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1 Introduction
In this paper we are concerned with nonlinear complementarity problems (NCPs)

x ≥ , F(x) ≥ , xT F(x) = , ()

where the function F : �n → �n is continuously differentiable on �n.
As we know, the nonsmoothing Newton method is one of the important methods for

solving NCPs. Recently, there have appeared lots of studies having a strong interest in
semi-smoothing Newton method and feasible methods [–]. Sun, Robert, and Qi have
proposed a feasible semi-smooth asymptotically Newton method for mixed complemen-
tarity problems []. In this paper, we propose a modified method based on the algorithm
in [], which combines semi-smoothness with feasibility. In [], one takes the projected
gradient direction as the well-defined criterion, that is,

�
(
xk + d̄k

(
ρm)) ≤ �(xk) + σ∇�(xk)T d̄k

G
(
ρm)

.

In this paper, we replace the projected gradient direction with the projected Newton di-
rection, then the criterion is changed into

�
(
xk + d̄k

(
ρm)) ≤ �(xk) + σ∇�(xk)T d̄k

N
(
ρm)

.
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The algorithm with a new criterion is proved to have the same properties as the old one
under some suitable assumptions.

It is easy to verify that x is a solution of () if and only if it is an optimal solution of the
following problems with zero objective value:

min �(x)

s.t. x ∈ �n
+, ()

where �n
+ := {x ∈ �n|x ≥ }, �(x) = 

‖�(x)‖, and �(x) := (φ(F(x), x), . . . ,φ(Fn(x), xn))T .
Here φ is an NCP function. A function φ(a, b) : � → � called an NCP function if

a ≥ , b ≥ , ab =  ⇔ φ(a, b) = .

The functions � , � are assumed to have the following properties:
(H) the function � is semi-smooth,
(H) the function � is continuously differentiable on �n.
In [], one combines the projected Newton direction d̄N (λ) and the projected gradient

direction d̄G(λ) into the design of algorithms, where these two directions are defined as
follows:

d̄N (λ) = ��n
+ (x + λdN ) – x, d̄G(λ) = ��n

+ (x + λdG) – x.

The direction dN is a solution (if it exists) of the equation �(x) + Vd = , where V ∈ ∂B�(x),
and dG = –γ∇�(x). The generalized Jacobian ∂B�(x) is in the sense of Clarke [] and we
can note that ∇�(x) = V T�(x). Then Sun, Robert, and Qi [] defined the new direction

d̄(λ) = t∗(λ)d̄G(λ) +
(
 – t∗(λ)

)
d̄N (λ),

where, for any fixed λ ∈ [, ], t∗(λ) ∈ [, ] is an optimal solution of the convex quadratic
programming problems

min
t∈[,]



∥∥�(x) + V

[
td̄G(λ) + ( – t)d̄N (λ)

]∥∥. ()

The remainder of the paper is organized as follows: In the next section we state the
modified algorithm and some useful results which will be used in subsequent analysis. In
Section , we analysis the convergence of the algorithm described in the Section . Some
numerical experiments are report in Section .

2 The algorithm and preliminaries
In order to analyze the convergence of algorithm, we describe some lemmas that are used
in our subsequent analysis. A function F is said to be BD-regular at x if the generalized Ja-
cobian V ∈ ∂BF(x) is nonsingular. The concept of semi-smoothness was first introduction
by Mifflin [], and it then was extended by Qi and Sun []. We can obtain the properties
of semi-smooth function from [].
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Lemma  Let � : �n → �n be a locally Lipschitz function, if � is semi-smooth at x, for any
h →  and V∈ ∂B�(x + h),

�(x + h) – �(x) – Vh = o
(‖h‖).

Lemma  Let � : �n → �n be a locally Lipschitz function. If � is BD-regular at a solution
x∗ of �(x∗) = , and � is semi-smooth at x∗, then there exist a neighborhood N (x∗) of x∗

and a constant κ such that for any x ∈N (x∗)

∥∥�(x)
∥∥ ≥ κ

∥∥x – x∗∥∥.

Lemma  Let � : �n → �n be a locally Lipschitz function. Suppose that � is BD-regular
at x∈ �n, then there exist a neighborhood N (x) of x and a positive constant M such that for
any y ∈N (x) and V ∈ ∂B�(y), V is nonsingular and ‖V –‖ ≤ M.

The next lemma summarizes the properties of the projection operator, which are very
important in our subsequence analysis.

Lemma  The projection operator �X(·) satisfies
(a) ‖�X(y) – �X(z)‖ ≤ ‖y – z‖ for any y, z ∈ �n.
(b) For each y ∈ �n, (�X(y) – y)T (�X(y) – x) ≤  for any x ∈ X .
(c) For each y, z ∈ �n, ‖�X(y) – �X(z)‖ ≤ (y – z)T (�X(y) – �X(z)).
Here X is a nonempty closed convex subset of �n

+.

It is shown in Lemma  that the projection operator �X(·) is nonexpansive, that is, we
have the property (a), thus the projection operator �X(·) is globally Lipschitz continuous
on X. The proof for detail and the more properties about the projection operator can be
found in []. Here a direction d is said to be a descent direction of the function f (x) at x
if and only if ∇f (x)T d < . The following two lemmas are very important in the proof of
convergence and superlinear convergence, the proof of these two lemmas can be found in
[].

Lemma  Suppose that � is BD-regular at a solution x∗of �(x∗) = . � is semi-smooth
at x∗, then for any ρ ∈ (, ), there exist a neighborhood N of x∗ such that for any λ ∈ (, ]
and x ∈N ∩ �n

+, d̄N (λ) is a descent direction of � at x with

∇�(x)T d̄N (λ) ≤ –ρλ�(x),

d̄N (λ) = –λ
(
x – x∗) + λo

(
�(x)



)
.

Lemma  Suppose that � is BD-regular at a solution x∗of �(x∗) = ,η ∈ (, ). � is semi-
smooth at x∗. Then for any λ ∈ (, ],

 < γ = min
{

,η�(x)/
∥
∥∇�(x)

∥
∥},

and x→ x∗. We have

sup
λ∈(,]

‖d̄(λ) – λdN‖
λ‖dN‖ = o().
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Lemma  shows that the projected Newton direction d̄N is a descent direction of �(x)
at x. In the next proposition we show that the descent of �(x) at x along the projected
Newton direction d̄N is bounded below.

Proposition  Suppose that � is BD-regular at a solution x∗of �(x∗) = . � is semi-smooth
at x∗, then for any h > , there exist a neighborhood N of x∗ such that for any λ ∈ (, ] and
x ∈N ∩ �n

+,

∇�(x)T d̄N (λ) ≥ –λh�(x).

Proof Let H(x) := �(x) – �(x∗) – V (x – x∗), then for x∈N ∩ �n
+,

x + λdN = x – λV –�(x)

= x – λV –(H(x) + �
(
x∗) + V

(
x – x∗))

= x – λV –(H(x) + V
(
x – x∗))

= x – λV –H(x) – λ
(
x – x∗)

= ( – λ)x + λx∗ – λV –H(x).

By the convexity of �n
+, then we have

( – λ)x + λx∗ ∈ �n
+,

that is ��n
+ (( – λ)x + λx∗) = ( – λ)x + λx∗. So we have

d̄N (λ) = ��n
+ (x + λdN ) – x

= ��n
+

(
( – λ)x + λx∗ – λV –H(x)

)
– x

= ��n
+

(
( – λ)x + λx∗ – λV –H(x)

)

– ��n
+

(
( – λ)x + λx∗) + ��n

+

(
( – λ)x + λx∗) – x

= ��n
+

(
( – λ)x + λx∗ – λV –H(x)

)

– ��n
+

(
( – λ)x + λx∗) + (–λ)

(
x – x∗)

= –λ
(
x – x∗) + λbλ(x).

Here λbλ(x) := ��n
+ (( – λ)x + λx∗ – λV –H(x)) – ��n

+ (( – λ)x + λx∗). Then by the equality
∇�(x)T = (V T�(x))T , Lemma , and Lemma , we have

–∇�(x)T d̄N (λ) = λ∇�(x)T(
x – x∗) – λ∇�(x)T bλ(x)

= λ�(x)T V
(
x – x∗) – λ�(x)T Vbλ(x)

= λ�(x)T(
�(x) – �

(
x∗) – H(x)

)
– λ�(x)T Vbλ(x)

= λ�(x) – λ�(x)T H(x) – λ�(x)T Vbλ(x)

≤ λ�(x) + λ
∥∥�(x)

∥∥∥∥H(x)
∥∥ + λ

∥∥�(x)
∥∥‖V‖∥∥bλ(x)

∥∥
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≤ λ�(x) + λ
∥∥�(x)

∥∥∥∥H(x)
∥∥ + λ

∥∥�(x)
∥∥‖V‖∥∥V –H(x)

∥∥

≤ λ�(x) + λ
∥
∥�(x)

∥
∥(

 + M‖V‖)∥∥H(x)
∥
∥.

By Lemma  and Lemma , we know that ‖H(x)‖ = o(‖x – x∗‖), for x ∈N ∩�n
+, so we have

∥∥H(x)
∥∥ ≤ (h – )

κ‖x – x∗‖
( + M‖V‖)

≤ (h – )
‖�(x)‖

( + M‖V‖)
,

which implies that

–∇�(x)T d̄N (λ) ≤ λ�(x) + λ
∥∥�(x)

∥∥(
 + M‖V‖)(h – )

‖�(x)‖
( + M‖V‖)

= λ�(x) + (h – )λ�(x) = hλ�(x).

That is ∇�(x)T d̄N (λ) ≥ –hλ�(x). �

In this section, we recall some useful results which will be used later on first, now we
give our modified feasible semi-smooth asymptotically Newton method for solving NCPs.

Algorithm  (A feasible asymptotically Newton method)
Step . Choose parameters ρ , η ∈ (, ), h > ,  < σ < 

h , p > , p > , ε > . Let x ∈ �n
+

be an arbitrary initial point. Set k := .
Step . Choose Vk ∈ ∂B�(xk), and compute ∇�(xk) = V T

k �(xk).
Step . If �(xk) < ε, stop. Else set

dk
G = –γk∇�(xk),

where γk = min{,η�(xk)/‖∇�(xk)‖}.
Step . If the linear system

�(xk) + Vkd =  ()

has a solution dk
N and

–∇�(xk)T dk
N ≥ p

∥
∥dk

N
∥
∥p , ()

then use the direction dk
N . Else, set dk

N = dk
G.

Step . Let mk be the smallest nonnegative integer m satisfying

�
(
xk + d̄k

(
ρm)) ≤ �(xk) + σ∇�(xk)T d̄k

N
(
ρm)

, ()

where, for any λ ∈ [, ],

d̄k(λ) = t∗(λ)d̄k
G(λ) +

(
 – t∗(λ)

)
d̄k

N (λ),

d̄k
N (λ) = ��n

+

(
xk + λdk

N
)

– xk , d̄k
G(λ) = ��n

+

(
xk + λdk

G
)

– xk ,
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and t∗(λ) ∈ [, ] is an optimal solution of the convex quadratic programming problems

min
t∈[,]

Qk
λ(t) :=



∥∥�(xk) + Vk

[
td̄k

G(λ) + ( – t)d̄k
N (λ)

]∥∥, ()

set λk = ρmk , xk+ = xk + d̄k(λk).
Step . Set k := k + , and go to Step .

The analysis for the global convergence and the convergence rate of the algorithm is
reported in the next section.

Remark  The optimal solution t∗(λ) of the convex programming problem state in Step 
is given as follows. For λ ∈ [, ], set

t(λ) =

⎧
⎨

⎩
 if V (d̄G(λ) – d̄N (λ)) = ,

– (�(x)+V d̄N (λ))T V (d̄G(λ)–d̄N (λ))
‖V (d̄G(λ)–d̄N (λ))‖ otherwise.

Then t∗(λ) = max{, min{t(λ), }}. The details of the proof can be found in [].

3 The convergence analysis of the algorithm
In this section, we consider the convergence of the algorithm which describe in Section .
First of all we consider the global convergence of Algorithm , then analysis the conver-
gent rate and we see that Algorithm  is superlinear. The following theorem shows that
Algorithm  is well defined.

Theorem  Suppose that {xk} is a sequence generated by Algorithm . Then any accumu-
lation point of {xk} is a solution of the problem ().

Proof Suppose x̃ is an accumulation point of {xk} generated by Algorithm . Assume that
x̃ is not a solution of �(x) = , then there exists ε >  such that �(xk) > ε. From t∗(λ) ∈
[, ] being an optimal solution of (), we have Qk

λ(t∗(λ)) ≤ Qk
λ(), that is,

Qk
λ

(
t∗(λ)

)
=



∥
∥�(xk) + Vk

[
t∗(λ)d̄k

G(λ) +
(
 – t∗(λ)

)
d̄k

N (λ)
]∥∥

=


∥∥�(xk)

∥∥ + �(xk)T V d̄k(λ) +


∥∥Vkd̄k(λ)

∥∥

= �(xk) + ∇�(xk)T d̄k(λ) +


∥∥Vkd̄k(λ)

∥∥

≤ Qk
λ() =



∥∥�(xk) + Vkd̄k

N (λ)
∥∥

= �(xk) + ∇�(x)T d̄k
N (λ) +



∥∥Vkd̄k

N (λ)
∥∥,

then we have

∇�(xk)T d̄k(λ) ≤ ∇�(xk)T d̄k
N (λ) +



∥∥Vkd̄k

N (λ)
∥∥ –



∥∥Vkd̄k(λ)

∥∥

≤ ∇�(xk)T d̄k
N (λ) +



∥∥Vkd̄k

N (λ)
∥∥. ()
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From Step  of Algorithm , first we note that dk
N = –V –

k �(xk) if the linear equation ()
has a solution and () is satisfied. Then we have

∥∥∇�(xk)
∥∥∥∥dk

N
∥∥ ≥ –∇�(xk)T dk

N ≥ p
∥∥dk

N
∥∥p ,

∥
∥dk

N
∥
∥ ≤ (

p–


∥
∥∇�(xk)

∥
∥) 

p– .

Else dk
N = dk

G = –γk∇�(xk). Then from the continuity of ∇�(xk), we have

∥
∥dk

N
∥
∥ ≤ max

{(
p–


∥
∥∇�(xk)

∥
∥) 

p– ,γk
∥
∥∇�(xk)

∥
∥} ≤ κ,

where κ > . From dk
G = –γk∇�(xk), the formula above is equal to max{‖dk

N‖,‖dk
G‖} ≤ κ.

By Lemma , we have ‖d̄k
N (λ)‖ = ‖��n

+ (xk + λdN ) – xk‖ = ‖��n
+ (xk + λdN ) – ��n

+ (xk)‖ ≤
λ‖dN‖, similarly ‖d̄k

G(λ)‖ ≤ λ‖dG‖, and for t∗(λ) ∈ [, ],

∥
∥d̄k(λ)

∥
∥ =

∥
∥t∗(λ)d̄k

G(λ) +
(
 – t∗(λ)

)
d̄k

N (λ)
∥
∥ ≤ t∗(λ)

∥
∥d̄k

G(λ)
∥
∥ +

(
 – t∗(λ)

)∥∥d̄k
N (λ)

∥
∥

≤ t∗(λ)λ‖dG‖ +
(
 – t∗(λ)

)
λ‖dN‖ ≤ t∗(λ)λκ +

(
 – t∗(λ)

)
λκ = λκ. ()

By the upper semi-continuity of the generalized Jacobian [], ‖Vk‖ ≤ κ, where κ > .
Then combine () with the inequality ‖d̄k

N (λ)‖ ≤ λκ, and we have

∇�(xk)T d̄k(λ) ≤ ∇�(xk)T d̄k
N (λ) +



∥
∥Vkd̄k

N (λ)
∥
∥

≤ ∇�(xk)T d̄k
N (λ) +



‖Vk‖∥∥d̄k

N (λ)
∥
∥

≤ ∇�(xk)T d̄k
N (λ) +



κ

 (λκ)

= ∇�(xk)T d̄k
N (λ) +



τλ, ()

where τ = (κκ). Then by the uniformly continuity of ∇�(xk), for any ε >  and the in-
equality (), there exists a number λ̄ > , for all λ ∈ [, λ̄], and

�
(
xk + d̄k(λ)

)
= �(xk) + ∇�(xk)T d̄k(λ)

+
∫ 



[∇�
(
xk + td̄k(λ)

)
– ∇�(xk)

]T d̄k(λ) dt

≤ �(xk) + ∇�(xk)T d̄k
N (λ) +



τλ

+
∫ 



∥
∥∇�

(
xk + td̄k(λ)

)
– ∇�(xk)

∥
∥dt

∥
∥d̄k(λ)

∥
∥

≤ �(xk) + ∇�(xk)T d̄k
N (λ) +



τλ

+
∫ 



∥∥∇�
(
xk + td̄k(λ)

)
– ∇�(xk)

∥∥dtλκ

≤ �(xk) + ∇�(xk)T d̄k
N (λ) +



τλ + ελκ
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= �(xk) + σ∇�(xk)T d̄k
N (λ) + ( – σ )∇�(xk)T d̄k

N (λ)

+


τλ + ελκ. ()

By Lemma , for all λ ∈ (,λ′], we have

�
(
xk + d̄k(λ)

) ≤ �(xk) + σ∇�(xk)T d̄k
N (λ) – ( – σ )ρλ�(xk) +



τλ + ελκ

≤ �(xk) + σ∇�(xk)T d̄k
N (λ) – ( – σ )ρλε +



τλ + ελκ

≤ �(xk) + σ∇�(xk)T d̄k
N (λ), ()

where λ̃ = –σ
τ

ρε, ε = –σ
κ

ρε, λ′ = min{λ̄, λ̃}, and the second inequality is a result from the
assumption that �(xk) > ε. The last inequality holds because

–( – σ )ρε +


τλ + εκ ≤ –( – σ )ρε +



τ

 – σ

τ
ρε +

 – σ

κ
ρεκ = .

From Step  and (), we note that for λk ≥ λ′
ρ

,�(xk + d̄k(λk)) > �(xk) + σ∇�(xk)T d̄k
N (λk).

By the continuity of �(x), we have

∞ >
∑[

�
(
xk + d̄k(λk)

)
– �(xk)

]
>

∑[
σ∇�(xk)T d̄k

N (λk)
]
.

From Lemma , we obtain

ρλk�(xk) ≤ –∇�(xk)T d̄N (λk) → . ()

But

ρλk�(xk) ≥ ρ
λ′

ρ
ε = λ′ε > .

It is clear that there exists a contradiction. So the assumption that x̃ is not a solution of ()
is not true. That is, any accumulation point of the sequence {xk} is a solution of (). �

It is easy to see from the proof of Theorem  that the Algorithm  is always well defined.
We begin with a non-solution point, Algorithm  always going to the stage that () is
satisfied. In other words, mk always will be a finite number, that is, Algorithm  is well
defined. In the next theorem we analyze the superlinear convergence of Algorithm .

Theorem  Suppose that xk is a sequence generator by Algorithm , and x∗ is an accumu-
lation point of xk , a solution of �(x∗) = . If �(x) is BD-regular at x∗, then the sequence {xk}
generalized by Algorithm  converges to x∗ superlinearly.

Proof By supλ∈(,]
‖d̄(λ)–λdN ‖

λ‖dN ‖ = o() from Lemma , we have ‖d̄() – dN‖ = o(‖dN‖), then

∥
∥xk + d̄k() – x∗∥∥ =

∥
∥xk + dk

N + o
(∥∥dk

N
∥
∥)

– x∗∥∥

=
∥∥xk – V –

k �(xk) + o
(‖dN‖) – x∗∥∥
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≤ ∥∥V –
k

∥∥∥∥�(xk) – Vk
(
xk – x∗)∥∥ + o

(‖dN‖)

≤ ∥∥V –
k

∥∥∥∥�(xk) – �
(
x∗) – Vk

(
xk – x∗)∥∥ + o

(∥∥V –
k �(xk)

∥∥)

= o
(∥∥xk – x∗∥∥)

= o
(∥∥�(xk)

∥
∥)

, ()

where the last two equalities are results from Lemma , Lemma , and Lemma .
From the locally Lipschitz continuity of �(x),

�
(
xk + d̄k()

)
=



∥
∥�

(
xk + d̄k()

)∥∥ =


∥
∥�

(
xk + d̄k()

)
– �

(
x∗)∥∥

= O
(∥∥xk + d̄k() – x∗∥∥) = o

(∥∥�(xk)
∥∥) = o

(∥∥�(xk)
∥∥)

.

By Proposition  and σ < 
h from Algorithm , we know that

�(xk) + σ∇�(xk)T d̄N () ≥ �(xk) – hσ�(xk) = ( – hσ )�(xk)

≥ o
(∥∥�(xk)

∥
∥)

= �
(
xk + d̄k()

)
.

That is, () from Algorithm  being satisfied, then we have xk+ = xk + d̄k(). From (),

∥∥xk+ – x∗∥∥ =
∥∥xk + d̄k() – x∗∥∥ = o

(∥∥xk – x∗∥∥)
,

thus we obtain the superlinearity of Algorithm . �

4 Numerical experiments
In this section we present some numerical experiments for the algorithm proposed in Sec-
tion . The algorithm was implemented in Matlab and run in a Matlab .. workstation.

In the table of numerical results, SP denotes the starting point x; IN denotes the iterative
number; FV denotes the final value of �(xk); CPU denotes the CPU time in seconds for
solving a problems; x̄ denotes the final value of xk , which is the numerical solution of the
test problem. Throughout our computational experiments, the parameters in Algorithm 
are as follows:

η = ., σ = ., p = –, p = ., k max = .

In the following we give a detailed description of the numerical experiments.

Example  This is a linear complementarity problem, which is the th problem in the
Hock-Schittkowski collection. The test function F is given as follows:

F(x) =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

x – x + x + x – 
x + x + x – x – 

–x + x + x + x + x – x + 
x + x + x – x – 

–x – x – x – x + 
–x – x – x + x + 

x + x – .

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.
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Table 1 Numerical results for Example 1

SP Iter FV CPU

(0, . . . , 0) 6 9.5727e-013 0.0620
(0.5, . . . , 0.5) 5 2.9598e-013 0.0150
(–0.5, . . . , –0.5) 6 9.5727e-013 0.0310
(1, . . . , 1) 6 7.0301e-024 0.0160
(–1, . . . , –1) 6 9.5727e-013 0.0320
(–100, . . . , –100) 6 9.5727e-013 0.0320
(10, . . . , 10) 9 2.0099e-015 0.0160
(50, . . . , 50) 10 8.2935e-019 0.0160
(100, . . . , 100) 10 2.4238e-015 0.0160
(1000, . . . , 1000) 11 2.9654e-022 0.0150

Table 2 Numerical results for Example 2 (n = 100)

SP Iter FV CPU

(0, . . . , 0) 10 9.7021e-013 0.2500
(0.5, . . . , 0.5) 16 2.2473e-016 0.2810
(–0.5, . . . , –0.5) 7 1.6175e-016 0.1570
(1, . . . , 1) 17 2.2481e-016 0.2970
(–1, . . . , –1) 7 1.6173e-016 0.1410
(10, . . . , 10) 20 2.2869e-014 0.3430
(–10, . . . , –10) 7 1.6170e-016 0.1400
(100, . . . , 100) 23 9.1849e-013 0.4060
(–100, . . . , –100) 7 1.6170e-016 0.1410

The solution of the LCP is x∗ � (., ., , ., ., , )T . There is also
a test by Ma []. We executed this problem  times from different initial points. The
numerical results are listed in Table .

Example  Fathi problem. This is a linear complementarity problem, which comes from
Fathi []. There is also a test by Ma [] and Xu []. The test function F := Mx + q, the
matrix M, and the vector q are given as follows:

[M]ii = (i – ) + , i = , . . . , n;

[M]ij = [M]ii + , i = , . . . , n – , j = i + , . . . , n;

[M]ij = [M]jj + , j = , . . . , n – , i = j + , . . . , n;

q = (–, –, . . . , –)T .

It is easy to see that M is a positive definite matrix. The solution of the LCP is x∗ =
(, , . . . , )T . We executed this problem  times from different initial points. The numeri-
cal results are listed in Table .

Example  Muty problem. This problem is the fifth example of Kanzow [], which is also
tested by Ma []. It is a linear complementarity problem that the matrix here is a P-matrix.
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Table 3 Numerical results for Example 3

SP n = 32 n = 100

Iter FV CPU Iter FV CPU

(0, . . . , 0) 7 1.4147e-016 0.0470 8 4.2376e-014 0.2190
(1, . . . , 1) 9 2.7573e-021 0.0470 10 3.3580e-014 0.1870
(–1, . . . , –1) 6 3.1293e-020 0.0310 6 4.3639e-020 0.0940
(–10, . . . , –10) 6 3.8994e-021 0.0310 6 4.1741e-021 0.0940
(10, . . . , 10) 12 5.2178e-017 0.0630 14 5.2324e-022 0.2500
(100, . . . , 100) 15 1.0121e-013 0.0620 17 8.1853e-018 0.3130
(1000, . . . , 1000) 19 1.2999e-021 0.0630 20 1.7651e-014 0.3590

Table 4 Numerical results for Example 4

SP Iter FV CPU

(0, . . . , 0) 21 1.0292e-015 0.0310
(0.5, . . . , 0.5) 18 1.0960e-016 0.0630
(1, . . . , 1) 18 9.5526e-020 0.0320
(3, . . . , 3) 40 5.4668e-018 0.0470
(5, . . . , 5) 100 3.3390e-009 0.0620
(2, 1, 0, 1, 2) 21 2.4842e-018 0.0310
(0, 1, 0, 1, 0) 21 4.7668e-018 0.0320
(0.5, 1, 0.5, 2, 0) 20 4.3317e-014 0.0310
(1, 2, 3, 4, 5) 29 8.5428e-016 0.0470

The test function F := Mx + q, the matrix M, and the vector q are given as follows:

M =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

   · · · 
   · · · 
   · · · 
...

...
...

. . .
...

   · · · 

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, q = (–, . . . , –)T .

The solution of the LCP is x∗ = (, , . . . , )T . We executed this problem  times from dif-
ferent initial points. The numerical results are listed in Table .

Example  This problem is a nonlinear complementarity problem. The function F(x) :
� → � is given as follows:

Fj(x) = (xj – j + ) exp

{ ∑

i=

(xi – i + )

}

,  ≤ j ≤ .

This nonlinear complementarity problem has one degenerate solution (, , , , ). We
executed this problem  times from different initial points. The numerical results are listed
in Table .
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Table 5 Numerical results for Example 5

SP Iter FV CPU x̄

(0, . . . , 0) 5 9.5495e-018 0.0160 (1.2247, 0, 0, 0.5000)
(1, . . . , 1) 9 8.9335e-021 0.0320 (1.2247, 0, 0, 0.5000)
(–1, . . . , –1) 6 1.0947e-018 0.0160 (1.2247, 0, 0, 0.5000)
(10, . . . , 10) 14 1.2045e-025 0.0310 (1.2247, 0, 0, 0.5000)
(–10, . . . , –10) 11 7.3075e-016 0.0160 (1.2247, 0, 0, 0.5000)
(100, . . . , 100) 17 2.4086e-023 0.0320 (1.2247, 0, 0, 0.5000)
(–100, . . . , –100) 6 2.4643e-023 0.0310 (1.2247, 0, 0, 0.5000)
(103, . . . , 103) 26 2.1254e-018 0.0310 (1.2247, 0, 0, 0.5000)
(–103, . . . , –103) 6 1.9403e-021 0.0160 (1.2247, 0, 0, 0.5000)

Table 6 Numerical results for Example 6

SP Iter FV CPU x̄

(0, . . . , 0) 1 0 0.0160 (0.0000, 0.0000, 0.0000, 0.0000)
(1, . . . , 1) 4 6.2183e-016 0.0470 (0.9508, 0.0000, 0.0000, 0.0000)
(5, . . . , 5) 6 0 0.0160 (2.9845, 0.0000, 0.0000, 0.0000)
(10, . . . , 10) 4 7.2927e-032 0.0150 (2.9964, 0.0000, 0.0000, 0.0000)
(30, . . . , 30) 7 0 0.0310 (2.8521, 0.0000, 0.0000, 0.0000)
(60, . . . , 60) 5 0 0.0160 (3.0000, 0.0000, 0.0000, 0.0000)

Example  Kojima-Shindo problem. This is a nonlinear complementarity problem, it is
the third example of Jiang and Qi []. The test function F(x) is given as follows:

F(x) =

⎛

⎜
⎜⎜
⎝

x
 + xx + x

 + x + x – 
x

 + x + x
 + x + x – 

x
 + xx + x

 + x + x – 
x

 + x
 + x + x – 

⎞

⎟
⎟⎟
⎠

.

This nonlinear complementarity problem has one nondegenerate solution (, , , ) and
one degenerate solution (

√
/, , , /). We executed this problem  times from different

initial points. The numerical results are listed in Table .

Example  Modified Mathiesen problem. It is a nonlinear complementarity problem,
which is the fifth example of Jiang and Qi []. There is also a test by Ma []. The test
function F(x) is given as follows:

F(x) =

⎛

⎜⎜
⎜
⎝

–x + x + x

x – (.x + .x)/(x + )
 – x – (.x + .x)/(x + )

 – x

⎞

⎟⎟
⎟
⎠

.

This example has infinitely many solutions (λ, , , ), where λ ∈ [, ]. We executed this
problem  times from different initial points. The numerical results of Example  are listed
in Table .

5 Conclusions
In this paper, based on the semi-smoothing asymptotically Newton method, we present a
modified feasible semi-smooth asymptotically Newton method for nonlinear complemen-
tarity problems. We can achieve the global convergence and the local superlinear conver-
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gence with several mild assumptions. The numerical experiments reported in Section 
show that the modified algorithm is effective.
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