Tn satisfying

∫

∂Tn

∣∣f
(
y′)∣∣( +

∣
∣y′∣∣)–n–�–τ (|y′|) dy′ < +∞, (.)

where � is a real number such that � > .
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2 Results
Now we state our results.

Theorem  If f ∈ A� , then generalised Neumann integral H[τ (|y′|)+� ],n[f ](L) is a solution
of the Neumann problem on Tn with respect to f .

Then we shall prove that if the negative part of a harmonic function satisfies a fast-
growing condition, then its positive part satisfies the similar condition. That is to say, the
condition of Theorem  may be replaced by a weaker integral condition. To state this result,
we also need some notations.

Let B� be the set of continuous functions f (N) (N = (y′, yn)) on Tn satisfying

∫

Tn

∣∣f (N)
∣∣( + |N |)–n–�–τ (|N |)yn dN < +∞. (.)

By C� we denote the set of all continuous functions h(N) on Tn, harmonic on Tn with
h–(N) ∈B� and h–(y′) ∈A� .

Theorem  The conclusion of Theorem  remains valid if its condition is replaced by h ∈
C� .

Theorem  If h ∈ C� , then there exists a harmonic function �(L) with normal derivative
vanishes on ∂Tn such that

h(L) = �(L) + H[τ (|y′|)+� ],n[h](L),

where L ∈ T n.

3 Lemmas
Lemma  Let L ∈ Tn and N ∈ ∂Tn such that |N | ≥ max{, |L|}. Then (see [])

∣∣Kl,n(L, N)
∣∣ ≤ M|N |–l–n+|L|l,

where M is a positive constant.

Lemma  Let W(L, N) (N ∈ ∂Tn) be a locally integrable function for any fixed point L ∈ Tn,
g(N) be a upper semicontinuous and locally integrable function on ∂Tn. Set

K(L, N) = K,n(L, N) – W(L, N)

for any N ∈ ∂Tn and L ∈ Tn.
Suppose that the following two conditions hold:
(I) There are a positive number R and a neighborhood B(N∗) of N∗ (∈ ∂Tn) satisfying

∫

∂Tn[R,+∞)∪∂Tn(–∞,–R]

∣∣g(N)
∣∣
∣∣∣∣

∂

∂xn
K(L, N)

∣∣∣∣dN < ε,

where ε > .
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(II) There exists a positive number R satisfying

lim sup
L→N∗ ,L∈Tn

∫

∂Tn(–R,R)

∣∣g(N)
∣∣
∣∣∣∣

∂

∂xn
W(L, N)

∣∣∣∣dN = 

for any N∗ ∈ ∂Tn.
Then

lim sup
L→N∗∈∂Tn ,L∈Tn

∫

∂Tn

g(N)
∂

∂xn
W(L, N) dN ≤ g

(
N∗). (.)

Proof Let N∗ be any point of ∂Tn and ε be any positive number. There exists a positive
number R∗ satisfying

∫

∂Tn[R∗ ,+∞)∪∂Tn(–∞,–R∗]

∣∣g(N)
∣∣
∣∣∣∣

∂

∂xn
K(L, N)

∣∣∣∣dN ≤ ε


(.)

for any L = (x′, xn) ∈ Tn ∩ B(N∗) from (I).
Let φ be a continuous function on ∂Tn such that  ≤ φ ≤  and

φ =

{
 if ∂Tn[–R∗, R∗],
 if ∂Tn(–∞, –R∗) ∪ ∂Tn(R∗, +∞).

Let Kj
,n(L, N) be the Neumann function of Tn(–j, j), where j is a positive integer. Since

�j(L, N) = K,n(L, N) – K
j
,n(L, N)

on Tn(–j, j) converges monotonically to  as j → ∞, we can find an integer j∗ satisfying
j∗ > R∗ such that

∫

∂Tn(–R∗ ,R∗)

∣∣φ(N)g(N)
∣∣
∣∣∣∣

∂

∂xn
�j∗ (L, N)

∣∣∣∣dσ <
ε


(.)

for any L = (x′, xn) ∈ B(N∗) ∩ Tn.
Then we have from (.) and (.) that

∫

∂Tn

g(N)
∂

∂xn
K(L, N) dN ≤

∫

∂Tn(–R∗ ,R∗)
g(N)

∂K
j∗
,n(L, N)
∂xn

φ(N) dN

+
∫

∂Tn(–R∗ ,R∗)

∣∣g(N)
∣∣
∣∣∣∣
∂�j∗ (L, N)

∂xn

∣∣∣∣
∣∣φ(N)

∣∣dN

+
∫

∂Tn(–R∗ ,R∗)

∣∣g(N)
∣∣
∣∣∣∣
∂W(L, N)

∂xn

∣∣∣∣dN

+ 
∫

∂Tn[R∗ ,+∞)∪∂Tn(–∞,–R∗]

∣∣g(N)
∣∣
∣∣∣∣
∂K(L, N)

∂xn

∣∣∣∣dN

≤
∫

Sn(�;(–R∗ ,R∗))
g(N)

∂K
j∗
,n(L, N)
∂xn

φ(N) dN

+
∫

∂Tn(–R∗ ,R∗)

∣∣g(N)
∣∣
∣∣∣∣
∂W(L, N)

∂xn

∣∣∣∣dN +



ε (.)

for any L = (x′, xn) ∈ Tn ∩ B(N∗).
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Consider an upper semicontinuous function

ψ(N) =

{
φ(N)g(N) if ∂Tn[–R∗, R∗],
 if ∂Tn[–j∗, j∗] – ∂Tn[–R∗, R∗]

on ∂Tn(–j∗, j∗) and denote the Perron-Wiener-Brelot solution of the Neumann problem
on Tn(–j∗, j∗) by Hψ (L;Tn(–j∗, j∗)). We know that

∫

∂Tn(–R∗ ,R∗)
g(N)

∂K
j∗
,n(L, N)
∂xn

φ(N) dN = Hψ

(
L;Tn

(
–j∗, j∗

))
.

We also have

lim sup
L→N∗ ,L∈Tn

Hψ

(
L;Tn

(
–j∗, j∗

)) ≤ lim sup
N∈∂Tn ,N→N∗

ψ(N) = g
(
N∗).

Hence we obtain

lim sup
L→N∗ ,L∈Tn

∫

∂Tn(–R∗ ,R∗)
g(N)

∂K
j∗
,n(L, N)
∂xn

φ(N) dN ≤ g
(
N∗),

which together with (II) and (.) gives (.). �

Lemma  Let r >  and h(N) (N = (y′, yn)) be a function harmonic on Tn. Then

∫

Sn(r)
r––nh(N)nyn dN +

∫

∂Tn(,r)
h
(
y′)(∣∣y′∣∣–n – r–n)dy′ = d + dr–n,

where

d =
∫

Sn()
yn

(
(n – )h(N) +

∂h(N)
∂n

)
dN

and

d =
∫

Sn()
yn

(
h(N) –

∂h(N)
∂n

)
dN .

4 Proof of Theorem 1
We have from (.)

M(r) ≥ (r)τ (k+)+�+k
–�

 (.)

for any k > kr = [r] + , where M(r) is a positive constant dependent only on r.
We have for any L ∈ Tn and |L| ≤ R

∞∑

k=kr

∫

∂Tn[k,k+)

∣∣f
(
y′)∣∣(|L|)[τ (|y′|)+� ]∣∣y′∣∣–n–[τ (|y′|)+� ] dy′

≤
∞∑

k=kr

k
–�

 (r)+�+τ (k+)
∫

∂Tn[k,k+)

∣∣f

(
y′)∣∣( +

∣
∣y′∣∣)–n– �–

 –τ (|y′|) dy′
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≤ M(r)
∫

∂Tn[kr ,+∞)

∣∣f
(
y′)∣∣( +

∣∣y′∣∣)–n– �–
 –τ (|y′|) dy′

< +∞ (.)

from Lemma  and (.). So H[τ (|y′|)+� ],n(L) is absolutely convergent.
Next we shall prove that

lim
L→N ′ ,L=(x′ ,xn)∈Tn

∂H[τ (|y′|)+� ],n(L)
∂xn

= h
(
N ′)

for any N ′ = (y′, ) ∈ ∂Tn. By applying Lemma  to –g(y′) and g(y′) by setting

W(L, N) = V[τ (|y′|)+� ],n(L, N),

then we shall see that (I) and (II) hold. Take any N ′ = (y′, ) ∈ ∂Tn and any ε > . There
exists a number R (> max{(δ + y′), }) satisfying

∫

∂Tn[R,+∞)∪∂Tn(–∞,–R]

∣∣f (N)
∣∣
∣∣∣∣

∂

∂xn
K[τ (|y′|)+� ],n(L, N)

∣∣∣∣dN < ε

for any L ∈ Tn ∩ U(N ′, δ) from (.) and (.), which is (I) in Lemma . To see (II), we only
need to observe from (.) that for any N ′ ∈ ∂Tn

lim sup
L=(x′ ,xn)→N∗ ,L∈Tn

∂

∂xn
V[τ (|y′|)+� ],n(L, N) = .

So Theorem  is proved.

5 Proof of Theorem 2
Lemma  gives

P–(r) +
∫

∂Tn(,r)
h–(

y′)(∣∣y′∣∣–n – r–n)dy′

= P+(r) +
∫

∂Tn(,r)
h+(

y′)(∣∣y′∣∣–n – r–n)dy′ – d – dr–n,

where

P±(r) =
∫

σn(r)
nh±(y)r–n–yn dN .

Since h ∈ C� , we obtain by (.)
∫ +∞


P–(r)r–�–τ (r) dr = n

∫

Tn(,+∞)
h–(N)yn|N |–�–n–τ (|N |) dN < +∞. (.)

We have by (.)
∫ +∞


r–�–τ (r)

(∫

∂Tn(,r)
h–(

y′)(∣∣y′∣∣–n – r–n)dy′
)

dr

=
∫

∂Tn(,+∞)
h–(

y′)
(∫ ∞

|y′|
r–�–τ (r)(∣∣y′∣∣–n – r–n)dr

)
dy′
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≤ n
n + 

∫

∂Tn(,+∞)
h–(

y′)∣∣y′∣∣–�–n–τ (|y′|) dy′

< +∞. (.)

From (.), (.) and Lemma , we see that

∫ +∞


r

–�
 –τ (r)

(∫

∂Tn(,r)
h+(

y′)(∣∣y′∣∣–n – r–n)dy′
)

dr

=
∫

∂Tn[,+∞)
h+(

y′)
(∫ ∞

|y′|
r

–�
 –τ (r)(∣∣y′∣∣–n – r–n)dr

)
dy′

≤
∫ +∞


P–(r)r

–�
 –τ (r) dr –

∫ +∞


r

–�
 –τ (r)(d + dr–n)dr

+
∫ +∞


r

–�
 –τ (r)

(∫

∂Tn(,r)
h–(

y′)(∣∣y′∣∣–n – r–n)dy′
)

dr

< +∞. (.)

Set

Q(� ) = lim
|y′|→∞

∫ ∞

|y′|
r

–�
 –τ (r)(∣∣y′∣∣–n – r–n)dr

∣∣y′∣∣–+�+n+τ (|y′|).

It is easy to see that

Q(� ) = +∞,

from (.), which shows that

M
∣∣y′∣∣–�–n–τ (|y′|) ≤

∫ ∞

|y′|
r

–�
 –τ (r)(∣∣y′∣∣–n – r–n)dr

for any |y′| ≥ , where M is a positive constant.
It follows that

M

∫

∂Tn[,+∞)
h+(

y′)∣∣y′∣∣–�–n–τ (|y′|) dx′

≤
∫

∂Tn[,+∞)
h+(

y′)
∫ ∞

|y′|
r

–�
 –τ (r)(∣∣y′∣∣–n – r–n)dr dy′

< +∞

from (.).
Then Theorem  is proved from |h| = h+ + h–.

6 Proof of Theorem 3
Put h′(L) = h(L) – H[τ (|y′|)+� ],n(L). Then it is easy to see that h′(L) is harmonic on Tn with
normal derivative vanishes on ∂Tn and h′(L) can be continuously extended to Tn. By ap-
plying the Schwarz reflection principle [], p., to h′(L), it follows that there is a function
harmonic on Tn satisfying h(L∗) = –h′(L) = –(h(L) – H[τ (|y′|)+� ],n(L)) for L ∈ Tn, where ∗
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denotes reflection in ∂Tn just as L∗ = (x′, –xn). Thus h(L) = �(L) + H[τ (|y′|)+� ],n(L) for all
L ∈ T n, where �(L) is a harmonic function on Tn with normal derivative which vanishes
continuously on ∂Tn. Theorem  is proved.
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