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1 Introduction
The present paper is devoted to the study of the following weighted semilinear elliptic
system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

La,μu = K (x)
|x|bp∗

b
(|u|p∗

b–u +
∑l

i=
ςiαi
p∗

b
|u|αi–u|v|βi ) + σh(x) |u|q–u

|x|dp∗
d

, in R
N ,

La,μv = K (x)
|x|bp∗

b
(|v|p∗

b–v +
∑l

i=
ςiβi
p∗

b
|u|αi |v|βi–v) + σh(x) |v|q–v

|x|dp∗
d

, in R
N ,

u(x), v(x) → , as |x| → +∞,

(.)

where La,μ � – div(|x|–a∇·) – μ ·
|x|(+a) is a singular elliptic operator, N ≥ ,  ≤ a < N–

 ,
a ≤ b ≤ d <  + a, σ ≥ ,  ≤ μ < μ with μ � ( N––a

 ),  < ςi < +∞, and αi, βi >  satisfy
αi + βi = p∗

b (i = , . . . , l;  ≤ l ∈ N),  < q < , p∗
b � N

N–(+a–b) , and p∗
d � N

N–(+a–d) are the
critical Hardy-Sobolev exponents, and p∗

a = ∗ � N
N– is the critical Sobolev exponent; K

and h are G-symmetric functions (see Section  for details) satisfying some appropriate
conditions which will be specified later.

The critical growth in elliptic problems has been extensively studied in the last decades,
starting with the seminal paper []. Limiting ourselves to problems involving the singular
potentials and critical exponents, we would like to mention the works [–] and the refer-
ences therein contained. These equations involving singular nonlinearities, as well as the
singular elliptic systems, describe naturally several physical phenomena and applied eco-
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nomical models (see [] for example). Recently, Deng and Jin [] investigated the existence
of nontrivial solutions of the following critical singular problem:

–�u – μ
u

|x| = K(x)|x|–su∗(s)–, and u >  in R
N , (.)

where  ≤ s <  and  < μ < ( N–
 ) are parameters, N > , ∗(s) = (N–s)

N– , and K satisfies
some symmetry conditions with respect to a subgroup G of O(N). By means of the varia-
tional approach, the authors proved the existence and multiplicity of G-symmetric solu-
tions to (.) under certain hypotheses on K . Very recently, Deng and Huang [] extended
the results in [] to quasilinear singular elliptic problems in a bounded G-symmetric
domain. Moreover, we also mention that when μ = s =  and the right-hand side term
|x|–su∗(s)– is replaced by uq– ( < q < N

N– or q = N
N– ) in (.), many elegant results of

G-symmetric solutions of (.) were established in [–].
On the other hand, in recent years, more and more attention have been paid to the

existence and multiplicity of nontrivial solutions for singular elliptic systems. In a recent
paper, Huang and Kang [] considered the following critical semilinear elliptic systems:

⎧
⎪⎪⎨

⎪⎪⎩

–�u – μ
u

|x–a| = |u|∗–u + ςα

α+β
|u|α–u|v|β + λ|u|q–u, in �,

–�v – μ
v

|x–a| = |v|∗–v + ςβ

α+β
|u|α|v|β–v + λ|v|q–v, in �,

u = v = , on ∂�,

(.)

where � ⊂R
N (N ≥ ) is a smooth bounded domain containing the origin, ς > , ai ∈ �,

λi > , μi < ( N–
 ),  ≤ qi < ∗ (i = , ), and α,β >  fulfill α + β = ∗. Note that |u|α–u|v|β

and |u|α|v|β–v in (.) are called strongly coupled terms, and |u|∗–u, |v|∗–v are weakly
coupled terms. By variational methods and the Moser iteration techniques, the authors
proved the existence of positive solutions and some properties of the nontrivial solutions
to (.). Subsequently, by employing variational methods and the analytic techniques of
Nehari manifold, Kang [], Nyamoradi [], Nyamoradi and Hsu [] extended and gen-
eralized the results of [] to the critical singular quasilinear systems. These results give
us a good insight into the corresponding problems. Other further results relating to the
nonlinear elliptic systems can be found in [–] and the references therein.

However, concerning the existence and multiplicity of G-symmetric solutions for ellip-
tic systems, we only find some results for singular elliptic systems in [–] and when
G = O(N), several radial and nonradial results for nonsingular elliptic systems in [].
Motivated by the works [, , ], in the present paper, we study the existence and mul-
tiplicity of G-symmetric solutions for singular elliptic system (.) in R

N . The main diffi-
culties lie in the fact that there are not only the singular perturbations h(x)|x|–dp∗

d |u|q–u
and h(x)|x|–dp∗

d |v|q–v, but also the nonlinear strong coupled terms
∑l

i=
ςiαi
p∗

b
|u|αi–u|v|βi ,

∑l
i=

ςiβi
p∗

b
|u|αi |v|βi–v and weak coupled terms |u|p∗

b–u, |v|p∗
b–v. Compared with problems

(.) and (.), the singular elliptic system (.) becomes more complicated to deal with and
therefore we have to overcome more difficulties. So far as we know, it seems that there are
few results for (.) even in the particular cases μ = a = b = , σ = , and ςi >  (i = , . . . , l).
Consequently, it make sense for us to investigate system (.) thoroughly. Let K >  be a
constant. Note that here we try to consider both the cases of σ = , K(x) 
≡ K, and σ > ,
K(x) ≡ K.
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The remainder of this paper is organized as follows. Some preliminaries and the vari-
ational setting and the main results of this paper are presented in Section . The proofs
of several existence and multiplicity results for the cases σ =  and K(x) 
≡ K in (.) are
given in Section , while the proofs of multiplicity results for the cases σ >  and K(x) ≡ K

are detailed in Section . The methods of this paper are mainly based upon the symmetric
criticality principle of Palais (see []) and variational arguments.

2 Preliminaries and main results
Let D ,

a (RN ) denote the closure of C ∞
 (RN ) functions with respect to the norm

(
∫

RN |x|–a|∇u| dx)/. We recall that the well-known Caffarelli-Kohn-Nirenberg inequal-
ity (see []) asserts that, for all u ∈ D ,

a (RN ), there is a constant C = C(N , a, e) >  such
that

(∫

RN
|x|–ep∗

e |u|p∗
e dx

) 
p∗e ≤ C

∫

RN
|x|–a|∇u| dx, (.)

where –∞ < a < N–
 , a ≤ e ≤  + a, and p∗

e = N
N–(+a–e) . If e =  + a, then p∗

e =  and we have
the following weighted Hardy inequality (see []):

∫

RN
|x|–(+a)|u| dx ≤ 

μ

∫

RN
|x|–a|∇u| dx, ∀u ∈ D ,

a
(
R

N), (.)

where μ = ( N––a
 ). Now we employ the following norm in D ,

a (RN ):

‖u‖μ �
[∫

RN

(|x|–a|∇u| – μ|x|–(+a)u)dx
] 


,  ≤ μ < μ.

By the inequality (.), we easily see that the above norm is equivalent to the usual norm
(
∫

RN |x|–a|∇u| dx)/. Moreover, we define the product space (D ,
a (RN )) endowed with

the norm

∥
∥(u, v)

∥
∥

μ
=
(‖u‖

μ + ‖v‖
μ

)/, ∀(u, v) ∈ (
D ,

a
(
R

N)).

Let O(N) be the group of orthogonal linear transformations in R
N with natural action and

let G ⊂ O(N) be a closed subgroup. For x 
=  we denote the cardinality of Gx = {gx; g ∈
G} by |Gx| and set |G| = inf
=x∈RN |Gx|. Note that here |G| may be +∞. For any function
f : RN → R, we call f (x) a G-symmetric function if for all g ∈ G and x ∈ R

N , f (gx) = f (x)
holds. In particular, if f is radially symmetric, then the corresponding group G is O(N) and
|G| = +∞. Other further examples of G-symmetric functions can be found in [].

The natural functional space to frame the analysis of (.) by variational techniques is
the Hilbert space (D ,

a,G(RN )), which is the subspace of (D ,
a (RN )) consisting of all G-

symmetric functions. In the present paper, we are concerned with the following problems:

(
PK

σ

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

La,μu = K (x)
|x|bp∗

b
(|u|p∗

b–u +
∑l

i=
ςiαi
p∗

b
|u|αi–u|v|βi ) + σh(x) |u|q–u

|x|dp∗
d

, in R
N ,

La,μv = K (x)
|x|bp∗

b
(|v|p∗

b–v +
∑l

i=
ςiβi
p∗

b
|u|αi |v|βi–v) + σh(x) |v|q–v

|x|dp∗
d

, in R
N ,

(u, v) ∈ (D ,
a,G(RN )), and u ≥ , v ≥ , (u, v) 
= (, ), in R

N .
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Let (u, v) ∈ (D ,
a,G(RN )) be a weak solution of (PK

σ ) (see Sections  and ). We need the
following basic definition.

Definition .
(i) A weak solution (u, v) ∈ (D ,

a,G(RN )) is called a semi-positive solution to (PK
σ ) if

u > , v =  or u = , v >  on R
N .

(ii) A weak solution (u, v) ∈ (D ,
a,G(RN )) is called a strictly positive solution to (PK

σ ) if
u >  and v >  on R

N .
(iii) A weak solution (u, v) ∈ (D ,

a,G(RN )) is called a positive solution to (PK
σ ) if u ≥ ,

v ≥  and (u, v) 
= (, ) on R
N .

The purpose of this paper is to investigate the existence and multiplicity of the positive
solutions (including semi-positive solutions and strictly positive solutions) to the problem
(PK

σ ).
Before stating our main results, we present the following two notations: Sμ and yε(x),

which are, respectively, defined by

Sμ � inf
u∈D,

a (RN )\{}

∫

RN (|x|–a|∇u| – μ|x|–(+a)u) dx

(
∫

RN |x|–bp∗
b |u|p∗

b dx)


p∗
b

(.)

and

yε(x) � Cε


p∗
b–

|x|√μ–
√

μ–μ(ε + |x|(p∗
b–)

√
μ–μ)


p∗

b–
, (.)

where ε > , and the constant C = C(N , a, b,μ) > , depending only on N , a, b, and μ.
According to [], we find that yε(x) satisfies the equations

∫

RN

(|x|–a|∇yε | – μ|x|–(+a)y
ε

)
dx =  (.)

and

∫

RN
|x|–bp∗

b yp∗
b–

ε ϕ dx = S–
p∗

b


μ

∫

RN

(|x|–a∇yε∇ϕ – μ|x|–(+a)yεϕ
)

dx

for all ϕ ∈ D ,
a (RN ). In particular, we have (let ϕ = yε )

∫

RN
|x|–bp∗

b yp∗
b

ε dx = S–
p∗

b


μ = S
–N

N–(+a–b)
μ . (.)

We suppose that the functions K(x) and h(x) verify the following hypotheses:
(k.) K(x) is G-symmetric.
(k.) K(x) ∈ C (RN ) ∩ L∞(RN ), and K+(x) 
≡ , where K+(x) = max{, K(x)}.
(h.) h(x) is G-symmetric.
(h.) h(x) is a nonnegative function in R

N such that

 < ‖h‖θ �
(∫

RN
|x|–dp∗

d hθ (x) dx
) 

θ

< +∞ with θ � p∗
d

p∗
d – q

.
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The main results of this paper are the following.

Theorem . Suppose that (k.) and (k.) hold. If

∫

RN
K(x)

yp∗
b

ε

|x|bp∗
b

dx ≥ max

{ ‖K+‖∞

|G| (+a–b)
N–(+a–b) S

N
N–(+a–b)


,
K+()

S
N

N–(+a–b)
μ

,
K+(∞)

S
N

N–(+a–b)
μ

}

>  (.)

for some ε > , where K+(∞) = lim sup|x|→∞ K+(x), then problem (PK
 ) has at least one

positive solution in (D ,
a,G(RN )).

Remark . Under the condition (k.), we only assume that K(x) is bounded and contin-
uous on R

N , and K+(x) 
≡ , where K+(x) = max{, K(x)}. In particular, we do not require
any continuity of K(x) at infinity. Moreover, we also do not require K+() = K(), where
K+() = max{, K()}. For example, setting K(x) = sin(|x| – ), x ∈R

N , we easily check that
K(x) ∈ C (RN )∩L∞(RN ) and K+(x) = max{, sin(|x| – )} 
≡  on R

N , but K() = – sin  < 
and K+() = .

Corollary . Suppose that (k.) and (k.) hold. Then we have the following statements.
() Problem (PK

 ) has a positive solution if

K() > , K() ≥ max

{ ‖K+‖∞

|G| (+a–b)
N–(+a–b)

(
Sμ

S

) N
N–(+a–b)

, K+(∞)
}

, (.)

and either (i) K(x) ≥ K() + |x|p∗
b
√

μ–μ for some  >  and |x| small or
(ii) |K(x) – K()| ≤ |x|κ for some constant  > , κ > p∗

b
√

μ – μ and |x| small and

∫

RN

(
K(x) – K()

)|x|–(b+
√

μ+
√

μ–μ)p∗
b dx > . (.)

() Problem (PK
 ) admits at least one positive solution if lim|x|→∞ K(x) = K(∞) exists

and is positive,

K(∞) ≥ max

{ ‖K+‖∞

|G| (+a–b)
N–(+a–b)

(
Sμ

S

) N
N–(+a–b)

, K+()
}

, (.)

and either (i) K(x) ≥ K(∞) + |x|–p∗
b
√

μ–μ for some  >  and large |x| or
(ii) |K(x) – K(∞)| ≤ |x|–ι for some constants  > , ι > p∗

b
√

μ – μ, and large |x|
and

∫

RN

(
K(x) – K(∞)

)|x|–(b+
√

μ–
√

μ–μ)p∗
b dx > . (.)

() If K(x) ≥ K(∞) = K() >  on R
N and

K(∞) = K() ≥ ‖K+‖∞|G| –(+a–b)
N–(+a–b) (Sμ/S)

N
N–(+a–b) ,

then problem (PK
 ) has at least one positive solution.



Deng et al. Journal of Inequalities and Applications  (2016) 2016:238 Page 6 of 22

Theorem . Suppose that K+() = K+(∞) =  and |G| = +∞. Then problem (PK
 ) has

infinitely many G-symmetric solutions.

Corollary . If K(x) is a radially symmetric function such that K+() = K+(∞) = , then
problem (PK

 ) has infinitely many solutions which are radially symmetric.

Theorem . Let K >  be a constant. Suppose that K(x) ≡ K and (h.), (h.) hold. Then
there exists σ ∗ >  such that, for any σ ∈ (,σ ∗), problem (PK

σ ) possesses at least two
positive solutions in (D ,

a,G(RN )).

Remark . The main results of this paper extend and complement some results of [–
, ]. Even in the particular cases μ = a = b = , σ = , and ςi >  (i = , . . . , l), the above
results to problem (PK

 ) are new in the whole space R
N .

Throughout this paper, the ball of center x and radius r is denoted by Br(x). We denote
by (D ,

a,G(RN )) the subspace of (D ,
a (RN )) consisting of all G-symmetric functions. The

dual space of (D ,
a,G(RN )) ((D ,

a (RN )), resp.) is denoted by (D–,
a,G (RN )) ((D–,

a (RN )),
resp.). O(εt) denotes the quantity satisfying |O(εt)|/εt ≤ C, and on() a datum which tends
to  as n → ∞. We employ C, C, C, . . . to denote (possibly different) positive constants,
and denote by ‘→’ convergence in norm in a given Banach space X and by ‘⇀’ weak con-
vergence. A functional F ∈ C (X,R) is said to satisfy the (PS)c condition if each sequence
{wn} in X satisfying F (wn) → c, F ′(wn) →  in X∗ has a subsequence which strongly con-
verges to some element in X. Hereafter, Lq(RN , |x|–ς ) denotes the weighted Lq(RN ) space
with the norm (

∫

RN |x|–ς |u|q dx)/q.

3 Existence and multiplicity results for problem (PK
0 )

The energy functional corresponding to problem (PK
 ) is defined on (D ,

a,G(RN )) by

F (u, v) =


∥
∥(u, v)

∥
∥

μ
–


p∗

b

∫

RN

K(x)
|x|bp∗

b

(

|u|p∗
b +

l∑

i=

ςi|u|αi |v|βi + |v|p∗
b

)

dx. (.)

Then F ∈ C ((D ,
a,G(RN )),R), and it is well known that the critical points of the functional

F on (D ,
a,G(RN )) correspond to the weak solutions of problem (PK

 ). More precisely,
by the symmetric criticality principle due to Palais (see Lemma .), we say that (u, v) ∈
(D ,

a,G(RN )) is a weak solution of (PK
 ), if for any (ϕ,ϕ) ∈ (D ,

a (RN )), we have

∫

RN

(

|x|–a∇u∇ϕ + |x|–a∇v∇ϕ – μ
uϕ + vϕ

|x|(+a)

)

dx –
∫

RN

K(x)
|x|bp∗

b

{

|u|p∗
b–uϕ

+
l∑

i=

ςi

p∗
b

(
αi|u|αi–u|v|βiϕ + βi|u|αi |v|βi–vϕ

)
+ |v|p∗

b–vϕ

}

dx = . (.)

Lemma . Let K (x) be a G-symmetric function; F ′(u, v) =  in (D–,
a,G (RN )) implies

F ′(u, v) =  in (D–,
a (RN )).

Proof The proof is a repeat of that in [], Lemma  (see also [], Proposition .) and
therefore omitted here. �
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For all μ ∈ [,μ),  < ςi < +∞, αi, βi > , and αi + βi = p∗
b (i = , . . . , l), we define

Sμ,l � inf
(u,v)∈(D,

a (RN )\{})

∫

RN (|x|–a|∇u| + |x|–a|∇v| – μ
|u|+|v|
|x|(+a) ) dx

[
∫

RN |x|–bp∗
b (|u|p∗

b +
∑l

i= ςi|u|αi |v|βi + |v|p∗
b ) dx]


p∗

b

, (.)

B(τ ) �  + τ 

( +
∑l

i= ςiτβi + τ p∗
b )


p∗

b

, τ ≥ , (.)

B(τmin) � min
τ≥

B(τ ) > , (.)

where τmin >  is a minimal point of B(τ ) and hence a root of the equation

τ p∗
b– +

l∑

i=

ςi

p∗
b

(
βiτ

βi– – αiτ
βi
)

–  = , τ ≥ . (.)

Lemma . Let yε(x) be the minimizer of Sμ defined in (.) and (.),  ≤ μ < μ,  < ςi <
+∞, αi, βi > , and αi + βi = p∗

b (i = , . . . , l). Then we have the following statements.
(i) Sμ,l = B(τmin)Sμ.

(ii) Sμ,l has the minimizer (yε(x), τminyε(x)) for all ε > .

Proof Similar to the proof in Nyamoradi [], Theorem . �

Lemma . Let {(un, vn)} be a weakly convergent sequence to (u, v) in (D ,
a,G(RN ))

such that |x|–a|∇un| ⇀ η(), |x|–a|∇vn| ⇀ η(), ||x|–bun|p∗
b ⇀ ρ(), ||x|–bvn|p∗

b ⇀ ρ(),
|x|–bp∗

b |un|αi |vn|βi ⇀ ν(i) (i = , . . . , l), |x|–(+a)|un| ⇀ γ (), |x|–(+a)|vn| ⇀ γ () in the
sense of measures. Then there exists some at most countable set J , {η()

j ≥ }j∈J ∪{},
{η()

j ≥ }j∈J ∪{}, {ρ()
j ≥ }j∈J ∪{}, {ρ()

j ≥ }j∈J ∪{}, {ν(i)
j ≥ }j∈J ∪{}, γ

()
 ≥ , γ

()
 ≥ ,

{xj}j∈J ⊂R
N\{} such that

(a) η() ≥ |∇u|
|x|a +

∑
j∈J η

()
j δxj + η

()
 δ, η() ≥ |∇v|

|x|a +
∑

j∈J η
()
j δxj + η

()
 δ,

(b) ρ() = |u|p∗
b

|x|bp∗
b

+
∑

j∈J ρ
()
j δxj + ρ

()
 δ, ρ() = |v|p∗

b

|x|bp∗
b

+
∑

j∈J ρ
()
j δxj + ρ

()
 δ,

ν(i) = |x|–bp∗
b |u|αi |v|βi +

∑
j∈J ν

(i)
j δxj + ν

(i)
 δ, i = , . . . , l,

(c) γ () = |x|–(+a)|u| + γ
()
 δ, γ () = |x|–(+a)|v| + γ

()
 δ,

(d) S,l[ρ()
j + ρ

()
j +

∑l
i= ςiν

(i)
j ]


p∗

b ≤ η
()
j + η

()
j , S(ρ()

j )


p∗
b ≤ η

()
j , S(ρ()

j )


p∗
b ≤ η

()
j ,

(e) Sμ,l[ρ()
 + ρ

()
 +

∑l
i= ςiν

(i)
 ]


p∗

b ≤ η
()
 + η

()
 – μ(γ ()

 + γ
()
 ), Sμ(ρ()

 )


p∗
b ≤ η

()
 – μγ

()
 ,

Sμ(ρ()
 )


p∗

b ≤ η
()
 – μγ

()
 ,

where δxj , j ∈ J ∪ {}, is the Dirac mass of  concentrated at xj ∈R
N .

Proof Similar to the proof of the concentration compactness principle in [] (see also
[], Lemma .). �

To prove the existence results of problem (PK
 ), we need the following local (PS)c con-

dition.
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Lemma . Suppose that (k.) and (k.) hold. Then the (PS)c condition in (D ,
a,G(RN ))

holds for F if

c < c∗
 �

 + a – b
N

min

{ |G|S
N

(+a–b)
,l

‖K+‖
N–(+a–b)

(+a–b)∞
,

S
N

(+a–b)
μ,l

K+()
N–(+a–b)

(+a–b)
,

S
N

(+a–b)
μ,l

K+(∞)
N–(+a–b)

(+a–b)

}

. (.)

Proof The proof is analogous to that of [], Proposition , but we exhibit it here for com-
pleteness. Let {(un, vn)} ⊂ (D ,

a,G(RN )) be a (PS)c sequence for F with c < c∗
. Then we see

from (k.), (.), and (.) that {(un, vn)} is bounded in (D ,
a,G(RN )). Therefore, up to a sub-

sequence, we may assume that (un, vn) ⇀ (u, v) in (D ,
a,G(RN )). According to Lemma .,

there exist measures η(), η(), ρ(), ρ(), ν(i) (i = , . . . , l), γ (), and γ () such that relations (a)-
(e) of this lemma hold. Let xj 
=  be a singular point of measures η(), η(), ρ(), ρ(), and ν(i)

(i = , . . . , l). We define two functions φ,φ ∈ C (RN ) such that  ≤ φ, φ ≤ , φ = φ = 
for |x – xj| ≤ ε/, φ = φ =  for |x – xj| ≥ ε and |∇φ| ≤ /ε, |∇φ| ≤ /ε. By Lemma .,
limn→∞〈F ′(un, vn), (unφ, vnφ)〉 = ; hence, using (.) and the Hölder inequality and the
fact that p∗

a = ∗, we get

∫

RN

{
(
φ dη() + φ dη()) – K(x)

[

φ dρ() +
l∑

i=

ςi

p∗
b

(αiφ + βiφ) dν + φ dρ()

]}

–
∫

RN
μ
(
φ dγ () + φ dγ ())

≤ lim sup
n→∞

∫

RN
|x|–a[|un∇un∇φ| + |vn∇vn∇φ|

]
dx

≤ sup
n≥

(∫

RN
|x|–a|∇un| dx

) 


lim sup
n→∞

(∫

RN
|x|–a|un||∇φ| dx

) 


+ sup
n≥

(∫

RN
|x|–a|∇vn| dx

) 


lim sup
n→∞

(∫

RN
|x|–a|vn||∇φ| dx

) 


≤ C
{(∫

RN
|x|–a|u||∇φ| dx

) 


+
(∫

RN
|x|–a|v||∇φ| dx

) 

}

≤ C
{(∫

Bε (xj)

|u|∗

|x|∗a

) 
∗ (∫

RN
|∇φ|N

) 
N

+
(∫

Bε (xj)

|v|∗

|x|∗a

) 
∗ (∫

RN
|∇φ|N

) 
N
}

≤ C
{(∫

Bε (xj)
|x|–a|∇u| dx

) 


+
(∫

Bε (xj)
|x|–a|∇v| dx

) 

}

. (.)

Taking the limits as ε → , we deduce from (.) and Lemma . that

K(xj)

(

ρ
()
j +

l∑

i=

ςiν
(i)
j + ρ

()
j

)

≥ η
()
j + η

()
j . (.)

This means that the concentration of the measures ρ(), ρ() and ν(i) cannot occur at points
where K(xj) ≤ , that is, if K(xj) ≤  then η

()
j = η

()
j = ρ

()
j =

∑l
i= ςiν

(i)
j = ρ

()
j = . Combin-
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ing (.) and (d) of Lemma . we conclude that either
(i) ρ

()
j =

∑l
i= ςiν

(i)
j = ρ

()
j =  or

(ii) ρ
()
j +

∑l
i= ςiν

(i)
j + ρ

()
j ≥ (S,l/K(xj))

N
(+a–b) ≥ (S,l/‖K+‖∞)

N
(+a–b) .

For the point x = , similarly to the case xj 
= , we obtain

η
()
 + η

()
 – μ

(
γ

()
 + γ

()


)
– K()

(

ρ
()
 +

l∑

i=

ςiν
(i)
 + ρ

()


)

≤ .

This, combined with (e) of Lemma ., implies that either
(iii) ρ

()
 =

∑l
i= ςiν

(i)
 = ρ

()
 =  or

(iv) ρ
()
 +

∑l
i= ςiν

(i)
 + ρ

()
 ≥ (Sμ,l/K+())

N
(+a–b) .

To study the concentration at infinity of the sequence we need to define the following
quantities:

() η
()∞ = limR→∞ lim supn→∞

∫

|x|>R
|∇un|
|x|a dx, η()∞ = limR→∞ lim supn→∞

∫

|x|>R
|∇vn|
|x|a dx,

() ρ
()∞ = limR→∞ lim supn→∞

∫

|x|>R
|un|p∗

b

|x|bp∗
b

dx, ρ()∞ = limR→∞ lim supn→∞
∫

|x|>R
|vn|p∗

b

|x|bp∗
b

dx,

ν
(i)∞ = limR→∞ lim supn→∞

∫

|x|>R
|un|αi |vn|βi

|x|bp∗
b

dx, i = , . . . , l,

() γ
()∞ = limR→∞ lim supn→∞

∫

|x|>R
|un|

|x|(+a) dx,

γ
()∞ = limR→∞ lim supn→∞

∫

|x|>R
|vn|

|x|(+a) dx.

Obviously, η
()∞ , η

()∞ , ρ
()∞ , ρ

()∞ , ν
(i)∞ (i = , . . . , l), γ

()∞ , and γ
()∞ exist and are finite. For R > ,

let ψ
()
R and ψ

()
R be two regular functions such that  ≤ ψ

()
R , ψ

()
R ≤ , ψ

()
R = ψ

()
R =  for

|x| > R + , ψ ()
R = ψ

()
R =  for |x| < R, and |∇ψ

()
R | ≤ /R, |∇ψ

()
R | ≤ /R. Since the sequence

{(unψ
()
R , vnψ

()
R )} is bounded in (D ,

a (RN )), we see from (.) that

 = lim
n→∞

〈
F ′(un, vn),

(
unψ

()
R , vnψ

()
R

)〉

= lim
n→∞

{∫

RN

(

|x|–a|∇un|ψ ()
R + |x|–a|∇vn|ψ ()

R – μ
|un|ψ ()

R + |vn|ψ ()
R

|x|(+a)

)

dx

+
∫

RN

(|x|–aun∇un∇ψ
()
R + |x|–avn∇vn∇ψ

()
R

)
dx

–
∫

RN

K(x)
|x|bp∗

b

[

|un|p∗
bψ

()
R

+
l∑

i=

ςi

p∗
b
|un|αi |vn|βi

(
αiψ

()
R + βiψ

()
R

)
+ |vn|p∗

bψ
()
R

]

dx

}

. (.)

Moreover, using the inequality (.) and the Hölder inequality, we obtain

lim
R→∞ lim sup

n→∞

∫

RN
|x|–a∣∣un∇un∇ψ

()
R
∣
∣dx

≤ lim
R→∞ lim sup

n→∞

(∫

R<|x|<R+
|x|–a|un|

∣
∣∇ψ

()
R
∣
∣ dx

) 

(∫

RN
|x|–a|∇un| dx

) 


≤ C lim
R→∞

(∫

R<|x|<R+
|x|–a|u|∣∣∇ψ

()
R
∣
∣ dx

) 
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≤ C lim
R→∞

(∫

R<|x|<R+
|x|–∗a|u|∗

dx
) 

∗ (∫

RN

∣
∣∇ψ

()
R
∣
∣N dx

) 
N

≤ C lim
R→∞

(∫

R<|x|<R+
|x|–a|∇u| dx

) 


= .

Similarly, we have limR→∞ lim supn→∞
∫

RN |x|–a|vn∇vn∇ψ
()
R |dx = . Therefore, we de-

duce from (.) and the definitions ()-() that

K(∞)

(

ρ()
∞ +

l∑

i=

ςiν
(i)
∞ + ρ()

∞

)

≥ η()
∞ + η()

∞ – μ
(
γ ()

∞ + γ ()
∞

)
. (.)

On the other hand, according to the inequality (.) and the definition (.) of Sμ,l we find
that μγ

()∞ ≤ η
()∞ , μγ

()∞ ≤ η
()∞ , and

Sμ,l

(

ρ()
∞ +

l∑

i=

ςiν
(i)
∞ + ρ()

∞

) 
p∗

b ≤ η()
∞ + η()

∞ – μ
(
γ ()

∞ + γ ()
∞

)
.

This, combined with (.), implies that either
(v) ρ

()∞ =
∑l

i= ςiν
(i)∞ = ρ

()∞ =  or
(vi) ρ

()∞ +
∑l

i= ςiν
(i)∞ + ρ

()∞ ≥ (Sμ,l/K+(∞))
N

(+a–b) .
In the following, we rule out the cases (ii), (iv), and (vi). For every continuous nonnegative
function ψ such that  ≤ ψ(x) ≤  on R

N , we get from (.) and (.)

c = lim
n→∞

(

F (un, vn) –


p∗
b

〈
F ′(un, vn), (un, vn)

〉
)

=
 + a – b

N
lim

n→∞

∫

RN

(

|x|–a|∇un| + |x|–a|∇vn| – μ
|un| + |vn|

|x|(+a)

)

dx

≥  + a – b
N

lim sup
n→∞

∫

RN

(

|x|–a|∇un| + |x|–a|∇vn| – μ
|un| + |vn|

|x|(+a)

)

ψ(x) dx.

If (ii) occurs, then the set J must be finite because the measures ρ(), ρ(), and ν(i) (i =
, . . . , l) are bounded. Since functions (un, vn) are G-symmetric, the measures ρ(), ρ(), and
ν(i) (i = , . . . , l) must be G-invariant. This means that if xj 
=  is a singular point of ρ(), ρ()

and ν(i) (i = , . . . , l), so is gxj for each g ∈ G, and the mass of ρ(), ρ(), and ν(i) (i = , . . . , l)
concentrated at gxj is the same for each g ∈ G. Assuming that (ii) holds for some j ∈ J

with xj 
= , we choose ψ with compact support so that ψ(gxj) =  for each g ∈ G and we
have

c ≥ |G|(η()
j + η

()
j )

N( + a – b)– ≥  + a – b
N

|G|S,l

(

ρ
()
j +

l∑

i=

ςiν
(i)
j + ρ

()
j

) 
p∗

b

≥  + a – b
N

|G|S,l
(
S,l/‖K+‖∞

)N–(+a–b)
(+a–b) =

( + a – b)|G|S
N

(+a–b)
,l

N‖K+‖
N–(+a–b)

(+a–b)∞
,
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which contradicts (.). Similarly, if (iv) holds for x = , we choose ψ with compact sup-
port, so that ψ() =  and we get

c ≥ η
()
 + η

()
 – μγ

()
 – μγ

()


N( + a – b)– ≥  + a – b
N

Sμ,l

(

ρ
()
 +

l∑

i=

ςiν
(i)
 + ρ

()


) 
p∗

b

≥  + a – b
N

Sμ,l
(
Sμ,l/K+()

)N–(+a–b)
(+a–b) =

( + a – b)S
N

(+a–b)
μ,l

NK+()
N–(+a–b)

(+a–b)
,

a contradiction with (.). Finally, if (vi) occurs at ∞, we take ψ = ψ
()
R = ψ

()
R to get

c ≥ η
()∞ + η

()∞ – μγ
()∞ – μγ

()∞
N( + a – b)– ≥  + a – b

N
Sμ,l

(

ρ()
∞ +

l∑

i=

ςiν
(i)
∞ + ρ()

∞

) 
p∗

b

≥  + a – b
N

Sμ,l
(
Sμ,l/K+(∞)

)N–(+a–b)
(+a–b) =

( + a – b)S
N

(+a–b)
μ,l

NK+(∞)
N–(+a–b)

(+a–b)
,

which is impossible. Therefore, ρ()
j = ρ

()
j = ν

(i)
j =  (i = , . . . , l) for all j ∈ J ∪ {,∞}, and

this implies that

lim
n→∞

∫

RN

|un|p∗
b +

∑l
i= ςi|un|αi |vn|βi + |vn|p∗

b

|x|bp∗
b

dx

=
∫

RN

|u|p∗
b +

∑l
i= ςi|u|αi |v|βi + |v|p∗

b

|x|bp∗
b

dx.

Finally, since limn→∞〈F ′(un, vn) – F ′(u, v), (un – u, vn – v)〉 = , we naturally conclude that
(un, vn) → (u, v) in (D ,

a (RN )). �

From Lemma . we immediately obtain the following corollary.

Corollary . If K+() = K+(∞) =  and |G| = +∞, then the functional F satisfies the
(PS)c condition for every c ∈R.

Proof of Theorem . First of all, we choose ε >  such that the condition (.) holds, where
yε is the extremal function satisfying (.), (.), and (.). By (k.), (.), and (.), we
get

F (u, v) =


∥
∥(u, v)

∥
∥

μ
–


p∗

b

∫

RN

K(x)
|x|bp∗

b

(

|u|p∗
b +

l∑

i=

ςi|u|αi |v|βi + |v|p∗
b

)

dx

≥ 

∥
∥(u, v)

∥
∥

μ
–


p∗

b
‖K‖∞S

–N
N–(+a–b)
μ,l

∥
∥(u, v)

∥
∥p∗

b
μ

.
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In view of p∗
b > , we conclude that there exist constants α >  and ρ >  such that

F (u, v) ≥ α for all ‖(u, v)‖μ = ρ . Moreover, if we set u = yε , v = τminyε , and

�(t) = F (tyε , tτminyε)

=
t


(
 + τ 

min

)
∫

RN

(

|x|–a|∇yε | – μ
y
ε

|x|(+a)

)

dx

–
tp∗

b

p∗
b

(

 +
l∑

i=

ςiτ
βi
min + τ

p∗
b

min

)∫

RN
K(x)|x|–bp∗

b y
p∗

b
ε dx

with t ≥ , then we easily check that �(t) has a unique maximum at some t > . Simple
arithmetic gives us the value

t =
{ ( + τ 

min)
∫

RN (|x|–a|∇yε | – μ
y
ε

|x|(+a) ) dx

( +
∑l

i= ςiτ
βi
min + τ

p∗
b

min)
∫

RN K(x)|x|–bp∗
b yp∗

b
ε dx

} 
p∗

b–
.

Hence, we have

max
t≥

�(t) = F (tyε , tτminyε)

=
 + a – b

N

{ ( + τ 
min)

∫

RN (|x|–a|∇yε | – μ
y
ε

|x|(+a) ) dx

[( +
∑l

i= ςiτ
βi
min + τ

p∗
b

min)
∫

RN K(x)|x|–bp∗
b yp∗

b
ε dx]


p∗

b

} p∗
b

p∗
b–

. (.)

Furthermore, since F (tyε , tτminyε) → –∞ as t → ∞, we can choose t >  such that
‖(tyε , tτminyε)‖μ > ρ and F (tyε , tτminyε) < , and set

c = inf
γ∈�

max
t∈[,]

F
(
γ (t)

)
, (.)

where � = {γ ∈ C ([, ], (D ,
a,G(RN )));γ () = (, ),F (γ ()) < ,‖γ ()‖μ > ρ}. From (.),

(.), (.), (.), (.), (.), (.), and Lemma ., we obtain

c ≤ F (tyε , tτminyε)

=
 + a – b

N

{ ( + τ 
min)

∫

RN (|x|–a|∇yε | – μ
y
ε

|x|(+a) ) dx

[( +
∑l

i= ςiτ
βi
min + τ

p∗
b

min)
∫

RN K(x)|x|–bp∗
b yp∗

b
ε dx]


p∗

b

} p∗
b

p∗
b–

≤  + a – b
N

{ B(τmin)
∫

RN (|x|–a|∇yε | – μ
y
ε

|x|(+a) ) dx

[max{ ‖K+‖∞

|G|
(+a–b)

N–(+a–b) S
N

N–(+a–b)


, K+()

S
N

N–(+a–b)
μ

, K+(∞)

S
N

N–(+a–b)
μ

}]


p∗
b

} p∗
b

p∗
b–

=
 + a – b

N
min

{ |G|S
N

(+a–b)
,l

‖K+‖
N–(+a–b)

(+a–b)∞
,

S
N

(+a–b)
μ,l

K+()
N–(+a–b)

(+a–b)
,

S
N

(+a–b)
μ,l

K+(∞)
N–(+a–b)

(+a–b)

}

= c∗
.

If c < c∗
, then by Lemma ., the (PS)c condition holds and the conclusion follows by

the mountain pass theorem in [] (see also []). If c = c∗
, then γ (t) = (ttyε , ttτminyε),
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with  ≤ t ≤ , is a path in � such that maxt∈[,] F (γ (t)) = c. Hence, either �′(t) =
F ′(tyε , tτminyε) = , and we are done, or γ can be deformed to a path γ̃ ∈ � with
maxt∈[,] F (γ̃ (t)) < c and we get a contradiction. This part of the proof shows that a
nontrivial solution (u, v) ∈ (D ,

a,G(RN )) of (PK
 ) exists. In the following, we show that

the solution (u, v) can be chosen to be positive on R
N . Taking into account F (u, v) =

F (|u|, |v|) and

 =
〈
F ′(u, v), (u, v)

〉

=
∥
∥(u, v)

∥
∥

μ
–
∫

RN

K(x)
|x|bp∗

b

(

|u|p∗
b +

l∑

i=

ςi|u|αi |v|βi + |v|p∗
b

)

dx,

we obtain

∫

RN
K(x)|x|–bp∗

b

(

|u|p∗
b +

l∑

i=

ςi|u|αi |v|βi + |v|p∗
b

)

dx =
∥
∥(u, v)

∥
∥

μ
> ,

which implies c = F (|u|, |v|) = maxt≥ F (t|u|, t|v|). Hence, either (|u|, |v|) is a crit-
ical point of F or γ (t) = (tt|u|, tt|v|), with F (t|u|, t|v|) < , can be deformed, as
in the first part of the proof, to a path γ̃ (t) with maxt∈[,] F (γ̃ (t)) < c, which is impossi-
ble. Thus, we may assume that u ≥ , v ≥  on R

N and (u, v) is a positive solution of
problem (PK

 ) by the strong maximum principle. �

Proof of Corollary . First of all, we find that due to the identity (.), inequality (.) is
equivalent to

∫

RN (K(x) – K )|x|–bp∗
b y

p∗
b

ε dx ≥  for some ε > , or equivalently

∫

RN

K(x) – K

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx ≥  (.)

for some ε > , where

K = max
{‖K+‖∞|G| –(+a–b)

N–(+a–b) (Sμ/S)
N

N–(+a–b) , K+(), K+(∞)
}

.

Part (), case (i). According to (.) and (.), we need to show that

∫

RN

K(x) – K()

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx ≥  (.)

for some ε > . We choose � >  so that K(x) ≥ K() + |x|p∗
b
√

μ–μ for |x| ≤ �. In view
of (b +

√
μ – 

√
μ – μ)p∗

b + (p∗
b – )

√
μ – μ · p∗

b
p∗

b– = N , we obtain

∫

|x|≤�

K(x) – K()

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

≥ 

∫

|x|≤�



|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx → +∞ (.)
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as ε → . On the other hand, for all ε > , we have

∫

|x|>�

|K(x) – K()|

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

≤
∫

|x|>�

∣
∣K(x) – K()

∣
∣|x|–(b+

√
μ+

√
μ–μ)p∗

b dx ≤ C (.)

for some constant C >  independent of ε. Combining (.) and (.), we get (.) for
ε sufficiently small.

Part (), case (ii). We choose � >  so that |K(x) – K()| ≤ |x|κ for |x| ≤ �. Since
κ > p∗

b
√

μ – μ > , we find from the fact (b +
√

μ +
√

μ – μ)p∗
b = N + p∗

b
√

μ – μ that

∫

RN

|K(x) – K()|

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

≤
∫

RN

|K(x) – K()|
|x|(b+

√
μ+

√
μ–μ)p∗

b
dx

≤ 

∫

|x|≤�

|x|κ–(b+
√

μ+
√

μ–μ)p∗
b dx +

∫

|x|>�

∣
∣K(x) – K()

∣
∣|x|–(b+

√
μ+

√
μ–μ)p∗

b dx

= 

∫

|x|≤�

|x|–N+(κ–p∗
b
√

μ–μ) dx +
∫

|x|>�

∣
∣K(x) – K()

∣
∣|x|–N–p∗

b
√

μ–μ dx ≤ C.

So by (.) and the Lebesgue dominated convergence theorem we have

lim
ε→

∫

RN

K(x) – K()

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

=
∫

RN

(
K(x) – K()

)|x|–(b+
√

μ+
√

μ–μ)p∗
b dx > .

Therefore (.) holds for ε sufficiently small.
Part (), case (i). From (.) and (.) it is sufficient to show that

∫

RN

(K(x) – K(∞))ε
p∗

b
p∗

b–

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx ≥  (.)

for some ε > . We choose R >  such that K(x) ≥ K(∞) + |x|–p∗
b
√

μ–μ for all |x| ≥ R.
Then

∫

|x|≥R

(K(x) – K(∞))ε
p∗

b
p∗

b–

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

≥ 

∫

|x|≥R

|x|–N
(

ε

ε + |x|(p∗
b–)

√
μ–μ

) p∗
b

p∗
b–

dx → +∞
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as ε → +∞. Moreover, in view of –(b +
√

μ –
√

μ – μ)p∗
b = –N + p∗

b
√

μ – μ > –N , we get

∫

|x|≤R

(K(x) – K(∞))ε
p∗

b
p∗

b–

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

≤
∫

|x|≤R

(
K(x) – K(∞)

)|x|–N+p∗
b
√

μ–μ dx ≤ C

for some constant C >  independent of ε > . These two estimates combined together
give (.) for ε >  large.

Part (), case (ii). We choose R >  such that |K(x) – K(∞)| ≤ |x|–ι for all |x| ≥ R.
Since ι > p∗

b
√

μ – μ > , we obtain

∫

RN

∣
∣K(x) – K(∞)

∣
∣|x|–N+p∗

b
√

μ–μ dx

≤ 

∫

|x|≥R

|x|–N–ι+p∗
b
√

μ–μ dx +
∫

|x|≤R

∣
∣K(x) – K(∞)

∣
∣|x|–N+p∗

b
√

μ–μ dx

< +∞.

Consequently, by (.) and the Lebesgue dominated convergence theorem, we obtain

lim
ε→+∞

∫

RN

(K(x) – K(∞))ε
p∗

b
p∗

b–

|x|(b+
√

μ–
√

μ–μ)p∗
b (ε + |x|(p∗

b–)
√

μ–μ)
p∗

b
p∗

b–

dx

=
∫

RN

(
K(x) – K(∞)

)|x|–(b+
√

μ–
√

μ–μ)p∗
b dx > 

and (.) holds for ε >  large. Similarly to above, we know part () holds. �

To prove Theorem . we need the following version of the symmetric mountain pass
theorem (see [], Theorem .).

Lemma . Let X be an infinite dimensional Banach space and let F ∈ C (X,R) be an
even functional satisfying (PS)c condition for each c and F () = . Furthermore, one sup-
poses that:

(i) there exist constants α >  and ρ >  such that F (w) ≥ α for all ‖w‖ = ρ ;
(ii) there exists an increasing sequence of subspaces {Xm} of X , with dim Xm = m, such

that for every m one can find a constant Rm >  such that F (w) ≤  for all w ∈ Xm

with ‖w‖ ≥ Rm.
Then F possesses a sequence of critical values {cm} tending to ∞ as m → ∞.

Proof of Theorem . Applying Lemma . with X = (D ,
a,G(RN )) and w = (u, v) ∈ X, we

see from (k.), (.), and (.) that

F (u, v) ≥ 

∥
∥(u, v)

∥
∥

μ
–


p∗

b
‖K‖∞S

–N
N–(+a–b)
μ,l

∥
∥(u, v)

∥
∥p∗

b
μ

.



Deng et al. Journal of Inequalities and Applications  (2016) 2016:238 Page 16 of 22

Since p∗
b > , there exist constants α >  and ρ >  such that F (u, v) ≥ α for all (u, v) with

‖(u, v)‖μ = ρ . To find a suitable sequence of finite dimensional subspaces of (D ,
a,G(RN )),

we set �+
K = {x ∈ R

N ; K(x) > }. Obviously, the set �+
K is G-symmetric and we can de-

fine (D ,
a,G(�+

K )), which is the subspace of G-symmetric functions of (D ,
a (�+

K )) (see
Section ). By extending the functions in (D ,

a,G(�+
K )) by  outside �+

K we can assume
that (D ,

a,G(�+
K )) ⊂ (D ,

a,G(RN )). Let {Xm} be an increasing sequence of subspaces of
(D ,

a,G(�+
K )) with dim Xm = m for each m. Then there exists a constant ξ (m) >  such

that

∫

�+
K

K(x)|x|–bp∗
b

(

|ũ|p∗
b +

l∑

i=

ςi|ũ|αi |ṽ|βi + |ṽ|p∗
b

)

dx ≥ ξ (m)

for all (ũ, ṽ) ∈ Xm, with ‖(ũ, ṽ)‖μ = . Consequently, if (u, v) ∈ Xm\{(, )} then we write
(u, v) = t(ũ, ṽ), with t = ‖(u, v)‖μ and ‖(ũ, ṽ)‖μ = . Therefore we obtain

F (u, v) =
t


–

tp∗
b

p∗
b

∫

�+
K

K(x)
|x|bp∗

b

(

|ũ|p∗
b +

l∑

i=

ςi|ũ|αi |ṽ|βi + |ṽ|p∗
b

)

dx ≤ t


–

ξ (m)
p∗

b
tp∗

b ≤ 

for t large enough. By Lemma . and Corollary ., we conclude that there exists a se-
quence of critical values cm → ∞ and the results follow. �

Proof of Corollary . Since K(x) is radially symmetric, we find the corresponding group
G = O(N) and |G| = +∞. According to Corollary ., F satisfies the (PS)c condition for
every c ∈ R. Therefore we deduce from Theorem . that the results follow. �

4 Multiplicity results for problem (PK0
σ )

Throughout this section we assume that σ >  and K(x) ≡ K >  is a constant. Since we
are interested in positive G-symmetric solutions of problem (PK

σ ), we define a functional
Tσ : (D ,

a,G(RN )) → R given by

Tσ (u, v) =


∥
∥(u, v)

∥
∥

μ
–

K

p∗
b

∫

RN
|x|–bp∗

b

(
∣
∣u+∣∣p∗

b +
l∑

i=

ςi
∣
∣u+∣∣αi

∣
∣v+∣∣βi +

∣
∣v+∣∣p∗

b

)

dx

–
σ

q

∫

RN
h(x)|x|–dp∗

d
(∣
∣u+∣∣q +

∣
∣v+∣∣q)dx, (.)

where  < q < , u+ = max{, u}, and v+ = max{, v}. By (h.), (.), the Hölder inequality,
and the fact that θ = p∗

d/(p∗
d – q), we obtain

∫

RN
h(x)|x|–dp∗

d
(∣
∣u+∣∣q +

∣
∣v+∣∣q)dx

≤
(∫

RN
|x|–dp∗

d hθ (x) dx
) 

θ
[(∫

RN
|x|–dp∗

d
∣
∣u+∣∣p∗

d dx
) q

p∗
d +

(∫

RN
|x|–dp∗

d
∣
∣v+∣∣p∗

d dx
) q

p∗
d
]

≤ C‖h‖θ

(‖u‖q
μ + ‖v‖q

μ

) ≤ C‖h‖θ

∥
∥(u, v)

∥
∥q

μ
. (.)

Thus we see from (.) that Tσ is well defined, Tσ ∈ C ((D ,
a,G(RN )),R) and there exists a

one-to-one correspondence between the weak solutions of (PK
σ ) and the critical points
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of Tσ . Furthermore, an analogously symmetric criticality principle of Lemma . clearly
holds; hence the weak solutions of problem (PK

σ ) are exactly the critical points of the
functional Tσ .

Lemma . Suppose that (h.) and (h.) hold. Then there exists a positive constant M
depending on N , a, b, q, and ‖h‖θ , such that any bounded sequence {(un, vn)} ⊂ (D ,

a,G(RN ))

satisfying

Tσ (un, vv) → c <
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q ,

T ′
σ (un, vv) →  (n → ∞)

(.)

contains a convergent subsequence.

Proof Since {(un, vn)} is bounded in (D ,
a,G(RN )), we obtain a subsequence, still denoted

by {(un, vn)}, satisfying (un, vn) ⇀ (u, v) in (D ,
a,G(RN )), (un, vn) → (u, v) a.e. in R

N and
(un, vn) → (u, v) in (Lr

loc(RN )) for all r ∈ [, ∗). Moreover, using (h.), the Hölder inequal-
ity and the Lebesgue dominated theorem, we may also assume

lim
n→∞

∫

RN
h(x)|x|–dp∗

d
(∣
∣u+

n
∣
∣q +

∣
∣v+

n
∣
∣q)dx =

∫

RN
h(x)|x|–dp∗

d
(∣
∣u+∣∣q +

∣
∣v+∣∣q)dx. (.)

By (.) and the standard argument, we easily check that (u, v) is a critical point of Tσ .
Therefore, we deduce from (h.), (.), (.), the Hölder inequality, and the fact that  <
q <  < p∗

d ≤ p∗
b that

Tσ (u, v) = Tσ (u, v) –


p∗
b

〈
T ′

σ (u, v), (u, v)
〉

=
 + a – b

N
∥
∥(u, v)

∥
∥

μ
–

p∗
b – q
qp∗

b
σ

∫

RN
h(x)|x|–dp∗

d
(∣
∣u+∣∣q +

∣
∣v+∣∣q)dx

≥  + a – b
N

(‖u‖
μ + ‖v‖

μ

)
–

p∗
b – q
qp∗

b
Cσ‖h‖θ

(‖u‖q
μ + ‖v‖q

μ

)

≥ –( – q)
[

qN
( + a – b)

] q
–q

(
p∗

b – q
qp∗

b
C‖h‖θ

) 
–q

σ


–q

� –Mσ


–q , (.)

where M = ( – q)[ qN
(+a–b) ]q/(–q)( p∗

b–q
qp∗

b
C‖h‖θ )/(–q) is a positive constant. Now we set

ũn = un – u and ṽn = vn – v. Then, by the Brezis-Lieb lemma [] and arguing as in [],
Lemma ., we obtain

∥
∥(̃un, ṽn)

∥
∥

μ
=
∥
∥(un, vn)

∥
∥

μ
–
∥
∥(u, v)

∥
∥

μ
+ on(), (.)

∫

RN
|x|–bp∗

b |̃u+
n|p∗

b dx =
∫

RN
|x|–bp∗

b
∣
∣u+

n
∣
∣p∗

b dx –
∫

RN
|x|–bp∗

b
∣
∣u+∣∣p∗

b dx + on(), (.)
∫

RN
|x|–bp∗

b |̃v+
n|p∗

b dx =
∫

RN
|x|–bp∗

b
∣
∣v+

n
∣
∣p∗

b dx –
∫

RN
|x|–bp∗

b
∣
∣v+∣∣p∗

b dx + on(), (.)
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∫

RN
|x|–bp∗

b
∣
∣̃u+

n
∣
∣αi

∣
∣̃v+

n
∣
∣βi dx =

∫

RN
|x|–bp∗

b
∣
∣u+

n
∣
∣αi

∣
∣v+

n
∣
∣βi dx

–
∫

RN
|x|–bp∗

b
∣
∣u+∣∣αi

∣
∣v+∣∣βi dx + on(), i = , . . . , l. (.)

According to Tσ (un, vn) = c + on() and T ′
σ (un, vn) = on(), we find from (.), (.) and

(.)-(.) that

c + on() = Tσ (un, vn)

= Tσ (u, v) +


∥
∥(̃un, ṽn)

∥
∥

μ

–
K

p∗
b

∫

RN
|x|–bp∗

b

(
∣
∣̃u+

n
∣
∣p∗

b +
l∑

i=

ςi
∣
∣̃u+

n
∣
∣αi

∣
∣̃v+

n
∣
∣βi +

∣
∣̃v+

n
∣
∣p∗

b

)

dx + on() (.)

and

∥
∥(̃un, ṽn)

∥
∥

μ
– K

∫

RN
|x|–bp∗

b

(
∣
∣̃u+

n
∣
∣p∗

b +
l∑

i=

ςi
∣
∣̃u+

n
∣
∣αi

∣
∣̃v+

n
∣
∣βi +

∣
∣̃v+

n
∣
∣p∗

b

)

dx = on(). (.)

Hence, for a subsequence {(̃un, ṽn)}, we find

∥
∥(̃un, ṽn)

∥
∥

μ
→ ξ̃ ≥ , K

∫

RN
|x|–bp∗

b

(
∣
∣̃u+

n
∣
∣p∗

b +
l∑

i=

ςi
∣
∣̃u+

n
∣
∣αi

∣
∣̃v+

n
∣
∣βi +

∣
∣̃v+

n
∣
∣p∗

b

)

dx → ξ̃

as n → ∞. It follows from (.) that Sμ,l (̃ξ /K)


p∗
b ≤ ξ̃ , which implies either ξ̃ =  or

ξ̃ ≥ K
– N–(+a–b)

(+a–b)
 S

N
(+a–b)
μ,l . If ξ̃ ≥ K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l , then we conclude from (.), (.), and

(.) that

c = Tσ (u, v) +
(




–


p∗
b

)

ξ̃ ≥  + a – b
N

K
– N–(+a–b)

(+a–b)
 S

N
(+a–b)
μ,l – Mσ


–q ,

which contradicts (.). Therefore, we have ‖(̃un, ṽn)‖
μ →  as n → ∞, and hence,

(un, vn) → (u, v) in (D ,
a,G(RN )). The lemma is proved. �

Lemma . Suppose that (h.) and (h.) hold. Then there exists σ ∗
 >  such that for any

σ ∈ (,σ ∗
 ) the following geometric conditions for Tσ (u, v) hold:

(i) Tσ (, ) = ; there exist constants α̃ >  and ρ >  such that Tσ (u, v) ≥ α̃ for all
‖(u, v)‖μ = ρ ;

(ii) there exists (eu, ev) ∈ (D ,
a,G(RN )) such that ‖(eu, ev)‖μ > ρ and Tσ (eu, ev) < .

Proof In view of (h.) and (h.), for all  < ς < 
 , we obtain from (.), (.), (.), and

(.) and the Hölder inequality that

Tσ (u, v) ≥ 

∥
∥(u, v)

∥
∥

μ
–

K

p∗
b

S–
p∗

b


μ,l
∥
∥(u, v)

∥
∥p∗

b
μ

–
σ

q
C‖h‖θ

∥
∥(u, v)

∥
∥q

μ

≥
(




– ς

)
∥
∥(u, v)

∥
∥

μ
–

K

p∗
b

S–
p∗

b


μ,l
∥
∥(u, v)

∥
∥p∗

b
μ

– C(ς)σ


–q , (.)
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where C(ς) = ( 
q – )ς[C‖h‖θ /(ς)]/(–q) >  is a constant depending on ς ∈ (, 

 ).
By the last inequality in (.) and the fact p∗

b > , we conclude that, for small ς, there
exist constants α̃ > , ρ > , and σ ∗

 >  such that Tσ (u, v) ≥ α̃ >  for all ‖(u, v)‖μ = ρ

and  < σ < σ ∗
 . On the other hand, since

∫

RN h(x)|x|–dp∗
d (|u+|q + |v+|q) dx ≥ , we deduce

from (.) that there exists (u, v) ∈ (D ,
a,G(RN )\{}) such that Tσ (tu, tv) → –∞ as t → +∞.

Thus the conclusion of this lemma follows. �

Lemma . Suppose that (h.) and (h.) hold. Then there exists σ ∗
 >  such that

sup
t≥

Tσ (tyε , tτminyε) <
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q (.)

for any σ ∈ (,σ ∗
 ) and small ε > , where τmin >  satisfies (.)-(.) and M >  is given in

Lemma ..

Proof We follow the arguments of [], Theorem . First, we define the functions

�(t) = Tσ (tyε , tτminyε)

=
 + τ 

min


t –

K

p∗
b

(

 +
l∑

i=

ςiτ
βi
min + τ

p∗
b

min

)

tp∗
b

∫

RN

yp∗
b

ε

|x|bp∗
b

dx

–
σ

q
(
 + τ

q
min

)
tq
∫

RN
h(x)

yq
ε

|x|dp∗
d

dx, t ≥ , (.)

and

�̃(t) =
 + τ 

min


t –

K

p∗
b

(

 +
l∑

i=

ςiτ
βi
min + τ

p∗
b

min

)

tp∗
b

∫

RN

yp∗
b

ε

|x|bp∗
b

dx, t ≥ . (.)

Note that �̃() = , �̃(t) >  for t → +, and limt→+∞ �̃(t) = –∞. Thus supt≥ �̃(t) can
be achieved at some finite t̃ε >  at which �̃ ′(t) becomes zero. By simple calculation, we
obtain from (.), (.), (.), and Lemma . that

sup
t≥

�̃(t) = �̃ (̃tε) =
(




–


p∗
b

){
 + τ 

min

[( +
∑l

i= ςiτ
β

min + τ
p∗

b
min)K

∫

RN
y

p∗
b

ε

|x|bp∗
b

dx]


p∗
b

} p∗
b

p∗
b–

=
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l . (.)

Let σ̃ >  be such that

 + a – b
N

K
– N–(+a–b)

(+a–b)
 S

N
(+a–b)
μ,l – Mσ


–q > , ∀σ ∈ (, σ̃ ).

Then we conclude from (h.) and (.) that

�(t) = Tσ (tyε , tτminyε) ≤  + τ 
min


t, ∀t ≥ ,σ > ,
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and there exists T ∈ (, ) independent of ε such that

sup
≤t≤T

�(t) ≤  + τ 
min


T



<
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q , ∀σ ∈ (, σ̃ ). (.)

Moreover, we deduce from (.), (.), and (.) that

sup
t≥T

�(t) ≤ sup
t≥

�̃(t) –
σ

q
(
 + τ

q
min

)
Tq



∫

RN
h(x)|x|–dp∗

d yq
ε dx

=
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l –

σ

q
(
 + τ

q
min

)
Tq



∫

RN
h(x)|x|–dp∗

d yq
ε dx. (.)

Now, taking σ >  such that

–
σ

q
(
 + τ

q
min

)
Tq



∫

RN
h(x)|x|–dp∗

d yq
ε dx < –Mσ


–q ,

that is,

 < σ <
(

 + τ
q
min

qM
Tq



∫

RN
h(x)|x|–dp∗

d yq
ε dx

) –q


� σ ,

we obtain from (.)

sup
t≥T

�(t) <
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q , ∀σ ∈ (,σ ). (.)

Choosing σ ∗
 = min{̃σ ,σ }, we conclude from (.) and (.) that

sup
t≥

�(t) <
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q , ∀σ ∈ (

,σ ∗

)
,

which implies (.). Therefore the results of this lemma follow. �

Proof of Theorem . Taking ρ >  and σ ∗ = min{σ ∗
 ,σ ∗

 }, for  < σ < σ ∗, given in the proofs
of Lemmas . and ., we define

Bρ() =
{

(u, v) ∈ (
D ,

a,G
(
R

N));
∥
∥(u, v)

∥
∥

μ
≤ ρ

}
and c � inf

Bρ ()
Tσ (u, v).

Since the metric space Bρ() is complete, we conclude from the Ekeland variational prin-
ciple [] that there exists a sequence {(un, vn)} ⊂ Bρ() such that Tσ (un, vn) → c and
T ′

σ (un, vn) →  as n → ∞.
Let ϕ, ψ ∈ C ∞

 (RN ) be the G-symmetric functions such that ϕ, ψ > . In view of (h.)
and (h.), we find

∫

RN h(x)|x|–dp∗
d (ϕq

 + ψ
q
 ) dx > . Hence we conclude from  < q <  < p∗

b
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that there exists t = t(ϕ,ψ) >  sufficiently small such that

Tσ (tϕ, tψ) =
t



∥
∥(ϕ,ψ)

∥
∥

μ
–

K

p∗
b

tp∗
b



∫

RN
|x|–bp∗

b

(

ϕ
p∗

b
 +

l∑

i=

ςiϕ
αi
 ψ

βi
 + ψ

p∗
b



)

dx

–
σ

q
tq



∫

RN
h(x)|x|–dp∗

d
(
ϕ

q
 + ψ

q

)

dx

< .

This implies

c <  <
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q , ∀σ ∈ (

,σ ∗).

According to Lemma ., Tσ possesses a critical point (u, v) with Tσ (u, v) = c < .
Taking (u–

 , v–
 ) as a pair of test functions, where u–

 = min{, u} and v–
 = min{, v}, we get

from (.) that  = 〈T ′
σ (u, v), (u–

 , v–
 )〉 = ‖(u–

 , v–
 )‖

μ. This means u ≥  and v ≥  in R
N .

By the strong maximum principle and the symmetric criticality principle, we conclude
that (u, v) is a positive G-symmetric solution of problem (PK

σ ).
On the other hand, we define

c � inf
γ∈�

max
t∈[,]

Tσ

(
γ (t)

)
,

where � = {γ ∈ C ([, ], (D ,
a,G(RN )));γ () = (, ),γ () = (eu, ev)}. It follows from Lem-

mas . and . that

 < α̃ ≤ c <
 + a – b

N
K

– N–(+a–b)
(+a–b)

 S
N

(+a–b)
μ,l – Mσ


–q , ∀σ ∈ (

,σ ∗).

Therefore c is a critical value of Tσ by the mountain pass theorem. Similar to the argu-
ments above, problem (PK

σ ) admits another positive G-symmetric solution (u, v) with
Tσ (u, v) = c > . �
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