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Abstract
In this paper, we show that when the alternating direction method of multipliers
(ADMM) is extended directly to the 3-block separable convex minimization problems,
it is convergent if one block in the objective possesses sub-strong monotonicity
which is weaker than strong convexity. In particular, we estimate the globally linear
convergence rate of the direct extension of ADMMmeasured by the iteration
complexity under some additional conditions.

Keywords: linear convergence rate; separable convex optimization; alternating
direction method of multiplier; Karush-Kuhn-Tucher (KKT) system; strong
monotonicity

1 Introduction
Because there is still a gap between the empirical efficiency of the direct extension of
ADMM for a variety of applications and the lack of theoretical conditions that can both
ensure the convergence of the direct extension of ADMM and be satisfied by applications,
the main attention of this paper is paid to the study of the convergence of the direct ex-
tension of ADMM for the -block separable convex optimization problems.

We consider the following separable convex minimization problem whose objective
function is the sum of three functions without coupled variables:

min θ(x) + θ(x) + θ(x)

s.t. Ax + Ax + Ax = b,
()

where Ai ∈Rl×ni (i = , , ), b ∈Rl , and θi : Rni → (–∞, +∞] (i = , , ) are closed proper
convex (not necessarily smooth) functions. This model has a lot of applications in practice.
For example, the latent variable Gaussian graphical model selection in [], the quadratic
discriminant analysis model in [] and the robust principal component analysis model
with noisy and incomplete data in [, ], and so on. The augmented Lagrangian function
of () is defined as

Lβ (x, x, x,λ) :=
∑

i=

θi(xi) –

〈
λ,

∑

i=

Aixi – b

〉
+

β



∥∥∥∥∥

∑

i=

Aixi – b

∥∥∥∥∥



, ()

© 2016 Sun et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1173-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1173-2&domain=pdf
mailto:ws_hrbnu@163.com


Sun et al. Journal of Inequalities and Applications  (2016) 2016:227 Page 2 of 14

where λ ∈Rl and β > .
The classical alternating direction method of multipliers (ADMM) for solving the -

block separable convex minimization problems was first introduced by Gabay and Mercier
[] and Glowinski and Marrocco [], respectively, and its iterative scheme can be described
by

xk+
 = arg min

x

{
θ(x) +

〈
λk , Ax

〉
+

β


∥∥Ax + Axk

 – b
∥∥

}
, (a)

xk+
 = arg min

x

{
θ(x) +

〈
λk , Ax

〉
+

β


∥∥Axk+

 + Ax – b
∥∥

}
, (b)

λk+ = λk – αβ
(
Axk+

 + Axk+
 – b

)
, (c)

where α >  is called step-length. The convergence of ADMM has been well established
in the literature (see [, , ]). For more details of the ADMM, the reader can also refer to
[, –].

Due to the classical ADMM extreme simplicity and efficiency in numerous applications
such as mathematical imaging science, signal processing, and so on, it is natural to ex-
tend the classical ADMM (a)-(c) directly to (). The direct extension of the ADMM for
solving problem () consists of the following iterations:

xk+
 = arg min

x
Lβ

(
x, xk

, xk
,λk), (a)

xk+
 = arg min

x
Lβ

(
xk+

 , x, xk
,λk), (b)

xk+
 = arg min

x
Lβ

(
xk+

 , xk+
 , x,λk), (c)

λk+ = λk – αβ
(
Axk+

 + Axk+
 + Axk+

 – b
)
. (d)

Despite the scheme working very well for many concrete applications of () (see e.g. [,
, , ]), Chen et al. [] showed by a counter example that the convergence of (a)-
(d) fails. The absence of the convergence of () has inspired some improved algorithms.
These algorithms are mainly used the following two ways: One way is to correct the out-
put of (a)-(d). For example, the authors of [, ] added an additional Gaussian back
substitution correction step in each iteration after all the block variables are updated. Al-
though, numerically, these algorithms perform slightly slower than the scheme (a)-(d),
they possess global convergence. The other way is to employ a simple proximal term to
solve inexactly the xi-subproblem in (a)-(d), which can make the subproblems of (a)-
(d) become much easier to carry out and the entire algorithm runs in less time. The
readers can refer to [, –].

On the other hand, several researchers have also studied the convergence of the direct
extension of the ADMM (a)-(d) by introducing some strong conditions. Han and Yuan
[] have showed that the scheme (a)-(d) with α =  is convergent if the functions θi

(i = , , ) are all strongly convex and the penalty parameter β chosen in a certain interval.
Subsequently, these conditions were weakened in [, ], and the authors showed that
the condition that the two functions are strongly convex can ensure the convergence of
(a)-(d) with α = . Recently, these conditions were further weakened, Cai et al. [] had
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proved that the scheme (a)-(d) with α =  was convergent if one function in the objective
is strongly convex. Very recently, Li et al. [] showed that the directly extended -block
ADMM with α ∈ (, ( +

√
)/) is convergent, if β is smaller than a certain threshold and

the first and third linear operators in the linear equation constraint are full column rank,
and the second function in the objective is strongly convex. However, many applications
that can be efficiently solved by the scheme (a)-(d) will be excluded because of the strong
convexity. Thus, these conditions are of only theoretical interests and they seem to be too
strict to be satisfied by many mentioned applications.

In the cyclic sense, the scheme (a)-(d) can be rewritten as

xk+
 = arg min

x
Lβ

(
x, xk

, xk
,λk), (a)

xk+
 = arg min

x
Lβ

(
xk+

 , x, xk
,λk), (b)

λk+ = λk – β
(
Axk+

 + Axk+
 + Axk

 – b
)
, (c)

xk+
 = arg min

x
Lβ

(
xk+

 , xk+
 , x,λk+). (d)

In this manuscript, we show that (a)-(d) is convergent if one function in the objective
of () is sub-strongly monotone together with some minor restrictions on the coefficient
matrices A, A, A, and the penalty parameter β , which explains why the direct extension
of ADMM (a)-(d) works well for some applications, even though there are not strong
convex functions in such applications. Furthermore, we establish a globally linear conver-
gence rate for the direct extension of ADMM (a)-(d) under some additional conditions.

After presenting in Section  the needed preliminary material, we devote Section  to a
proof of the global and linear convergence of the scheme (a)-(d) under some assump-
tions. In Section , we construct an example which satisfies the convergence conditions
given in Section  but do not satisfy the condition that one of the functions in the objective
is strongly convex.

2 Preliminaries
In this section we summarize some of notations and the fundamental tools of variational
analysis.

We use 〈·, ·〉 to denote the inner product of Rn, and denote by ‖ · ‖ its induced norm.
Br(x) stands for the closed ball of radius r centered at x. Throughout the paper we let all
vectors be column vectors. Let A be a symmetric matrix, λmin(A) and λmax(A) to denote
the smallest eigenvalue and the largest eigenvalue of A, respectively. A real symmetric
matrix A ∈Rn×n is called positive definite (or positive semi-definite) if for all x 	= , xT Ax >
 (or xT Ax ≥ ). We denote this as A �  (or A � ). For any real symmetric matrices
A, B ∈ Rn×n, we use A � B (or A � B) to mean A – B �  (or A – B � ). We denote by
‖x‖M :=

√
xT Mx the M-norm of the vector x if the matrix M is symmetric and positive

definite. For a given matrix A, we use

‖A‖ := sup
x 	=

‖Ax‖
‖x‖

to denote its norm.
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Given a nonempty subset C in Rn, its indicator function is defined as

δ(x; C) :=

⎧
⎨

⎩
, x ∈ C,

+∞, otherwise.

A function f : Rn →R is convex if

f
(
αx + ( – α)y

) ≤ αf (x) + ( – α)f (y), ∀x, y ∈Rn,∀α ∈ [, ],

and it is strongly convex with modulus μ >  if

f
(
αx + ( – α)y

) ≤ αf (x) + ( – α)f (y) –
μ


α( – α)‖x – y‖, ∀x, y ∈Rn,∀α ∈ [, ].

A multifunction F : Rn ⇒Rn (see []) is monotone if

〈y – y, x – x〉 ≥ , ∀y ∈ F(x),∀y ∈ F(x),

and strongly monotone with modulus μ >  if

〈y – y, x – x〉 ≥ μ‖x – x‖, ∀y ∈ F(x),∀y ∈ F(x).

It is well known that a function f is convex if and only if ∂f , the subdifferential of f , is
monotone; and f is strongly convex if and only if ∂f is strongly monotone (see, e.g., []).

For a differentiable function f , the gradient ∇f is called Lipschitz continuous with con-
stant Lf >  if

∥∥∇f (x) – ∇f (y)
∥∥ ≤ Lf ‖x – y‖, ∀x, y ∈Rn.

For any two vectors x and y with the same dimension, we have

〈x, y〉 ≤ t‖x‖ +

t
‖y‖, ∀t > . ()

Throughout this paper, we make the following standard assumption.

Assumption . There is a point (x̂, x̂, x̂) ∈ ri(dom θ × dom θ × dom θ) such that
Ax̂ + Ax̂ + Ax̂ = b.

Suppose that the constraint qualification (CQ) holds, then we know from Corol-
lary .. of [] and Corollary .. of [] that (x∗

 , x∗
, x∗

) ∈ ri(dom θ ×dom θ ×dom θ)
is an optimal solution to problem () if and only if there exists a Lagrange multiplier λ∗ ∈Rl

such that (x∗
 , x∗

, x∗
,λ∗) is a solution to the following Karush-Kuhn-Tucher (KKT) sys-

tem:

 ∈ ∂θ
(
x∗


)

– AT
 λ∗, (a)

 ∈ ∂θ
(
x∗


)

– AT
 λ∗, (b)
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 ∈ ∂θ
(
x∗


)

– AT
 λ∗, (c)

 = Ax∗
 + Ax∗

 + Ax∗
 – b. (d)

We denote by W∗ the set of the solutions of (a)-(d).

3 Convergence
In this section, we prove that the iterative sequence {(xk

 , xk
, xk

,λk)} generated by the direct
extension of ADMM (a)-(d) converges to a point (x∗

 , x∗
, x∗

,λ∗) which is a solution of the
KKT system (a)-(d) under the following assumption. In the following, the matrices A,
A, and A are assumed to be full column rank. We define the notations

G :=

⎛

⎜⎝
βAT

 A  
 βAT

 A –AT


 –A

β

I

⎞

⎟⎠ , G :=

⎛

⎜⎝
βAT

 A  
 β( + 

ρ
)AT

 A –AT


 –A

β

I

⎞

⎟⎠ ,

and

w := (x, x, x,λ)T , v := (x, x,λ)T ,

where ρ >  and β is the penalty parameter in the direct extension of ADMM (a)-(d).
Then the matrices G and G are symmetric.

3.1 Global convergence
Assumption . (Sub-strong monotonicity) There exist (x̃∗

 , x̃∗
, x̃∗

, λ̃∗) ∈ W∗ and a real
number μ >  such that

〈
y – AT

 λ̃∗, x – x̃∗

〉 ≥ μ

∥∥x – x̃∗

∥∥, for all x ∈Rn and y ∈ ∂θ(x). ()

Now, we start proving the convergence of the iterative scheme (a)-(d) under Assump-
tion .. First, we give several lemmas.

Lemma . Suppose Assumption . holds. For the iterative sequence {(xk
 , xk

, xk
,λk)} gen-

erated by the direct extension of ADMM (a)-(d), then we have

(
vk+ – ṽ∗)T G

(
vk – vk+) ≥ 〈

A
(
xk

 – xk+


)
,λk – λk+〉

– β
〈
A

(
xk

 – xk+


)
, A

(
xk

 – x̃∗

)〉

+ μ
∥∥xk+

 – x̃∗

∥∥, ()

where ṽ∗ = (x̃∗
, x̃∗

, λ̃∗) in (x̃∗
 , x̃∗

, x̃∗
, λ̃∗) introduced in Assumption ..

Proof Indeed, the optimality condition of subproblems in (a)-(d) can be written as

 ∈ ∂θ
(
xk+


)

– AT
 λk + βAT


(
Axk+

 + Axk
 + Axk

 – b
)
, (a)

 ∈ ∂θ
(
xk+


)

– AT
 λk + βAT


(
Axk+

 + Axk+
 + Axk

 – b
)
, (b)

 ∈ ∂θ
(
xk+


)

– AT
 λk+ + βAT


(
Axk+

 + Axk+
 + Axk+

 – b
)
. (c)
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Using (c), (a)-(c) can be rewritten as

 ∈ ∂θ
(
xk+


)

– AT
 λk+ + βAT

 A
(
xk

 – xk+


)
, (a)

 ∈ ∂θ
(
xk+


)

– AT
 λk+, (b)

 ∈ ∂θ
(
xk+


)

– AT
 λk+ + AT


(
λk – λk+) + βAT

 A
(
xk+

 – xk

)
. (c)

Using the monotonicity of the subdifferential and Assumption ., it follows from (a)-(d)
and (a)-(c) that we have

〈
AT


(
λk+ – λ̃∗) + βAT

 A
(
xk+

 – xk

)
, xk+

 – x̃∗

〉 ≥ , (a)

〈
AT


(
λk+ – λ̃∗), xk+

 – x̃∗

〉 ≥ , (b)

〈
AT


(
λk+ – λ̃∗) + AT


(
λk+ – λk) – βAT

 A
(
xk+

 – xk

)
, xk+

 – x̃∗

〉

≥ μ
∥∥xk+

 – x̃∗

∥∥, (c)

where μ > . Adding up these three inequalities in (a)-(c) and using (d), we obtain

μ
∥∥xk+

 – x̃∗

∥∥

≤ 〈
λk+ – λ∗, A

(
xk+

 – x̃∗

)

+ A
(
xk+

 – x̃∗

)

+ A
(
xk+

 – x̃∗

)〉

+
〈
xk+

 – x̃∗
 ,βAT

 A
(
xk+

 – xk

)〉

+
〈
xk+

 – x̃∗
, AT


(
λk+ – λk)〉

+
〈
xk+

 – x̃∗
,βAT

 A
(
xk

 – xk+


)〉

=
〈
λk+ – λ̃∗,


β

(
λk – λk+) – A

(
xk

 – xk+


)〉

+
〈
xk+

 – x̃∗
,βAT

 A
(
xk

 – xk+


)
– AT


(
λk – λk+)〉

+
〈
xk+

 – x̃∗
 ,βAT

 A
(
xk+

 – xk

)〉

.

Using the notations G and v, we further obtain
(
vk+ – ṽ∗)T G

(
vk – vk+)

≥ β
〈
A

(
xk

 – xk+


)
, A

(
xk+

 – x̃∗

)〉

+ μ
∥∥xk+

 – x̃∗

∥∥

+ β
〈
A

(
xk

 – xk+


)
, A

(
xk+

 – x̃∗

)〉

= β
〈
A

(
xk

 – xk+


)
, A

(
xk+

 – x̃∗

)

+ A
(
xk+

 – x̃∗

)〉

+ μ
∥∥xk+

 – x̃∗

∥∥

= β

〈
A

(
xk

 – xk+


)
,


β

(
λk – λk+) – A

(
xk

 – x̃∗

)〉

+ μ
∥∥xk+

 – x̃∗

∥∥, ()

which implies () and thus completes the proof. �

Lemma . There exists a real number ρ ∈ (, ) such that the matrix G is symmetric and
positive definite.

Proof Let

P :=

(
β( + 

ρ
)AT

 A –AT


–A

β

I

)
.
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In order to justify the matrix G is symmetric and positive definite, we only need to show
the matrix P is positive definite. Since


β

I – A

[
β

(
 +


ρ

)
AT

 A

]–

AT
 =


β

I –

β

· ρ

 + ρ
A

(
AT

 A
)–AT



� 
β

I –

β

· ρ

 + ρ
· λmax(AAT

 )
λmin(AT

 A)
I

=
[

 –
ρ

 + ρ
· λmax(AAT

 )
λmin(AT

 A)

]

β

I.

If λmax(AAT
 ) ≤ λmin(AT

 A), then for any ρ ∈ (, ), we have


β

I – A

[
β

(
 +


ρ

)
AT

 A

]–

AT
 � .

Otherwise, for any

ρ ∈
(

,
λmin(AT

 A)
λmax(AAT

 ) – λmin(AT
 A)

)
,

we have


β

I – A

[
β

(
 +


ρ

)
AT

 A

]–

AT
 � .

Thus, it follows from the Schur complement [], Section A.., that there exists a real
number ρ ∈ (, ) such that the matrix P is symmetric and positive definite, and so is G.

�

Lemma . Let the iterative sequence {(xk
 , xk

, xk
,λk)} be generated by the direct extension

of ADMM (a)-(d) with β ∈ (, ρμ/(‖AT
 A‖)) and ρ ∈ (, ) defined in Lemma ..

Suppose Assumption . holds. Then there is a real number η >  such that

∥∥vk+ – ṽ∗∥∥
G

≤ ∥∥vk – ṽ∗∥∥
G

– η
∥∥vk – vk+∥∥

G
. ()

Proof Note that (b) is also true for k := k – , i.e.,

 ∈ ∂θ
(
xk


)

– AT
 λk .

Using the monotonicity of the subdifferential ∂θ, we have

 ≤ 〈
AT

 λk – AT
 λk+, xk

 – xk+


〉

=
〈
A

(
xk

 – xk+


)
,λk – λk+〉. ()

It follows from () that

–
〈
A

(
xk

 – xk+


)
, A

(
xk

 – x̃∗

)〉 ≥ –ρ

∥∥A
(
xk

 – xk+


)∥∥ –

ρ

∥∥A
(
xk

 – x̃∗

)∥∥ ()
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and

–
∥∥A

(
xk

 – xk+


)∥∥ = –
∥∥A

(
xk

 – x̃∗

)

– A
(
xk+

 – x̃∗

)∥∥

= –
∥∥A

(
xk

 – x̃∗

)∥∥ + 

〈
A

(
xk

 – x̃∗

)
, A

(
xk+

 – x̃∗

)〉

–
∥∥A

(
xk+

 – x̃∗

)∥∥

≥ –
∥∥A

(
xk

 – x̃∗

)∥∥ – 

∥∥A
(
xk+

 – x̃∗

)∥∥. ()

Let

P :=

(
β( + 

ρ
)AT

 A –AT


–A

β

I

)
.

It follows from () that

(
vk – ṽ∗)T G

(
vk – ṽ∗)

=
[(

vk – vk+) +
(
vk+ – ṽ∗)]T G

[(
vk – vk+) +

(
vk+ – ṽ∗)]

=
(
vk – vk+)T G

(
vk – vk+) + 

(
vk+ – ṽ∗)T G

(
vk – vk+)

+
(
vk+ – ṽ∗)T G

(
vk+ – ṽ∗)

≥ (
vk+ – ṽ∗)T G

(
vk+ – ṽ∗) +

(
vk – vk+)T G

(
vk – vk+)

+ μ
∥∥xk+

 – x̃∗

∥∥ + 

〈
A

(
xk

 – xk+


)
,λk – λk+〉

– β
〈
A

(
xk

 – xk+


)
, A

(
xk

 – x̃∗

)〉

,

which together with (), (), and () gives

(
vk – ṽ∗)T G

(
vk – ṽ∗)

≥ (
vk+ – ṽ∗)T G

(
vk+ – ṽ∗) +

(
vk – vk+)T G

(
vk – vk+)

+ μ
∥∥xk+

 – x̃∗

∥∥ – βρ

∥∥A
(
xk

 – xk+


)∥∥ –
β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥

=
(
vk+ – ṽ∗)T G

(
vk+ – ṽ∗) + β( – ρ)

∥∥A
(
xk

 – xk+


)∥∥

+
(
xk

 – xk+
 ,λk – λk+)P

(
xk

 – xk+


λk – λk+

)
–

β

ρ

∥∥A
(
xk

 – xk+


)∥∥

+ μ
∥∥xk+

 – x̃∗

∥∥ –

β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥

≥ (
vk+ – ṽ∗)T G

(
vk+ – ṽ∗) + β( – ρ)

∥∥A
(
xk

 – xk+


)∥∥

+
(
xk

 – xk+
 ,λk – λk+)P

(
xk

 – xk+


λk – λk+

)
+ μ

∥∥xk+
 – x̃∗


∥∥

–
β

ρ

∥∥A
(
xk+

 – x̃∗

)∥∥ –

β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥ –

β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥

≥ (
vk+ – ṽ∗)T G

(
vk+ – ṽ∗) +

β

ρ

∥∥A
(
xk+

 – x̃∗

)∥∥ +

β

ρ

∥∥A
(
xk+

 – x̃∗

)∥∥
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+ β( – ρ)
∥∥A

(
xk

 – xk+


)∥∥ +
(
xk

 – xk+
 ,λk – λk+)P

(
xk

 – xk+


λk – λk+

)

–
β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥ –

β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥ +

(
μ –

β‖AT
 A‖

ρ

)∥∥xk+
 – x̃∗


∥∥,

which implies that

(
vk+ – ṽ∗)T G

(
vk+ – ṽ∗) +

β

ρ

∥∥A
(
xk+

 – x̃∗

)∥∥

≤ (
vk – ṽ∗)T G

(
vk – ṽ∗) +

β

ρ

∥∥A
(
xk

 – x̃∗

)∥∥ –

(
μ –

β‖AT
 A‖

ρ

)∥∥xk+
 – x̃∗


∥∥

– β( – ρ)
∥∥A

(
xk

 – xk+


)∥∥ –
(
xk

 – xk+
 ,λk – λk+)P

(
xk

 – xk+


λk – λk+

)
. ()

Using the notation G and (), we have

∥∥vk+ – ṽ∗∥∥
G

≤ ∥∥vk – ṽ∗∥∥
G

–
(
xk

 – xk+
 ,λk – λk+)P

(
xk

 – xk+


λk – λk+

)

–
(

μ –
β‖AT

 A‖
ρ

)∥∥xk+
 – x̃∗


∥∥ – β( – ρ)

∥∥A
(
xk

 – xk+


)∥∥. ()

To prove such η >  exists for (), we only need μ – β‖AT
 A‖
ρ

> , which holds if β <
ρμ/(‖AT

 A‖). �

Now, we are ready to prove the convergence of the sequence {(xk
 , xk

, xk
,λk)} generated by

the direct extension of ADMM (a)-(d) under Assumption .. The result is summarized
in the following theorem.

Theorem . Let the iterative sequence {(xk
 , xk

, xk
,λk)} be generated by the direct extension

of ADMM (a)-(d) with β ∈ (, ρμ/(‖AT
 A‖)) and ρ ∈ (, ) defined in Lemma ..

Suppose Assumption . holds. Then the sequence {(xk
 , xk

, xk
,λk)} converges to a KKT point

in W∗.

Proof It follows from () that

lim
k→+∞

∥∥vk – vk+∥∥
G

=  ()

and the sequence {vk} is bounded. Equation (c) then further implies that {xk
} is also

bounded and hence the sequence {(xk
 , xk

, xk
,λk)} generated by (a)-(d) is bounded.

The boundedness of the sequence {(xk
 , xk

, xk
,λk)} indicates that there is at least one

cluster point of {(xk
 , xk

, xk
,λk)}. Let w̄ := (x̄, x̄, x̄, λ̄) be an arbitrary cluster point of

{(xk
 , xk

, xk
,λk)} and {(xkj

 , xkj
 , xkj

 ,λkj )} be the subsequence converging to w̄. By the inequal-
ity (), we have x̄ = x̃∗

. It follows from (c) and (a)-(c) that

 ∈ ∂θ
(
xkj


)

– AT
 λkj + βAT

 A
(
xkj–

 – xkj

)
, (a)

 ∈ ∂θ
(
xkj


)

– AT
 λkj , (b)
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 ∈ ∂θ
(
xkj


)

– AT
 λkj + AT


(
λkj– – λkj

)
+ P

(
xkj

 – xkj–


)
, (c)

 =

β

(
λkj – λkj–) + Axkj

 + Axkj
 + Axkj

 – b + A
(
xkj–

 – xkj

)
. (d)

Taking the limit in (a)-(d) and using (), we obtain

 ∈ ∂θ(x̄) – AT
 λ̄, (a)

 ∈ ∂θ(x̄) – AT
 λ̄, (b)

 ∈ ∂θ(x̄) – AT
 λ̄, (c)

 = Ax̄ + Ax̄ + Ax̄ – b, (d)

which implies that (x̄, x̄, x̄, λ̄) is a KKT point in W∗. It follows from () and (c) that the
iterative sequence {(xk

 , xk
, xk

,λk)} generated by the direct extension of ADMM (a)-(d)
converges to a KKT point in W∗. The proof is completed. �

Remark . If the sequence {xk
} is bounded, then Assumption . can be substituted by

the following.

Assumption . There exist (x̃∗
 , x̃∗

, x̃∗
, λ̃∗) ∈W∗ and a real number μ >  such that

〈
y – AT

 λ̃∗, x – x̃∗

〉 ≥ μ

∥∥x – x̃∗

∥∥, for all x ∈ Ba

(
x̃∗


)

and y ∈ ∂θ(x), ()

where a = maxk{‖xk
 – x̃∗

‖}.

3.2 Global linear convergence
Cai et al. [] show that the globally linear convergence of the direct extension of ADMM
(a)-(d) can be ensured if θ and θ are strongly convex. In this subsection, we will show
that the globally linear convergence rate of the direct extension of ADMM (a)-(d) can
be ensured under weaker conditions. More precisely, we establish the globally linear con-
vergence result for the iterative scheme (a)-(d) by showing that there exist σ ∈ (, ) and
η >  such that

∥∥vk – vk+∥∥
G

≤ σ k ‖v – v̂∗‖G√
η

. ()

Assumption . AT
 is full column rank. For any (x∗

 , x∗
, x∗

,λ∗) ∈ W∗, there exists a real
number μ >  such that

〈
y – AT

 λ∗, x – x∗

〉 ≥ μ

∥∥x – x∗

∥∥, for all x ∈Rn and y ∈ ∂θ(x). ()

Theorem . Let the iterative sequence {(xk
 , xk

, xk
,λk)} be generated by the direct ex-

tension of ADMM (a)-(d) with β ∈ (, ρμ/(‖AT
 A‖)) and ρ ∈ (, ) defined in

Lemma .. Suppose Assumption . and Assumption . hold. If the function θ is dif-
ferentiable, and its gradient ∇θ is Lipschitz continuous with positive constant L, then
there exists δ >  such that () holds.
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Proof Since Assumption . and Assumption . hold, following the same discussions as
of Lemma . and Lemma ., we have

∥∥vk+ – ṽ∗∥∥
G

≤ ∥∥vk – ṽ∗∥∥
G

–
(
xk

 – xk+
 ,λk – λk+)P

(
xk

 – xk+


λk – λk+

)
– β( – ρ)

∥∥A
(
xk

 – xk+


)∥∥

– μ
∥∥xk+

 – x̃∗

∥∥ –

(
μ –

β‖AT
 A‖

ρ

)∥∥xk+
 – x̃∗


∥∥,

where μ >  and μ > . Thus, there is a real number η >  such that

∥∥vk – ṽ∗∥∥
G

–
∥∥vk+ – ṽ∗∥∥

G
≥ η

∥∥vk – vk+∥∥
G

+ μ
∥∥xk+

 – x̃∗

∥∥

+
(

μ –
β‖AT

 A‖
ρ

)∥∥xk+
 – x̃∗


∥∥. ()

Since θ is differentiable and ∇θ is Lipschitz continuous with positive constant L, it fol-
lows from (b) and (b) that

∥∥xk+
 – x̃∗


∥∥ ≥ 

L

∥∥AT

(
λk+ – λ̃∗)∥∥,

which together with () yields

∥∥vk – ṽ∗∥∥
G

–
∥∥vk+ – ṽ∗∥∥

G
≥ η

∥∥vk – vk+∥∥
G

+
(

μ –
β‖AT

 A‖
ρ

)∥∥xk+
 – x̃∗


∥∥

+ μ
∥∥xk+

 – x̃∗

∥∥ + μ


L



∥∥AT

(
λk+ – λ̃∗)∥∥. ()

Since the matrix AT
 is full column rank, the inequality () implies that there exists δ > 

such that

∥∥vk – ṽ∗∥∥
G

≥ ( + δ)
∥∥vk+ – ṽ∗∥∥

G
. ()

Using () again, we obtain

η
∥∥vk – vk+∥∥

G
≤ ∥∥vk – ṽ∗∥∥

G
–

∥∥vk+ – ṽ∗∥∥
G

≤ ∥∥vk – ṽ∗∥∥
G

≤ 
( + δ)k

∥∥v – ṽ∗∥∥
G

. ()

Let σ = √
+δ

, we see that () holds. �

Notice that if ‖vk – vk+‖
G = , it follows from (c) and (a)-(c) that

 ∈ ∂θ
(
xk+


)

– AT
 λk+,

 ∈ ∂θ
(
xk+


)

– AT
 λk+,

 ∈ ∂θ
(
xk+


)

– AT
 λk+,

 = Axk+
 + Axk+

 + Axk+
 – b,
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which shows that (xk+
 , xk+

 , xk+
 ,λk+) is a solution of (a)-(d). Thus, Theorem . estab-

lishes a globally linear convergence rate for the direct extension of ADMM (a)-(d), and
it inspires an easily implementable stopping criterion for implementing ADMM (a)-(d):

max

{‖xk
 – xk+

 ‖
 + ‖xk

‖
,
‖xk

 – xk+
 ‖

 + ‖xk
‖

,
‖λk – λk+‖

 + ‖λk‖
}

< ε. ()

4 Example
Chen et al. [] constructed the following example of solving a -dimensional linear sys-
tem:

min  × x +  × x +  × x

s.t.

⎛

⎜⎝
  
  
  

⎞

⎟⎠

⎛

⎜⎝
x

x

x

⎞

⎟⎠ =

⎛

⎜⎝




⎞

⎟⎠
()

to show that the directly extended alternating direction method of multipliers applied to
the above -block (treating each variable as one block) optimization problem will diverge.

We replace the item  × x by μ‖Ax‖ + δ(x; Br()) with μ >  and arbitrary r >  in
(), and obtain

min  × x +  × x + μ‖Ax‖ + δ
(
x; Br()

)

s.t.

⎛

⎜⎝
  
  
  

⎞

⎟⎠

⎛

⎜⎝
x

x

x

⎞

⎟⎠ =

⎛

⎜⎝




⎞

⎟⎠ .
()

The example () can be rewritten as the -block optimization problem () with the
following specifications:

• θ(x) :=  × x, θ(x) :=  × x, θ(x) := μ‖Ax‖ + δ(x; Br());
• The coefficients Ai (i = , , ) and the vector b are given by

A :=

⎛

⎜⎝




⎞

⎟⎠ , A :=

⎛

⎜⎝




⎞

⎟⎠ , A :=

⎛

⎜⎝




⎞

⎟⎠ , b :=

⎛

⎜⎝




⎞

⎟⎠ .

Obviously, θ(x) is not strongly convex. For problem (), (x, x, x,λ) = (, , , ) is a
KKT point. If the iterative sequence {(xk

 , xk
, xk

,λk)} is generated by the direct extension
of ADMM (a)-(d), then we have xk

 ∈ Br(), ∀k. To justify the convergence of the direct
extension of ADMM (a)-(d) applied to (), one just needs to show that Assumption .
holds at (x̃∗

 , x̃∗
, x̃∗

, λ̃∗) = (, , , ).
For any x ∈ Br(x̃∗

), we have

μ‖Ax‖ = μ|x| ≥ μ

r
x

.

Thus,

θ(x) ≥ θ
(
x̃∗


)

+
〈
AT

 λ̃∗, x – x̃∗

〉
+ αr∥∥x – x̃∗


∥∥, ∀x ∈ Br

(
x̃∗


)
, ()



Sun et al. Journal of Inequalities and Applications  (2016) 2016:227 Page 13 of 14

where αr = μ/r. On the other hand, since the function θ is convex, we have

θ
(
x̃∗


) ≥ θ(x) +

〈
y, x̃∗

 – x
〉
, ∀x ∈ Br

(
x̃∗


)

and ∀y ∈ ∂θ(x). ()

Adding up () and (), we obtain

〈
y – AT

 λ̃∗, x – x̃∗

〉 ≥ αr∥∥x – x̃∗


∥∥, ∀x ∈ Br

(
x̃∗


)

and ∀y ∈ ∂θ(x).

Thus Assumption . holds for () at (x̃∗
 , x̃∗

, x̃∗
, λ̃∗) = (, , , ) with μ = μ/r, it fol-

lows from Theorem . that the direct extension of ADMM (a)-(d) applied to () is
convergent.

Remark . If the function θ is strongly convex, then Assumption . or Assumption .
holds trivially. The example () shows that the direct extension of ADMM (a)-(d) ap-
plied to () is convergent, although θ is not strongly convex. This explains why the
original scheme of the direct extension of ADMM works well for some applications even
though there is not a strong convex function in the objective.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China. 2College of
Science, Harbin Engineering University, Harbin, 150001, China. 3College of Computer Science and Information
Engineering, Harbin Normal University, Harbin, 150025, China.

Acknowledgements
This work was supported by the National Natural Sciences Grants (No. 11371116, No. 41071262, and No. 41101243).

Received: 28 April 2016 Accepted: 12 September 2016

References
1. Chandrasekaran, V, Parrilo, PA, Willsky, AS: Latent variable graphical model selection via convex optimization. Ann.

Stat. 40, 1935-1967 (2012)
2. McLachlan, GJ: Discriminant Analysis and Statistical Pattern Recognition. Wiley-Interscience, New York (2004)
3. Candès, EJ, Li, X, Ma, Y, Wright, J: Robust principal component analysis. J. ACM 58(3), Article 11 (2011)
4. Tao, M, Yuan, XM: Recovering low-rank and sparse components of matrices from incomplete and noisy observations.

SIAM J. Optim. 21(1), 57-81 (2011)
5. Gabay, D, Mercier, B: A dual algorithm for the solution of nonlinear variational problems via finite-element

approximations. Comput. Math. Appl. 2, 17-40 (1976)
6. Glowinski, R, Marrocco, A: Sur l’approximation, par éléments fins d’ordren, et la résolution, par pénalisation-dualité,

d’une classe de problèmes de dirichlet nonlinéares. Rev. Fr. Autom. Inform. Rech. Opér., Anal. Numér. 9, 41-76 (1975)
7. Fortin, M, Glowinski, R: Augmented Lagrangian Methods. North-Holland, Amsterdam (1983)
8. Glowinski, R: Lectures on Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1980)
9. Boyd, S, Parikh, N, Chu, E, Peleato, B, Eckstein, J: Distributed optimization and statistical learning via the alternating

direction method of multipliers. Found. Trends Mach. Learn. 3, 1-122 (2010)
10. Chan, TF, Glowinski, R: Finite element approximation and iterative solution of a class of mildly non-linear elliptic

equations. Technical report, Stanford University (1978)
11. Eckstein, J: Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some

illustrative computational results. RUTCOR research report RRR 32-2012, Rutgers University (2012)
12. He, BS, Liu, H, Wang, ZR, Yuan, XM: A strictly Peaceman-Rachford splitting method for convex programming. SIAM J.

Optim. 24, 1011-1040 (2014)
13. Lin, Z, Chen, M, Wu, L, Ma, Y: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank

matrices. Math. Program. 9(22), 15-26 (2010)
14. Peng, YG, Ganesh, A, Wright, J, Xu, WL, Ma, Y: Robust alignment by sparse and low rank decomposition for linearly

correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233-2246 (2012)
15. Chen, CH, He, BS, Ye, YY, Yuan, XM: The direct extension of ADMM for multi-block convex minimization problems is

not necessarily convergent. Math. Program. 155(1-2), 57-79 (2016)



Sun et al. Journal of Inequalities and Applications  (2016) 2016:227 Page 14 of 14

16. He, BS, Tao, M, Yuan, XM: Alternating direction method with Gaussian back substitution for separable convex
programming. SIAM J. Optim. 22, 313-340 (2012)

17. He, BS, Tao, M, Yuan, XM: Convergence rate and iteration complexity on the alternating direction method of
multipliers with a substitution procedure for separable convex programming. Manuscript

18. Chen, G, Teboulle, M: A proximal-based decomposition method for convex minimization problems. Math. Program.
64, 81-101 (1994)

19. Deng, W, Yin, WT: On the global and linear convergence of the generalized alternating direction method of
multipliers. J. Sci. Comput. 66(3), 889-916 (2016)

20. Eckstein, J: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4, 75-83 (1994)
21. Fazel, M, Pong, TK, Sun, DF, Tseng, P: Hankel matrix rank minimization with applications to system identification and

realization. SIAM J. Matrix Anal. Appl. 34, 946-977 (2013)
22. He, BS, Liao, LZ, Han, D, Yang, H: A new inexact alternating direction method for monotone variational inequalities.

Math. Program. 92, 103-118 (2002)
23. Hong, MY, Luo, ZQ: On the linear convergence of the alternating direction method of multipliers. Math. Program.

(2016). doi:10.1007/s10107-016-1034-2
24. Xu, MH, Wu, T: A class of linearized proximal alternating direction methods. J. Optim. Theory Appl. 155, 321-337

(2011)
25. Yang, J, Zhang, Y: Alternating direction algorithms for l1 problems in compressive sensing. SIAM J. Sci. Comput. 33,

250-278 (2011)
26. Han, DR, Yuan, XM: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227-238

(2013)
27. Chen, CH, Shen, Y, You, YF: On the convergence analysis of the alternating direction method of multipliers with three

blocks. Abstr. Appl. Anal. 2013, Article ID 183961 (2013)
28. Lin, TY, Ma, SQ, Zhang, SZ: On the convergence rate of multi-block ADMM (2014). arXiv:1408.4265
29. Cai, XJ, Han, DR, Yuan, XM: The direct extension of ADMM for three-block separable convex minimization models is

convergent when one function is strongly convex. Manuscript (2014)
30. Li, M, Sun, DF, Toh, KC: A convergent 3-block semi-proximal ADMM for convex minimization problems with one

strongly convex block. Asia-Pac. J. Oper. Res. 32(4), Article ID 1550024 (2015)
31. Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton (1970)
32. Boyd, S, Vandenberghe, L: Convex Optimization. Cambridge University Press, Cambridge (2004)

http://dx.doi.org/10.1007/s10107-016-1034-2
http://arxiv.org/abs/arXiv:1408.4265

	On the global and linear convergence of direct extension of ADMM for 3-block separable convex minimization models
	Abstract
	Keywords

	Introduction
	Preliminaries
	Convergence
	Global convergence
	Global linear convergence

	Example
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


