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Abstract

We prove and discuss some new H,-L,, type inequalities of weighted maximal
operators of Vilenkin-Nérlund means with monotone coefficients. It is also proved
that these inequalities are the best possible in a special sense. We also apply these
results to prove strong summability for such Vilenkin-Nérlund means. As applications,
both some well-known and new results are pointed out.
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1 Introduction

The definitions and notations used in this introduction can be found in our next section.
In the one-dimensional case the weak (1, 1)-type inequality for maximal operator of Fejér
means o *f := sup,,. |o,,f| can be found in Schipp [1] for Walsh series and in P4l, Simon [2]
for bounded Vilenkin series. Fujji [3] and Simon [4] verified that o* is bounded from H;
to L;. Weisz [5] generalized this result and proved boundedness of o * from the martingale
space H, to the Lebesgue space L, for p > 1/2. Simon [6] gave a counterexample, which
shows that boundedness does not hold for 0 < p < 1/2. In the case p = 1/2 a counterexample
with respect to Walsh system was given by Goginava [7] and for the bounded Vilenkin
system was proved by Tephnadze [8]. Weisz [9] proved that the maximal operator of the
Fejér means o* is bounded from the Hardy space Hj/; to the space weak-Lys.

Weisz [10] proved that the maximal operator of Cesaro means o**f := sup, .y lo5f] is
bounded from the martingale space H), to the space L, for p > 1/(1+«). Goginava [11] gave a
counterexample, which shows that boundedness does not hold for 0 < p <1/(1+«). Simon
and Weisz [12] showed that the maximal operator ®* (0 < @ < 1) of the (C,«) means is
bounded from the Hardy space Hj/i.q) to the space weak-Lj/114). In [13] and [14] it was

also proved that the maximal operator

Gy = sup|o2f|/((n + )Me-ot jogtellpraeell(yy 4 7))
neN
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is bounded from the Hardy space H), to the Lebesgue space L,, where 0 < p <1/(1 + ).
Moreover, the rate of the weights {(n + 1)/7-*1]og+)Pre(+@l ;4 1)} in nth Cesaro
mean is given exactly.

It is well known that Vilenkin systems do not form bases in the space L;(G,,). Moreover,
there is a function in the Hardy space H1(G,,), such that the partial sums of f are not
bounded in Z;-norm. Simon [15] (for unbounded Vilenkin systems in the case when p =1
see [16] and for 0 < p < 1 another proof was pointed out in [17]) proved that there exists

an absolute constant c,, depending only on p, such that

1 GKIISIL »
E < 0 <1 1
log[p] " P kz_p — Cp”f”]—[p ( <p — ) ( )

for all f € H, and n € N,, where [p] denotes the integer part of p. In [18] for Walsh sys-
tem and in [19] with respect to bounded Vilenkin system it was proved that sequence
{1/k2‘1’}zi1 (0 <p<1)in (1) cannot be improved.

In [20] it was proved that there exists an absolute constant c,, depending only on p, such
that

1 " Nowf 15

log[l/2+p] n k2-2p

fcp|[f||f{p 0<p=<1/2,n=2,3,...). (2)

An analogous result for (C,«) (0 < @ < 1) means when p =1/(1 + o) was generalized in

[13] and when 0 < p < 1/(1 + @) it was proved in [14]. In particular, the following inequality:

1 = Nogf
log[a/(1+a)+p] n pm k2—(l+a)p

Scp|[f||7{p (0 <p§1/(1+a),n:2,3,...)

holds.

Moricz and Siddiqi [21] investigated the approximation properties of some special Nor-
lund mean of the L, function in norm. For more information on Nérlund means, see the
paper of Blahota and Gat [22] and Nagy [23] (see also [24, 25], and [26]).

In [27] for p =1/(1 + @) and in [28] for 0 < p < 1/(1 + &) there was proved that for every
f € H, and for every Norlund mean ¢,f, generated by the non-increasing sequence {g, :

n > 0}, satisfying the conditions

n*/Q,=0(Q1), asn— oo, 3)
and

(@n = gn)/n*> = O(1), asn— oo, (4)
there exists an absolute constant ¢, such that

N 7
log[a/(1+a)+p] n — k2—(1+oz)p -

Ca,p”f”ip (}’l =2,3,.. ) (5)
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and

sup |tnf|/((n + 1)1/]1—0{—1 log(1+a)[p+ot(l+oz)] (Vl + 1))
neN

y, = el ©)

In [29] it was proved that in the endpoint case p = 1/(1 + «) both (3) and (4) conditions
are sharp in a special sense.

In this paper we investigate the case when 0 < p < 1/(1 + @) and prove inequalities (5)
and (6) for f € H, and Vilenkin-No6rlund means with non-increasing coefficients, but with
weaker conditions than (3) and (4), which give possibility to prove analogous results for
the wider class of Vilenkin-Norlund means when 0 < p < 1/(1 + ). As applications, both
some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on some
definitions and notations are presented in Section 2. The main results can be found in
Section 3. For the proofs of the main results we need some lemmas, both well known, but
also some new ones of independent interest. These results are presented in Section 4. The
detailed proofs are given in Section 5. Some well-known and new consequences of our
main results are presented in Section 6.

2 Definitions and notations
Denote by N, the set of the positive integers, N := N, U {0}. Let m := (mg,m,,...) be a
sequence of the positive integers not less than 2. Denote by

Zom =140, 1,...,my =1}

the additive group of integers modulo .

Define the group G,, as the complete direct product of the groups Z,,, with the product
of the discrete topologies of the Z,,.

The direct product u of the measures

wi((}) =Umi (€ Zy,)

is the Haar measure on G, with u(G,,) = 1.
In this paper we discuss bounded Vilenkin groups, i.e. the case when sup, m, < co.
The elements of G,, are represented by the sequences

X = (xo,xl,...,x,«,...) (x,eZml)
It is easy to give a base for the neighborhood of G,,:
IO(x) = Gm: In(x) = {y S Gm |J’o =X0ree s Yn-1= xn—l}y

where x € G,,, n € N.
Denote I, := I,,(0) for n € N,, and I, := G,,\I,.

N-2mp-1 N-1m;-1

N-1mp-1
E = (U U U U11+1(Skek +sle;)) U (U U [N(Skek)>- (7)

k=0 sg=11=k+15;=1 k=1 sp=1
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If we define the so-called generalized number system based on m in the following way:
My :=1, My =mM;  (keN),
then every n € N can be uniquely expressed as n = Z]ZOO njM;, where n; € Z,,, (j € N,) and
only a finite number of the #; differ from zero.
Next, we introduce on G,, an orthonormal system which is called the Vilenkin system. At
first, we define the complex-valued function ri(x) : G,, — C, the generalized Rademacher
functions, by

ri(x) = exp2ixg/my) (¥ =-1,x € Gy, k €N).

Now, define the Vilenkin system ¢ := (¢, : » € N) on G, as
o0
Uul@) = [ri*@ (e
k=0

Specifically, we call this system a Walsh-Paley system when m = 2.
The norms (or quasi-norms) of the spaces L,(G,,) and weak-L,(G,,) (0 < p < 00) are,
respectively, defined by

112 = /G P, Vs, =000 >,
m >

The Vilenkin system is orthonormal and complete in L,(G,,) (see [30]).

Next, we introduce analogs of the usual definitions in Fourier-analysis. If f € L1(G,,)
we can define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
kernels with respect to the Vilenkin system in the usual manner:

Fln) = ) fU,dn (neN),

n-1 n-1
Suf = E 7, D, I=Z¢k (neN,),
k=0 k=0

respectively.
Recall that
M,, ifxel,
D = 8
(%) {0, ifx ¢ 1, ®)
and

o0 m]-—l
Dy = (Z Dy, Y. r,-k), )
j=0 k=m,'—n/
forn = E:ZZ)HLA40
The o -algebra generated by the intervals {I,(x) : x € G,,,} will be denoted by F, (n € N).
Denote by f = (f*, n € N) a martingale with respect to / , (z € N) (for details see e.g. [31]).
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The maximal function of a martingale f is defined by

f* =supv(”)|.

neN

For 0 < p < 0o the Hardy martingale spaces H,(G,,) consist of all martingales for which

Wl = 171, <oo.

Iff = (f*, n € N) is a martingale, then the Vilenkin-Fourier coefficients must be defined
in a slightly different manner:

Fo= gim [ 77, .
k—o00 Gm

Let {q« : kK > 0} be a sequence of nonnegative numbers. The nth Noérlund means for a
Fourier series of f is defined by

1
tof == — ) quiSifs (10)
Qi
where
n-1
Qu:= Z k-
k=0

A representation

60 = [ FOFG-0dulo)
Gm

plays a central role in the sequel, where
1 n
F,:= _an—ka
" k=1

is the so-called N6rlund kernel.
We say that the Norlund mean ¢, is of (N, ) type if

g—o; =0(1), asn— o0 (11)

and for any € > 0, we have

Qu

n(){+£‘

— 0, asmn— oo. 12)

For our further investigation it is much more convenient to replace condition (12) by its
equivalent one:

Qn < cyn“¢,, where ]@O% =0, for every & > 0. (13)
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We always assume that gy > 0 and lim,,_, o, Q,, = 00. In this case it is well known that the
summability method generated by {gx : kK > 0} is regular if and only if

qn-

n

lim =0.

n—00

Concerning this fact and related basic results, we refer to [32].
If g, =1, then we get the nth Fejér mean and the Fejér kernel

n n
oof = % stkf, K, = % ,ZDk,
=1 k=1

respectively.
Let ¢, € N. It is well known that (see [33])

0, ifx—x,ep & I, x € I\I,1,
I<Mn (x) = M ifx —Xi€; € [n,x € I[\It+1, (14)

1-re(x)’

M, +1)/2, ifxel,.

The (C, «)-means of the Vilenkin-Fourier series are defined by

n

1 _
o f = EZAi-iSkf:
n k=1
where
1)...
ari—o,  avcOrV@Em o

n!

For the martingale f we consider the following maximal operators:

o*f := sup|o,fl, o%*f = sug|a,f‘f
ne

, t*f = sup |t,f].
neN neN

We also consider the following weighted maximal operators:
EI: = sup Io,‘fl/((n + 1)V 2 1og P12l (5 1)) (0<p<1/2),

neN

Elj"* = sup|cf,‘j‘f|/((n + 1)lp-a-ljgglrallpralleal, | 1)) (0 <p<1/1+ Ol)),

neN
?; = sup It,(f|/((n + 1)lp-aljgglrallpralsall, | 1)) (O <p<1/(1+ a)).
neN

A bounded measurable function « is a p-atom, if there exists an interval I, such that

/adu =0, lalloe < pn(D™?, supp(a) C 1.
I

3 The mainresults

Our sharp H,-L, inequality reads as follows.
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Theorem 1
(@) Letf € H,, where 0 <p <1/(1 + ) for some 0 < <1, and {qy : k € N} be a sequence

of non-increasing numbers satisfying conditions (11) and (12). Then the maximal
operator

~% t

Lpa 3= SUP #/'1

e (e U

is bounded from the martingale Hardy space H, to the Lebesgue space Ly, i.e. the
following inequality holds:

sup |t,Lf|/((n + 1)””’1"")

neN

» < Crx,p”f”Hp- (15)

(b) Let 0 <p<1/(1+a)forsome0<a <1,and {®,:neN.} beany non-decreasing
sequence, satisfying the condition

1 1/p-1-a
VT (16)
n—00 CI)n
Then the inequality (15) is sharp in the sense that there exist a Norlund mean with
non-increasing sequence {q : k € N} satisfying the conditions (11) and (12) and a
martingale f € Hp such that

Mznkﬂfk
I Doty 41 ”weak»LP
sup =00
keN IVfill 2,

Our new result concerning strong summability of Nérlund means with non-increasing
sequences reads as follows.

Theorem 2 Letf € H,, where0 <o <1,0 <p <1/(1+«), and let {g, : n > 0} be a sequence
of non-increasing numbers, satisfying conditions (11) and (12). Then there exists an absolute
constant cy,p, depending only on o and p, such that the inequality

ll2f 1 »
Zkz—(lﬂx)p = Ca,p”f”]-[p

k=1

holds.

4 Lemmas
We need the following well-known lemma of Weisz [34].

Lemma 1 Suppose that an operator T is o -linear and for some 0 < p <1 and
/:|Tﬂ|pd/l, < ¢, <00,
I

for every p-atom a, where I denotes the support of the atom. If T is bounded from Ly to
Lo, then

1Zf Ny < cpllf Il -
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The next results are due to Blahota, Persson, and Tephnadze [27].

Lemma?2 Lets,M, <r < (s, +1)M,, wherel <s, < m, —1. Then for every Norlund mean,
without any restriction on the generative sequence {qi : k € N} we have the following equal-

ity:
SuMpy—-2

QrFr = QrDs,,Mn - I/fsy,M,,—l Z (qr—snMn+l - qr—snMn+l+1)lI_(l
I=1

- 1/fs,,Mn—l (snM,, — 1)('Ir—1[<s,1Mn—l + I/ISnMn Qr—s,,M,, Fr—s,,Mn .

We also need the following new lemmas of independent interest.

Lemma3 Let0 <« <1land{q,:n> 0}beasequence of non-increasing numbers satisfying
conditions (11) and (12). Then

||
|QuF,l < ca{ZM;YmKM,w},

j=0

where
— @j
lim—= =0, foreverye>O0. 17)
j—>oo]5

Lemma 4 Let0<a <1and{q,:n > 0} be a sequence of non-increasing numbers, satisfy-
ing conditions (11) and (12). If r > My, then

Ca My Q1M - Ca M Q1M
My T My©

, o X €la(sker +siep),

[ 1Ft- o] auto <
Iy
where

1<sp<mp-1, 1<s;<m-1 (k=0,...,N-2,l=k+1,...,N-1)
and

M,
/ IEue— )] dpn() < 2%, x e In(sien),
Iy My

where
1<sy<m-1 (k=0,...,N-1).
5 Proofs

Proof of Lemma 3 Let 0 < <1 and {gx : k > 0} satisfy the conditions (11) and (12). Since

o
n* g, > Qu > gy
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we obtain
qn-1 = na_lﬁpm (18)
where ¢, satisfies condition (17).
By using an Abel transformation we get
n-2
Qu= Z(qj - gi1)j + qu1(n—1) + qo (19)
j=1
and
n-2
> 1gj - gali < Qu < npy. (20)
j=1
Suppose that

g — @1l > 7295,
for all j € N, where §; is any function, such that

1lim §; = oco. (21)
J—> 00

Under condition (19) there exists an increasing sequence {oy : kK > 0}, such that o, >

20t and
Oy 1 00.
Hence,
Wfey1+1 app1+l
. -1
Z |q1 - qj+l |] > C¢ak5ak Z]
Jj=etk j=a

Wy +2 1
> Co by X dx
o,

k
U+l

Py, 8
> M9c°‘ > Cy oy O - (22)

o

Ak

By combining (18) and (22) we get

i1+l

> lgj—gjnli
Qak+l +3 j=1

> > 8y, — 00, ask— oo.
(01 +3)%(Pap,y +3) ~ (0tks1 +3)%(Pay,, +3) — ¥

This is a contradiction with condition (13), that is,

Q O(1), asn— oo.

nh, 29
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It follows that

g — gjn| <J*"*¢. (24)

It is easy to see that

QklDsm,,| < cM;; §ulDsn,, | (25)
and
(sMyy = Dt [ Ksnt, 1| < cuk® "Ml Koat, 1| < Myl Knt, 1 |- (26)
Let
n=8yu My +Sp,My, + - +8, My, m>ny>--->n,
and

n® = S M

gy ¥ S My, 1<s, <m-11=1,...,r.

By combining (24)-(26) and Lemma 2 we have

|QuFl
Sny M”l -1

< CaM | Dy aty | € D (1 + 1) 0, 1K
I=1

+ CotMsl ¢n1 |1<snlM,,1—l| + Cy |Qn(1)Fn(1) |

By repeating this process r times we get

|QnEnl
r Snank—l
-2
< CWZ(M;% Dy aty |+ > (n® 4 1) 0, K] + M |K5nank—1|)
k=1 =1
=1+ I+ 111

By combining (8), (9), and (14) we find that
|| ||
I<cy ) MielDu| < cay My ¢ulKi,|

k=1 k=1

and

r r
Il < co Y M G| M K, at,, = Dy sty | < Cay M5 b | Kig |-
k=1 k=1
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Moreover,

ro ng sqaMp-1

Gy > Dm0 ) 0l

k=1 A=1l=s4_1M4_1

I

r Mgyl SAMp-1

Yy d o (n ) g K

k=1 A=1 l:SA—lMA—l

saMy-1

teay Z > “ 0| K|

k=1A= Vlk+1+ll =S4 lMA 1

nge1 SAMp-1

= Cq ZMﬁki ¢”k+lz Z |”<l|

k=1 A=1l=s4_1My_4
r ni saMy-1
+Cy § § MS 24 § [IK)| = 11, + IT,.
k=1 A=nj,1+1 I=sg_1My_1

By applying (14) for II; we get

nge1 SAMp-1

RS SITI0 D D B

k=1 A=1l=s4_1My_1 j=0
=0 Y M ZMA ZM [
k=1
n k
<cay MG MKyl
k=0 j=0

ny ny n
= ca ) MilKu | ) oM™ < oy M 1K .

j=0 k=j j=0

By using (14) for /I, we have similarly

I, < cai Z M- 1¢AZM K|

k=1 A=nj,1+1

ny A m

<Cay METGaY MKl < oy M| Ki,l.

A-1 j=0 j=0
The proof is complete by combining the estimates above. 0

Proofof Lemma 4 Letx € Ij,1(skex +5sie1), 1 < sxp < myp—1,1 <s; < m;—1. Then, by applying
(14), we have

Ky, (x) =0, whenn>I>k.
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Suppose that k < n < [. Moreover, by using (14) we get
| K, ()] < cM.

Letn <k <!l Then
| K, (%)] = (M, +1)/2 < cMy.

If we now apply Lemma 3 and (14) we can conclude that

! I

Q|Fr()] < ca Yy MGa|Kin, ()] < ca Y MGaMi < caM @iMy. (27)
A=0 A=0

Let x € I;.1(skex + s1e;), for some 0 < k <l < N —1. Since x — t € I},1(sxex + sje;), for t € Iy
and r > My from (27) we obtain

Ca M 1My
Fx—1)|du@) < “———. (28)
[ IE-o o
Let x € Iy(skex), k =0,...,N — 1. Then, by applying (8) and (9) we have
1 n
[ 1F =0l dn® = -3 gun [ Date-o]dutd
In Q" m=1 IN
1 & cMy  cMy
<) Gnm < (29)
Qn ;q My — My
By combining (28) and (29) we complete the proof of Lemma 4. d

Proof of Theorem 1 According to Lemma 1 the proof of the first part of Theorem 1 will be
complete, if we show that

fiﬁ*,pa(x) |p du(x) < oo,
In

for every 1/(1 + o — ¢)-atom a. We may assume that 4 is an arbitrary p-atom with support
I, u(I) = My} and I = Iy. It is easy to see that ¢,(a) = 0, when n < My. Therefore, we can
suppose that n > M.

~k,p
By using Lemma 3 we easily see that ¢  is bounded from Ly, to L. Let x € Iy. Since
lalloo < M%p we obtain

atw)| = [ Jao|F,e- o] duto
In
< llalln fIN\Fn(x—w\du(t) < M /IN|Fn(x—t)ydu<t>.

Let x € I,1(skex + sie;), 0 < k <[ < N. From Lemma 4 we get

1/,
ca MY oMMy - Ca LM My - Ca LM My

My T oMy T oMy

|tualx)| < (30)
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Let x € In(skex), 0 < k < N. According to Lemma 4 we have

1/
ca My My e

|tna(x)| < O[M}\;IHM/(. (31)

By combining (7) and (30)-(31) we obtain

/—’t:’pﬂ!" dp
In

N-2mj—1 N-1 my-1

taa [P
= Z Z Z Z sup m dﬂ
k=0 sg=1I=k+1s;=1 Y Is1(skex+sier) m>Mn n
N-1myp-1 s )
p»H? / sup |7 | Ak
k=0 sp=1 v IN(skex) m>My n
N-2 N-1 .
U= D = 1) (my —1)
= C“Z Z M— (q)lM‘l’ka)P ¥ CaziMz[pr
k=0 I=k+1 I+1 - »
N-2 N-1 Nol )
(@M My )? M
=Ca Z Z —y  t CQZ—
(1-ap)
k=0 I=k+1 Min = My

N-2  N-1 N-2
PN »_ i
< Cq Mkz +C‘¥§ZMI< + ¢y

N-2 gOp N-2 (ﬂp
k § : k
< _— < _ <
= Cy Ml—p(oul) + Cy = Cy 2k(1—p(1+a)) + Cy = Cy < OQ.
k=0 k k=0

The proof of part (a) is complete.

Under condition (16) there exist positive integers n; such that

My, +1)VP71
lim Moy + )77 =00, O0<p<l/(l+a).
p
k— 00 q)MznkJrl

Let ¢, be Norlund mean with non-increasing sequence {gx : k € N} satisfying (11) and

condition (12), but in the restricted form

Ca (Man + l)l/p—l—a

— 00, ask— oo.
Ptz 1P My 41

Set

.fk = DMan+1 - DMan‘
Then

1; i :M2nky~~;M2nk+1 _1;
0, otherwise,

OE (32)
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and
Di = Dpty,» 1= Moy + 1,0, Moyn - 1,
Skﬂ< = fi(: i Z M2nk+1, (33)
0, otherwise.
Moreover,
my
Wfillr, < AM5, "7, (34)

where A = sup, m,,.
By using (33) we get

a1k 40|SMz,, 411

Pity 41 Qi 1Py 41

_ 401Dy +1 = Dy | GolVinry,, | N Ca
= > — .
Qg +1 Pz, 1 Qi 1Pz 11— M3y, Pity,y 410M3, 41
Hence,
|taty,,, +1fk(%)]
2y + c
wlxe G, —= > * =1 (35)
) Mg, ®
Moy +1 21 Mg,,k+1(/’M2nk+1
By applying (35) we have
tay,,, +1fk )]
M3, Dy - 19M 1(M{x €Gm: ¢;’;< 1 T M5, Py o 19My,, +1 v
2y 2my + 2m + 2m + 2ny 2my+ 2myt
Wfill
1/p-1-a 1/p—1—
M2nk Ca (M2nk +1) Il
> > — 00, ask— oo.
Dty +1PMoy, +1 Dty +1PMoy, +1
k K k K
The proof is complete. O

Proof of Theorem 2 According to Lemma 1 the proof of Theorem 2 will be complete, if we

show that
o p
Emally
ZMZ—(Ha)p = Ca <00,
m=1

for every p-atom a. Analogously to the first part of Theorem 1 we can assume that n > My
and a be an arbitrary p-atom, with support I, u(I) = My, and I = I.
Let x € Iy. Since ||| o0 < cM]l\;p if we apply Lemma 3 we obtain

|tmal’ dp < / IEn T llallB die < caph, | Nlallbdie < cap@h,

In In IN

Hence

f]N [tmal? du

CapPn
Cap = < Cotp < Q.
m2- (1+a)p le (1+a)p 2N(1 (1+a)p) K
m=Mp +1 m=Mp+1
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By combining (7), (30), and (31) analogously to first part of Theorem 1 we can write

i f[?|tmﬂ|p apn

2—(1+a)p
m=My+1 m
N-2mj—1 N-1 mj-1 N-1myp-1
(ZZ 3 :ffm (uexrsier) 1Eml” A1 Yy /}N(Ske—k et d“)
Z 2—(1+a)p 2-(1+a)p
m m
m=Mpn+1 k=0 sg=11=k+1s;=1 k=0 s;=0

-p N-2 N-1 1-p N-1
> (”‘”’ A7 SISMCAM i S

}’}’12 (1+a)p MN

m=Mp+1 k=0 [=k+1 k=0
M P
< CapM E — 5 +Cap E m2 Ty = Cap <00
m= MN+1 m=Mp+1
which completes the proof. d

6 Applications and final remarks

Remark 1 We note that under the conditions (3) and (4) we see that the conditions (11)
and (12) are also fulfilled.

Proof Let 0 < < 1. We can write

n-2
1Qul = }Z(q; = )] + gn1(m—1) + qo .
j=1

First suppose that o = 1. Then

dn-1=qo =cC

and
n-2
1Qul < ‘DO +c(n=1) +qo| < cn.
j=1

Moreover, condition (12) automatically holds,

Qn < qo

T < — 0, asn— oo,
n+8 n+€

for any ¢ > 0.

Since the case gqon/Q, = O(1), as n — o0, has already been considered, we can exclude

it. Hence, we may assume that {gx : K > 0} satisfies conditions (3) and (4) and, in addition,
satisfies the following condition:

Q =0(1), asun— oc.
qon
It follows that

=o(l), asm— o0,
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00 ) 1 c
qn = Z(ﬂﬂ _ql+1) = ZlZ—a < nl—a’
I=n I=n

and

n-2
1Qul < ‘ > v e(n—1) + qo‘ <cn®.
j=1

From Remark 1 we immediately see that the following is true.

Corollary 1 Conditions (3) and (4) provide a wider class of Norlund means with non-
increasing coefficients than conditions (11) and (12).

From the proof of Remark 1 for & = 1 we immediately have the following.

Remark 2 Let « =1 and {g : k € N} be a sequence of non-increasing numbers. Then
condition (12) automatically holds,

Qu

n1+s

— 0, asn— o9,
for any ¢ > 0.
By applying Remark 2 and Theorem 1 we get the following.

Theorem 3
(@) Letf € Hy,, where 0 < p <1/2 and {qy : k € N} be a sequence of non-increasing

numbers satisfying condition (11) for « = 1. Then the maximal operator

o |tf |

t,1:=S8

UL i

is bounded from the martingale Hardy space H, to the Lebesgue space Ly, i.e. the
inequality

sup ltaf /(1 + D7) | < caplf (36)
neN p

holds.
(b) Let {®,:n e N,} be any non-decreasing sequence, satisfying the condition

— (n+1)lVr2

n—o0

n

Then the inequality (36) is sharp in the sense that there exists a Norlund mean
with non-increasing sequence {qi : k € N} satisfying the condition (11) such that

M2nk+lfk

t,
I q)Man " ”weak»LP
sup

keN IVfill 2,
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By applying Remark 2 and Theorem 2 we get the following.

Theorem 4 Letf € H,, where 0 < p <1/2 and {q, : n > 0} be a sequence of non-increasing
numbers, satisfying condition (11). Then there exists an absolute constant c, ,, depending
only on o and p, such that

= |1, ]
J2—(+a)p = CD‘"’HfHHp'
k=1

From Theorem 3 we get the following result by Tephnadze [35].

Corollary 2
(a) Letf € H,, where 0 < p <1/2. Then the maximal operator
~ lonf]
0, =sup —————
P e )
is bounded from the martingale Hardy space H, to the Lebesgue space L,.
(b) Let {®,:n e N,} be any non-decreasing sequence, satisfying the condition

— (m+ 12
n—0oQ n B
Then
UMznkak
l Bty o1 ll weak-z,,
sup ————————— = o0.
keN Vficll,

Moreover, Theorem 4 implies the following result by Tephnadze [18].

Corollary 3 Let f € H,, where 0 < p < 1/2. Then there exists an absolute constant c,, de-
pending only on p, such that

oo
R T
kz_zp 4 Hp'

k=1

Next we note that Theorem 1 and Remark 1 imply the following results of Blahota, Teph-
nadze [13] for 0 <« < 1.

Corollary 4
(a) Letf € H,, where 0 < p <1/(1 + &) for some 0 < o < 1. Then the maximal operator
v jo2f]
=sup ———————
7 T Gty
is bounded from the martingale Hardy space H), to the Lebesgue space L.
(b) Let {®,:n € N,} be any non-decreasing sequence, satisfying the condition

_ (Vl + l)llp—l—a
Iim ——

n—00

n
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Then
Gf?;lznkﬂfk
sup ” ¢M2nk+1 ”weak-Lp
keN Vficll,

Similarly, Theorem 2 and Remark 1 immediately imply the following result of Blahota,
Tephnadze [13] for 0 <« < 1.

Corollary 5 Let f € H,, where 0 < p <1/(1 + o), for some O < o < 1. Then there exists an
absolute constant c,,p, depending only on o and p, such that

00 p

Z ||(71‘(xf||p < P
-ty = Carlfll,-

k=1

LetO<a <1, 8>0,and 6y # denote the Norlund mean, where
{qo =0,qx =k*og? k: k> 1},

that is,

n

00 = o Y= kS

™ k=1

Remark3 0 <o <land g =0.Then6, 4 satisfy conditions (3) and (4) and also conditions
(11) and (12).

Remark 4 0 <« <1and g8 >0. Then 6 # satisfies conditions (11) and (12), but does not
satisfy (3) and (4).

Finally, we also point out some new consequences of our results.
First we note that Theorem 1 and Remark 1 immediately imply the following new result.

Corollary 6
(@) Letf € H,, where 0 <p <1/(1 + @) for some 0 < < 1. Then for every p > 0 the
maximal operator

el 165" |
en (n + DI

is bounded from the martingale Hardy space H, to the Lebesgue space L,.
(b) Let {®,:n € N,} be any non-decreasing sequence, satisfying the condition

(}’l + l)l/p—l—a
lim ——

n—00

n

Then

a,f
L
sup — T
keN I/ficll 1,
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In a similar way we see that Theorem 2 and Remark 1 immediately generates the follow-

ing new result.

Corollary 7 Let f € H,, where 0 < p <1/(1 + @), for some 0 < oo < 1. Then for every >0
there exists an absolute constant c, g ,, depending only on o, B, and p, such that

LA )
-ty = Cappllflin,:
k=1
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