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Abstract
By applying some Schrödinger-type inequalities developed by Huang (Int. J. Math.
27(2):1650009, 2016), we are concerned with stabilization of discrete linear systems
associated with the Schrödinger operator. Our first aim is to prove a state-dependent
switching law associated with the Schrödinger operator, which is based on a convex
combination. Next, we derive sufficient conditions associated with the Schrödinger
operator that guarantee the uniform exponential stability of the system. Finally, we
propose a necessary and sufficient condition for the stability of a system with two
Schrödinger subsystems.
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1 Introduction
A switched system is composed of several subsystems and a decision rule that orches-
trates switching between these subsystems. Due to their wide existence in engineering
applications, this kind of dynamical systems has attracted considerable attention during
the past decades. In the real word, many quantities are nonnegative [–]. As a special case
of switched systems, a switched positive system with all subsystems associated with the
Schrödinger operator being positive systems is very common in communication systems
associated with the Schrödinger operator, formation flying, and rival mutation treatment
system [].

As we all know, it is necessary to address the stability and stabilization issues for switched
positive systems associated with the Schrödinger operator. Generally, the synthesis prob-
lem of switched systems associated with the Schrödinger operator primarily concerns on
two topics: stabilization by feedback controllers and stabilization by feedback switching
law. The former topic is studied mainly based on state feedback or output feedback con-
troller designation [, ], whereas the latter topic is proved by feedback switching law [,
]. Furthermore, there are many switched systems associated with the Schrödinger op-
erator whose subsystems associated with the Schrödinger operator are not stable in real
control systems associated with the Schrödinger operator [, ]. To the best of our knowl-
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edge, existing stabilization results on switched positive linear systems associated with the
Schrödinger operator have little results referring to the state-dependent switching law,
which motivates the research of this paper.

This paper investigates the boundary value problems of discrete linear systems asso-
ciated with the Schrödinger operator in discrete time context, which contain unstable
subsystems associated with the Schrödinger operator. The state feedback switching law
is designed to guarantee the stabilization of the switched positive linear systems associ-
ated with the Schrödinger operator. The result is then applied to systems associated with
the Schrödinger operator with two subsystems associated with the Schrödinger opera-
tor, and sufficient and necessary condition is also derived. The rest of paper is organized
as follows. Section  gives introduces some preliminaries. In Section , we give the main
results. Section  concludes this paper.

Throughout the paper, �n and �n×n represent the vectors of n-tuples of real numbers
and the space of n × n matrices with real entries, respectively, and N is the set of nonnega-
tive integers. For v in �n, vi is the ith component of v. The notation v �  (� ) means that
all components of v are positive (nonnegative), that is, vi >  (≥ ), and λv and λv stand for
the maximal and minimal components of v, respectively. For a matrix A in �n×m, aij is the
element in the ith row of the jth column of A, and A �  (� ) means that all elements of
A are positive (nonnegative), that is, aij >  (≥ ).

2 Preliminaries
Consider the following discrete-time switched linear system:

x(k + ) = Aσ (k)x(k), k ∈N, (.)

where σ (k) is a piecewise constant switching signal taking values in the finite set S =
{, , . . . , N}, and Ai ∈ �n×n (i ∈ S) are system matrices.

Assumption  For system (.), Ai �  for each i ∈ S.

Definition  A switching signal σ is said to be a state-feedback switching law if it depends
on system states and its past value, that is, σ (t+) = σ (x(t),σ (t–)) for system (.), where
σ (k + ) = σ (x(k),σ (k – )).

Lemma  ([]) A discrete-time system

x(k + ) = Ax(k), k ∈N, (.)

is positive if and only if A � .

Lemma  Let A � . Then the following conditions are equivalent:
(i) A is a Schur matrix;

(ii) There exists vector v �  in �n with (A – I)v ≺ .

Proof (i) For any i ∈ E, i ≥ ,

Ei{eλσ
}

= Ei{eλ(T+σ◦θT )} =


qi – λ
E{eλσ

}
.
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In the following, we compute E{eλσ}. Consider the coordinate process W (s) on excur-
sion space (U ,U ). For any i ∈ E, we define

ηi = inf
{

s|W (s) = i
}

and

C = {W |W 	= }, C = {W |W = }.

Obviously, C, C ∈ U and C ∪ C = U . Let τ = inf{t|βt > σ} for any t > , and

Z
t = �{s|s ∈ Dp, s ≤ t, Ys ∈ C}.

Then we have

P{τ > t} = P̂
{

Z
t = 

}

= e–P̂(W=)t = e–t .

So we know that τ is an exponential random variable with mean . Hence, we have

E{eλσ
}

= E
[

exp

{
λ

(∑

s∈G

(
I(,σ](s)σ∞I{C}(Ys)

) ◦ θs

)}]

= E{exp[λβτ ]
}

=
∫ ∞


E{eλβt

}
e–t dt.

From the computation of a Poisson point process we know that

E{eλβt
}

= E{eλz
t
}

= exp
{

tP̂
((

eλσ – 
)
I{C}(Ys)

)}
,

which yields that

P̂
((

eλσ – 
)
I{C}(Ys)

)
=

∞∑

k=

Ek[eλσ – 
]

=
∞∑

k=

λ

qk – λ
.

Hence, we have

E{eλσ
}

=
∫ ∞


exp t

{ ∞∑

k=

λ

qk – λ
– 

}

dt =


 –
∑∞

k=
λ

qk –λ

.

Therefore, if  < λ < ∑∞
n=(qn–q)– ∧ q, then we have E[eλσ ] < ∞. So Ei{eλσ} < ∞. It is

easy to see that pij(t) is exponentially ergodic.
(ii) By Lemma  and the previous results we have that if i ≥ , then τ+

 = σ. Let λ satisfy
 < λ < ∑∞

n=(qn–q)– ∧ q. Then, for any i ∈ E, we have

Ei{eλτ+

}

= Ei{eλσ
}

< ∞.
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Put m =  in Theorem . By using a computable method of (.) we know that

E{eλτ+

}

= E{eλ(T+σ◦T)}

= E[eλT
]
E[eλσ

]

=


q – λ


 –

∑∞
k=

λ
qk –λ

.

So Lemma  is proved. �

For system (.), if there exists a vector v �  with v ∈ �n such that (A – In)v ≺ , then
V = vT x is said to be a linear copositive Lyapunov function of system (.).

Next, we give an example to introduce our results.

Example  Consider system (.) with two subsystems associated with the Schrödinger
operator described by

A =

(
. .
. .

)

, A =

(
. .
. .

)

.

For the first subsystem matrix A, there does not exist a vector v �  such that (A –
I)v ≺ . Similarly, there does not exist a vector v �  such that (A – I)v ≺ .

It is easy to verify that these two subsystem matrices are not Schur matrices. Despite
this disadvantage, we find that there exist some combinations A of A and A that are
positive and Schur matrices, that is, A = λA + λA is a positive Schur matrix, where
λ,λ ∈ (, ) and λ + λ = .

For example, choose λ = . and λ = .. We obtain

A =

(
. .
. .

)

.

Note that there exists a vector v �  in �n with (A – I)v ≺ . Thus, A is a positive and
stable matrix.

This example contains an instantaneous state.
Suppose that q, q, . . . are sequences of positive real numbers and consider the following

Q-matrix:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

–∞    · · ·
q –q   · · ·
q  –q  · · ·
q   –q · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

where
∑∞

i= qi
– < ∞. This matrix is called the Kolmogorov matrix. There exist infinitely

many dishonest processes with this Q-matrix. In [, ], it is shown that the process with
following resolvent is the only honest one:

R(λ) =

λ

(

 +
∞∑

k=


λ + qk

)–

,
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Rj(λ) = R(λ) · 
λ + qj

, j ≥ ,

Ri(λ) =
qi

λ + qi
· R(λ), i ≥ ,

Rij(λ) =
qi

λ + qi
· R(λ) · 

λ + qj
+

δij

λ + qj
, i, j ≥ ,

where λ > . Let the state space be E = {, , , . . .}. Obviously, the transition function pij(t)
that corresponds to the resolvent is the only honest one. Though this chain is weakly sym-
metric, so far its convergence rate is still unknown because of its instantaneous state.

Next, we discusses the stability for system (.). Define the following stable convex com-
bination of the system matrices:

A =
∑

i∈S

wiAi, (.)

where

∑

i∈S

wi = , wi ∈ (, ). (.)

Assumption  There exists a vector v ∈ �n with v �  such that

(A – In)T v ≺ . (.)

Without loss of generality, let

(A – In)T v = –e, (.)

where e ∈ �n with e � , and λe
λv

≤ .
Denote


i = (Ai – In)T v, i ∈ S. (.)

Combing (.), (.), (.), (.), and (.), we get

[
(wA + · · · + wN AN ) – (w + · · · + wN )In

]T v = w
 + · · · + wN
N = –e.

Switching rule 
(i) For any initial state x(k) = x, we select

σ (k) = arg min
i∈S

{
xT

 
i
}

.

(ii) The first switching time instant is selected as

k = inf
{

k ≥ k|x(k)T
σ (k) > –rσ (k)x(k)T e
}

.
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Thus, the switching index can be determined by

σ (k) = arg min
i∈S

{
x(k)T
i

}
.

(iii) The switching index sequences are defined by

kj+ = inf
{

k ≥ kj|x(k)T
σ (kj) > –rσ (kj)x(k)T e
}

,

σ (kj+) = arg min
i∈S

{
x(kj+)T
i

}
,

where rσ (kj) ∈ (, ) and j ∈N.

3 Main results
Theorem  Under Assumption  and Switching rule , system (.) is uniformly exponen-
tially stable.

Proof Choose V (k, x(k)) = x(k)T v. For any k ∈ [km, km+), by system (.) it follows that

x(k)T v = x(k – )T AT
σ (km)v, (.)

which, together with (.) and (.), gives that

x(k)T v = x(k – )T
σ (km) + x(k – )T v. (.)

By (.) and (iii) of Switching rule  we know that

x(k)T v ≤ –rσ (km)x(k – )T e + x(k – )T v. (.)

Using (.) and (iii) of Switching rule , we can obtain the following inequality

V
(
k, x(k)

)
– V

(
k – , x(k – )

) ≤ –
rσ (km)λe

λv
V

(
k – , x(k – )

)
. (.)

So (.) and (.) give that

V
(
k, x(k)

) ≤
(

 –
rσ (km)λe

λv

)
V

(
k – , x(k – )

)
. (.)

Since λM
λv

≤  and rσ (km) ∈ (, ), we have that

 –
rσ (km)λe

λv
∈ (, ). (.)

With (.) in mind, using (.), we get that

V
(
k, x(k)

) ≤
(

 –
rσ (km)λe

λv

)k–km

V
(
km, x(km)

)
. (.)
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Repeating the above steps in (.)-(.), it straightforwardly follows that

V
(
k, x(k)

) ≤
(

 –
rσ (km)λe

λv

)k–km(
 –

rσ (km–)λe

λv

)km–km–

. (.)

From (.) and (.) it follows that

 –
rσ (ki)λe

λv
∈ (, ), i = , , . . . , m.

Choose η = maxi=,,...,m{ –
rσ (ki)λe

λv
}. So

V
(
k, x(k)

) ≤ ηk–k V
(
k, x(k)

)
,

which immediately gives that

x(k)T v ≤ ηk–k x(k)T v.

So

∥∥x(k)
∥∥ ≤ αηk–k

∥∥x(k)
∥∥,

where α = λv
λv

.
Thus, system (.) is uniformly exponentially stable. �

Remark  By the properties of discrete-time systems associated with the Schrödinger
operator and (ii) and (iii) of Switching rule , it is not hard to find that the dwell time in
each time interval is at least greater than . So there exist finite switchings in any finite
time interval. Thus, Switching rule  is well defined.

Corollary  Suppose N = . Consider the stability of system (.) in the sense of Lyapunov
function. Then system (.) is stable if and only if Assumption  holds.

Proof Here we only give the proof of “only if”. The stability of system (.) implies that
there exists an LCLF V (k, x(k)) = xT (k)v such that

V
(
k + , x(k + )

)
– V

(
k, x(k)

)
< –ςxT (k)e′

or

V
(
k + , x(k + )

)
– V

(
k, x(k)

)
< –ςxT (k)e′,

where v � , e′ � , and ς is a positive real number.
That is to say, xT (k)(AT

 – I)v < –ςxT (k)e′ whenever xT (k)(AT
 – I)v ≥ –ςxT (k)e′, and

xT (k)(AT
 – I)v < –ςxT (k)e′ whenever xT (k)(AT

 – I)v ≥ –ςxT (k)e′. We only prove the first
case since the second case can be derived as the first one. By the compactness theorem
there exists a positive real number μ such that –xT (k)(AT

 – I)v – ςxT (k)e′ > μ. Between
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any two consecutive switching instants, x(k) is bound. Thus, there exists a positive real
number κ such that

κ ≥ xT (k)
(
AT

 – I
)
v + ςxT (k)e′ > .

Choose ε = μ

κ
. We obtain that –xT (k)(AT

 – I)v – ςxT (k)e′ – ε(xT (k)(AT
 – I)v +

ςxT (k)e′) > –xT AT
 v – ςxT e′ – μ > , which yields that

xT[(
AT

 – I
)

+ ε
(
AT

 – I
)]

v < –( + ε)ςxT e′.

Define w = 
+ε

and w = ε
+ε

. We have xT [A – I]v < –ςxT e′, where A = wAT
 + wAT

 .
This inequality implies that Assumption  holds. �

4 Conclusions
In this paper, we consider the stabilization problem of discrete-time switched positive lin-
ear systems associated with the Schrödinger operator that contain unstable subsystems
associated with the Schrödinger operator. We present a state-dependent switching law
guaranteeing that the systems associated with the Schrödinger operator are uniformly ex-
ponentially stable. Furthermore, we establish a necessary and sufficient condition for the
stabilization of the system with two subsystems associated with the Schrödinger operator.
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