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Abstract
In this paper we consider the existence of nonoscillatory solutions of higher-order
neutral differential equations with distributed coefficients and delays. We use the
Banach contraction principle to obtain new sufficient condition for the existence of
nonoscillatory solutions.
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1 Introduction
In this paper, we consider the higher-order nonlinear neutral differential equation with
distributed coefficients

[
�

[
r(t)x(t) +

∫ b

a
p(t, θ )x(t –θ ) dθ

]](n)

+ q(t)g
(
x(t –τ )

)
– q(t)g

(
x(t –σ )

)
= h(t). ()

Throughout this paper, the following conditions are assumed to hold.
() n ≥  is a positive integer, r ∈ C([t,∞), R+),  < a < b, τ > , σ > ;
() p ∈ C([t,∞) × [a, b], R), q ∈ C([t,∞), R+), q ∈ C([t,∞), R+), h ∈ C([t,∞), R);
() �(u) is a continuously increasing real function with respect to u defined on R, and

�–(u) satisfies the local Lipschitz condition;
() gi ∈ C(R, R), gi(u) satisfy the local Lipschitz condition and ugi(u) > , i = , , for

u �= .
Recently there have been a lot of activities concerning the existence of nonoscillatory

solutions for neutral differential equations with positive and negative coefficients. In ,
Zhou and Zhang [] studied the higher-order linear neutral delay differential equation

dn

dtn

[
x(t) + cx(t – τ )

]
+ (–)n+[P(t)x(t – σ ) – Q(t)x(t – δ)

]
= .

In , the existence of nonoscillatory solutions of first-order linear neutral delay differ-
ential equations of the form

d
dt

[
x(t) + P(t)x(t – τ )

]
+ Q(t)x(t – σ) – Q(t)x(t – σ) = 
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was investigated by Zhang et al. [] and, in the same year, Yu and Wang [] studied
nonoscillatory solutions of second-order nonlinear neutral differential equations of the
form

[
r(t)

[
x(t) + P(t)x(t – τ )

]′]′ + Q(t)f
(
x(t – σ)

)
– Q(t)g

(
x(t – σ)

)
= .

In , Candan and Dahiya [] studied nonoscillatory solutions of first-order and second-
order nonlinear neutral differential equations with positive and negative coefficients,

dk

dtk

[
x(t) + P(t)x(t – τ )

]
+

∫ b

a
q(t, ξ )x(t – ξ ) dξ –

∫ d

c
q(t,μ)x(t – μ) dμ = , k = , .

In , Candan [] studied the higher-order nonlinear differential equation

[
r(t)

[
x(t) + P(t)x(t – τ )

](n–)]′ + (–)n[Q(t)g
(
x(t – σ)

)
– Q(t)g

(
x(t – μ)

)
– f (t)

]
= .

As can be seen from the development process of the above equations, the delays of the
neutral part in the discussed differential equations were all constant delays, and the main
thought in the employed verification method also was kept the same in which the coeffi-
cient neutral part in the neutral were all discussed in four cases, that is, (–∞, –), (–, ),
(, ), (, +∞), and then they were verified by constructing the corresponding operator.
However, studies of the case for distributed deviating arguments are rather rare. In ,
Candan [] studied a first-order neutral differential equation with distributed deviating
arguments,

[[
x(t) –

∫ b

a
p(t, ξ )x(t – ξ ) dξ

]γ ]′
+

∫ d

c
Q(t, ξ )G

(
x(t – ξ )

)
dξ = , ()

where γ is a ratio of odd positive integers, however, the discussion only covered the con-
dition for the coefficient being  <

∫ b
a p(t, ξ ) dξ < , while without the other three condi-

tions, which might be caused by the difficulty in establishing feasible operator. In view of
the above, here, in this paper, the difficulty of an operator establishment was settled and
sufficiency conditions for the existence of nonoscillatory solutions of differential equa-
tion with coefficient of

∫ b
a p(t, ξ ) dξ in the four cases were obtained. Thus, this paper may

have theoretical value as well as practical application value. For related work, we refer the
reader to [–].

As usual, a solution of equation () is said to be oscillatory if it has arbitrarily large zeros.
Otherwise the solution is said to be nonoscillatory.

A solution of equation () is a continuous function x(t) defined on [t – μ,∞), for some
t > t, such that �[r(t)x(t) +

∫ b
a p(t, θ )x(t –θ ) dθ ] is n times continuously differentiable and

equation () holds for all n ≥ . Here, μ = max{b, τ ,σ }.
Let Li, i = , . denote the Lipschitz constants of the functions gi, i = ,  on the set A,

K denote the Lipschitz constants of functions �–(u), respectively, and L = max{L, L},
βi = maxx∈A gi(x), i = , .

Let 
 be the set of all continuous and bounded functions on [t,∞) and the norm be
‖x(t)‖ = supt≤t<+∞ x(t).
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2 The main results
Theorem Assume that

∫ ∞

t
sn–qi(s) ds < ∞, i = , ,

∫ ∞

t
sn–h(s) ds < ∞,

()

and
∫ b

a p(t, θ ) dθ satisfies one of the following conditions:

(a)  ≤
∫ b

a
p(t, θ ) dθ < ,

(b)  <
∫ b

a
p(t, θ ) dθ < +∞,

(c) –  <
∫ b

a
p(t, θ ) dθ ≤ ,

(d) – ∞ <
∫ b

a
p(t, θ ) dθ < –.

Then equation () has a bounded nonoscillatory solution.

Proof Case (a):  ≤ ∫ b
a p(t, θ ) dθ ≤ p < . Set A = {x ∈ �, M ≤ x(t) ≤ M, t ≥ t}, where

M, M are two positive constants such that pM + M
p

< α < M,  ≤ r(t) ≤ 
p

. From (),
one can choose a t ≥ t + b, and a sufficiently large t ≥ t such that

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �(M) – �(α), ()

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �(α) – �

(
pM +

M

p

)
, ()

∫ ∞

t

(s – t)n–

(n – )!
[
q(s) + q(s)

]
ds ≤  – p

KL
, ()

and define an operator T on A as follows:

(Tx)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


r(t) {–

∫ b
a p(t, θ )x(t – θ ) dθ

+ �–[�(α) +
∫ ∞

t
(s–t)n–

(n–)! [q(s)g(x(s – τ ))
– q(s)g(x(s – σ )) – h(s)] ds]}, t ≥ t,

(Tx)(t), t ≤ t ≤ t.

It is easy to see that T is continuous, for t ≥ t, x ∈ A. By using (), we have

(Tx)(t) ≤ 
r(t)

{
�–

[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
[
q(s)g

(
x(s – τ )

)
– h(s)

]
ds

]}

≤ �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
(
βq(s) +

∣∣h(s)
∣∣)ds

]

≤ M,
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and taking () into account, we have

(Tx)(t) ≥ 
r(t)

{
–

∫ b

a
p(t, θ )x(t – θ ) dθ

– �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
[
q(s)g

(
x(s – σ )

)
– h(s)

]
ds

]}

≥ p

{
–pM – �–

[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
(
βq(s) +

∣∣h(s)
∣∣)ds

]}

≥ M.

These show that TA ⊂ A. Since A is a bounded, closed, convex subset of �, in order to
apply the contraction principle we have to show that T is a contraction mapping on A. For
∀x, x ∈ A, and t ≥ t,

∣∣(Tx)(t) – (Tx)(t)
∣∣

≤ 
r(t)

{∫ b

a
p(t, θ )

∣∣x(t – θ ) – x(t – θ )
∣∣dθ

+ �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
∣∣q(s)g

(
x(s – τ )

)
– q(s)g

(
x(s – σ )

)
– h(s)

∣∣ds
]

– �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
∣∣q(s)g

(
x(s – τ )

)

– q(s)g
(
x(s – σ )

)
– h(s)

∣∣ds
]}

≤ 
r(t)

{
p|x – x| + K

∫ ∞

t

(s – t)n–

(n – )!
[
q(s)

∣∣g
(
x(s – τ )

)
– g

(
x(s – τ )

)∣∣

+ q(s)
∣∣g

(
x(s – σ )

)
– g

(
x(s – σ )

)∣∣]ds
}

.

Using (),

∣∣(Tx)(t) – (Tx)(t)
∣∣ ≤ |x – x|

(
p + KL

∫ ∞

t

(s – t)n–

(n – )!
[
q(s) + q(s)

]
ds

)

< |x – x|.

This implies with the sup norm that

‖Tx – Tx‖ < ‖x – x‖,

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of () x ∈ A, such that Tx = x.

Case (b):  < p ≤ ∫ b
a p(t, θ ) dθ ≤ p < p < +∞. Set A = {x ∈ �, M ≤ x(t) ≤ M, t ≥ t},

where M, M are two positive constants such that pM + pM < α < pM, p ≤
r(t) ≤ p. From (), one can choose a t ≥ t + b, and a sufficiently large t ≥ t such that

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �(pM) – �(α), ()
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∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �(α) – �(pM – pM), ()

∫ ∞

t

(s – t)n–

(n – )!
[
q(s) + q(s)

]
ds ≤ p – p

KL
, ()

and we define an operator T on A as follows:

(Tx)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


r(t) {–

∫ b
a p(t, θ )x(t – θ ) dθ

+ �–[�(α) +
∫ ∞

t
(s–t)n–

(n–)! [q(s)g(x(s – τ ))
– q(s)g(x(s – σ )) – h(s)] ds]}, t ≥ t,

(Tx)(t), t ≤ t ≤ t.

It is easy to see that T is continuous, for t ≥ t, x ∈ A. By using (), we have

(Tx)(t) ≤ 
r(t)

{
�–

[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
[
q(s)g

(
x(s – τ )

)
– h(s)

]
ds

]}

≤ 
p

{
�–

[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds

]}

≤ M,

and taking () into account, we have

(Tx)(t) ≥ 
r(t)

{
–

∫ b

a
p(t, θ )x(t – θ ) dθ

+ �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
[
q(s)g

(
x(s – σ )

)
– h(s)

]
ds

]}

≥ 
p

{
–pM – �–

[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
(
βq(s) +

∣∣h(s)
∣∣)ds

]}

≥ M.

These show that TA ⊂ A. Since A is a bounded, closed, convex subset of �, in order to
apply the contraction principle, we have to show that T is a contraction mapping on A.
For ∀x, x ∈ A, and t ≥ t,

∣∣(Tx)(t) – (Tx)(t)
∣∣

≤ 
r(t)

{∫ b

a
p(t, θ )

∣∣x(t – θ ) – x(t – θ )
∣∣dθ

+ �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
∣∣q(s)g

(
x(s – τ )

)
– q(s)g

(
x(s – σ )

)
– h(s)

∣∣ds
]

– �–
[
�(α) +

∫ ∞

t

(s – t)n–

(n – )!
∣∣q(s)g

(
x(s – τ )

)
– q(s)g

(
x(s – σ )

)
– h(s)

∣∣ds
]}

≤ 
r(t)

{
p‖x – x‖ + K

∫ ∞

t

(s – t)n–

(n – )!
[
q(s)

∣∣g
(
x(s – τ )

)
– g

(
x(s – τ )

)∣∣

+ q(s)
∣∣g

(
x(s – σ )

)
– g

(
x(s – σ )

)∣∣]ds
}

,
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or using (),

∣∣(Tx)(t) – (Tx)(t)
∣∣ ≤ |x – x| 

p

{
p + KL

∫ ∞

t

(s – t)n–

(n – )!
[
q(s) + q(s)

]
ds

}

< |x – x|.

This implies with the sup norm that

‖Tx – Tx‖ < ‖x – x‖,

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of () x ∈ A, such that Tx = x.

Case (c): – < p ≤ ∫ b
a p(t, θ ) dθ ≤ . Set A = {x ∈ �, M ≤ x(t) ≤ M, t ≥ t}, where M,

M are two positive constants such that M
–p

< α < ( + p)M,  ≤ r(t) ≤ 
–p

. From (), one
can choose a t ≥ t + b, and a sufficiently large t ≥ t such that

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �

(
( + p)M

)
– �(α),

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �(α) – �

(
–

M

p

)
,

∫ ∞

t

(s – t)n–

(n – )!
[
q(s) + q(s)

]
ds ≤  + p

KL
.

The remaining part of the proof of (c) is similar to the proof of part (a), therefore it is
omitted.

Case (d): –∞ < p < p ≤ ∫ b
a p(t, θ ) dθ ≤ p < –. Set A = {x ∈ �, M ≤ x(t) ≤ M, t ≥

t}, where M, M are two positive constants such that –pM < α < (–p + p)M,
–p < r(t) < –p. From (), one can choose a t ≥ t + b, and a sufficiently large t ≥ t

such that
∫ ∞

t

(s – t)n–

(n – )!
[
βq(s)dτ +

∣∣h(s)
∣∣]ds ≤ �(–pM + pM) – �(α),

∫ ∞

t

(s – t)n–

(n – )!
[
βq(s) +

∣∣h(s)
∣∣]ds ≤ �(α) – �(–pM),

∫ ∞

t

(s – t)n–

(n – )!
[
q(s) + q(s)d

]
ds ≤ p – p

KL
.

The remaining part of the proof of (d) is similar to the proof of part (b), therefore it is
omitted. The proof is complete. �

3 Example
Example Consider a high-order neutral differential equation with distributed deviating
arguments

[(


 + sin t
x(t) +

∫ π

π


e–tx(t – θ ) dθ

)]′′
+ e–tx

(
t –

π



)
– πe–tx(t – π )

= e–t
(

 cos t –  sin t + π sin t – π cos t
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+



sin t
(
 cos t –  sin t + π

)
+ π(cos t –  sin t) + π

)

+ e–t(π cos t + cos t – sin t – π ) – e–t( sin t – π – ). ()

Here, n = , r(t) = 
+sin t , P(t, θ ) = e–t , q(t) = e–t , q(t) = πe–t , �(u) = u, g(u) =

g(u) = u, a = π
 , b = π , τ = π

 , σ = π .  < r(t) = 
+sin t < ,

∫ π
π


e–t dθ = π
 e–t < ,

∫ ∞
t

se–s ds <
∞,

∫ ∞
t

se–s ds < ∞,
∫ ∞

t
e–s| cos s –  sin s + π sin s – π cos s + 

 sin s( cos s –
 sin s + π ) + π(cos s –  sin s) + π| + e–s|π cos s + cos s – sin s – π | –
e–s| sin s – π – |ds < ∞.

Then it is easy to see that all the conditions of Theorem are satisfied. In fact, x(t) =
 + sin t is a nonoscillatory solution of equation ().

4 Results and discussion
We obtained a new sufficiency condition for the existence of nonoscillatory solutions of
higher-order neutral differential equations with distributed coefficients and delays.

5 Conclusions
In this paper we use the Banach contraction principle to obtain a sufficiency condition
for the existence of nonoscillatory solutions of a differential equation with coefficient of∫ b

a p(t, ξ ) dξ in the four cases.
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