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1 Introduction
Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in Euclidean space Rn. For the set of convex bodies containing the origin in their interiors,
we write Kn

o . Kn
s denotes the class of o-symmetric members of Kn

o (o denotes the origin
in R

n). Let Sn– denote the unit sphere in Euclidean space R
n and let V (K) denote the n-

dimensional volume of a body K . For the standard unit ball B in R
n, we write ωn = V (B)

for its volume.
If K ∈ Kn, then its support function, hK = h(K , ·) : Rn → (–∞,∞), is defined by (see [,

]) h(K , x) = max{x · y : y ∈ K}, x ∈ R
n, where x · y denotes the standard inner product of x

and y.
The zonoids are investigated by many authors (see [–]). The zonoid Z is a convex

body with support function

hZ (u) =



∫
Sn–

∣∣〈u, v〉∣∣dμ(v) for all u ∈ Sn–,

where μ is some positive, even Borel measure on Sn– and 〈x, y〉 denotes the standard inner
product of vectors x and y in R

n.
For K ∈Kn, the mean zonoid, Z̄K , was defined by Zhang []

hZ̄K (u) =


V (K)

∫
K

∫
K

∣∣〈u, (x – y)
〉∣∣dx dy for all u ∈ Sn–, (.)

where V (K) is the volume of the body K .
Further, Zhang [] proved the affine isoperimetric inequality V (Z̄K) ≥ V (Z̄BK ), where

BK is the n-ball with the same volume as K .
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For each convex subset in R
n, it is well known that there is a unique ellipsoid with the

following property: The moment of inertia of the ellipsoid and the moment of inertia of
the convex set are the same about every -dimensional subspace of Rn. This ellipsoid is
called the ellipsoid of inertia �K (also called the Legendre ellipsoid) of the convex set.
Namely, between the convex body K and the ellipsoid of inertia �K we have

∫
K

∣∣〈x, y〉∣∣ dx =
∫

�K

∣∣〈x, y〉∣∣ dx, ∀y ∈R
n.

The Legendre ellipsoid and its polar (the Binet ellipsoid) are well-known concepts from
classical mechanics. See [–] for historical references.

A non-negative finite Borel measure μ on the unit sphere Sn– is said to be isotropic if
it has the same moment of inertia about all lines through the origin or, equivalently, if, for
all x ∈R

n,

|x| =
∫

Sn–

∣∣〈x, u〉∣∣ dμ(u),

where | · | denotes the standard Euclidean norm on R
n.

Based on the background of mechanics properties, the notion of Lp-zonoids was given
by Schneider and Weil []. For p ≥ , an Lp-zonoid was defined by

hZpK (u)p =
∫

Sn–

∣∣〈u, v〉∣∣p dμ(v) for all u ∈ Sn–, (.)

where μ is some positive, even Borel measure on Sn–. We also refer to [, ].
Xi, Guo and Leng [] considered an extension for a class of bodies Z̄pK named Lp-mean

zonoids as follows: For K ∈Kn and p ≥ , the Lp-mean zonoid, Z̄pK , of K is defined by

hZ̄pK (z) =
(


V (K)

∫
K

∫
K

∣∣〈z, (x – y)
〉∣∣dx dy

) 
p

for all z ∈R
n/{o}. (.)

For p = , the body Z̄K is the mean zonoid of K []. Xi et al. also showed that Z̄pK is an
Lp-zonoid, and established the following affine isoperimetric inequality: For K ∈ Kn and
p ≥ ,

V (Z̄pK) ≥ Cn,pV (K), (.)

with equality if and only if K is an ellipsoid. Here Cn,p is a constant depending on p and
the dimension n.

The main purpose of this paper is to introduce the notion of Lp-mixed mean zonoids,
which extends the Lp-mean zonoids by Xi, Guo and Leng [].

Definition . For K , L ∈Kn and p ≥ , Lp-mixed mean zonoids, Z̄p(K , L), of K and L are
defined by

hZ̄p(K ,L)(z) =
(


V (K)V (L)

∫
K

∫
L

∣∣〈z, (x – y)
〉∣∣p dx dy

)/p

for all z ∈R
n\{o}. (.)

Notice that when K = L, (.) is defined by Xi, Guo, and Leng in [].
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Let ωp = πp//�( + p/) and

C(n, p) =
(

n+p(n + p + )ωn+pωn+p+

(n + )ω
ω


nωn+ωp–ωn+p–

)n/p

.

For the Lp-mixed mean zonoids, our main result is to establish the more general affine
inequality as follows.

Theorem . Let K , L ∈Kn
o and p ≥ . If K ⊆ L, then

V
(
Z̄p(K , L)

) ≥ C(n, p)V (K)
n+p

p V (L)– n
p , (.)

with equality if and only if K = L is an ellipsoid.

If L = K , then the above inequality (.) reduces to the affine inequality (.).
An immediate consequence of Theorem . is the following.

Corollary . Let K , L ∈Kn
o . If K ⊆ L, then

(
V (Z̄(K , L))

V (K)

) 
n

≥ (
C(n, )

) 
n

(
Ṽ(L, K)

V (L)

)n

, (.)

with equality if and only if K = L is an ellipsoid.

2 Notation and preliminaries
We refer to the books Gardner [] and Schneider [] for some terminologies and notations
as regards convex bodies.

The Hausdorff metric δH (K , L) between sets K , L ∈Kn can be defined by

δH (K , L) = sup
x∈Sn–

∣∣h(K , x) – h(L, x)
∣∣.

A set K is star-shaped (about x ∈ K ) if there exists x ∈ K , such that the line segment
from x to any point x ∈ K is contained in K . If K is a compact star-shaped (about the
origin) set, then its radial function ρK (x, z) : Rn\{x} → [,∞) with respect to x is defined
by

ρK (x, z) = max{c : x + cz ∈ Z} for all z ∈R
n\{x}. (.)

If ρK is positive and continuous, then K will be called a star body (about the origin), and
Sn denotes the set of star bodies in R

n. We will use Sn
o to denote the subset of star bodies

in Sn containing the origin in their interiors. Two star bodies K and L are said to be dilates
of one another if ρK (u)/ρL(u) is independent of u ∈ Sn–.

For K , L ∈ Sn
o , p > , and λ,μ ≥  (not both zero), the Lp-radial combination, λ ◦ K +̃pμ ◦

L ∈ Sn
o , is defined by

ρ(λ ◦ K +̃pμ ◦ L, ·)p = λρ(K , ·)p + μρ(L, ·)p.
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The dual Lp-mixed volume Ṽp(K , L) of K , L was defined by

Ṽp(K , L) =
p
n

lim
ε→+

V (K +̃pε ◦ L) – V (K)
ε

. (.)

The integral representation of Ṽp(K , L) was proved by

Ṽp(K , L) =

n

∫
Sn–

ρK (u)n–pρL(u)p dS(u).

The Lp-Minkowski inequality for the dual Lp-mixed volume is: If K , L ∈ Sn
o and  < p < n,

then

Ṽp(K , L) ≤ V (K)
n–p

n V (L)
p
n , (.)

with equality if and only if K and L are dilates.
The difference body D(K , L) of K and L is defined by D(K , L) = K – L = {x – y : x ∈ K , y ∈

L}. Particularly, DK = K – K = {x – y : x ∈ K , y ∈ K}.
For a star-shaped K and p ≥ , the Lp-centroid body of K , �pK is the origin-symmetric

convex body with the support function

h�pK (u)p =


V (K)

∫
K

∣∣〈u, x〉∣∣p dx =


(n + p)V (K)

∫
Sn–

∣∣〈u, v〉∣∣p
ρK (v)n+p dv, (.)

for all u ∈ Sn–.
For K , L ∈ Kn, p > –, and K ⊆ L, the generalized radial pth mean body, Rp(K , L,λn), is

defined by (see [, ])

ρRp(K ,L,λn)(u) =
(


V (K)

∫
K

ρL(x, u)p dx
)/p

, (.)

for all u ∈ Sn–, where λn is the n-dimensional Lebesgue measure in R
n.

Lemma . ([]) For K , L ∈Kn and x ∈R
n, the parallel section function on R

n is defined
by AK ,L(x) := V (K ∩ (L + x)). Then gK ,L(x) = AK ,L(x) 

n is concave on its support.

If K ⊆ L and p > , then for all u ∈ Sn– (see [, ])

∫
K

ρL(x, u)p dx = p
∫ ∞


AK ,L(ru)rp– dr = p

∫ ρDK (u)


AK ,L(ru)rp– dr. (.)

For p, q > , define the β-function by

β(p, q) =
∫ 


tp–( – t)q– dt =

�(p)�(q)
�(p + q)

.

Lemma . If λ >  and AK ,L(r, u) := V (K ∩ (L + ru)), then

∫ ∞


AK ,L(r, u)rλ dr ≤ nλ+β(λ + , n)V (K)–λ

(∫ ∞


AK ,L(r, u) dr

)λ+

. (.)
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Proof If

F(λ) =
(


β(λ + , n)

∫ ∞



AK ,L(r, u)
AK ,L(, u)

rλ dr
) 

λ+
,

then F(λ) is a decreasing function on (–, +∞). Particularly, if λ > , then F(λ) ≤ F() with
equality if and only if

 –
(

AK ,L(r, u)
AK ,L(, u)

) 
n–

=
r

F()
.

Then

∫ ∞


AK ,L(r, u)rλ dr ≤ nλ+β(λ + , n)V (K)–λ

(∫ ∞


AK ,L(r, u) dr

)λ+

, (.)

with equality if and only if AK ,L(r, u) = V (K)( – rV (K )
n

∫
K ρL(x,u) dx )n–. �

3 Lp-Mixed mean zonoids
Suppose K , L ∈Kn and p ≥ . Define Z̄∞(K , L) by

hZ̄∞(K ,L)(u) = max
x∈K ,y∈L

∣∣〈u, (x – y)
〉∣∣ for all u ∈ Sn–.

Since Z̄∞(K , L) = D(K , L), it follows from Jensen’s inequality that

Z̄p(K , L) ⊆ Z̄q(K , L) ⊆ D(K , L) for  ≤ p ≤ q.

Property . Let K , L ∈Kn with K ⊆ L. If p ≥ , then

Z̄p(K , L) =
(

V (Rn+p(K , L,λn))
(n + p)V (L)

)/p

�p
(
Rn+p(K , L,λn)

)
. (.)

Proof From (.), (.), the Fubini theorem, (.), and (.), passing to spherical coordi-
nates we have

hZ̄p(K ,L)(z) =
(


V (K)V (L)

∫
K

∫
L

∣∣〈z, (x – y)
〉∣∣p dx dy

)/p

=
(


V (K)V (L)

∫
K

∫
Sn–

∫ ρL(y,v)



∣∣〈z, v〉∣∣prn+p– dr dv dy
)/p

=
(


(n + p)V (K)V (L)

∫
Sn–

∣∣〈z, v〉∣∣p
∫

K
ρL(y, v)n+p dy dv

)/p

(.)

=
(


(n + p)V (L)

∫
Sn–

∣∣〈z, v〉∣∣p
ρRn+p(K ,L,λn)(v)n+p dv

)/p

=
(

V (Rn+p(K , L,λn))
(n + p)V (L)

)/p

h�p(Rn+p(K ,L,λn))(z). (.)
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Combining with (.), we have

Z̄p(K , L) =
(

V (Rn+p(K , L,λn))
(n + p)V (L)

)/p

�p
(
Rn+p(K , L,λn)

)
. �

Together (.) with (.), if K ⊆ L, then

hZ̄p(K ,L)(z) =
(


V (K)V (L)

∫
Sn–

∣∣〈z, u〉∣∣p
∫ ∞


AK ,L(ru)rn+p– dr du

)/p

. (.)

Let

CK ,L(n, p) =
(

nn+p(n + p)β(n + p, n)V (R(K , L,λn))
V (L)

)/p

.

Property . Let K , L ∈Kn and p ≥ . If K ⊆ L,then

Z̄p(K , L) ⊆ CK ,L(n, p)�p
(
R(K , L,λn)

)
.

Proof By (.), (.), (.), (.), and (.), we have

hZ̄p(K ,L)(u) =
(


V (K)V (L)

∫
Sn–

∣∣〈u, v〉∣∣p
∫ ∞


AK ,L(ru)rn+p– dr dv

)/p

≤
(

nn+pβ(n + p, n)
V (K)n+pV (L)

∫
Sn–

∣∣〈u, v〉∣∣p
(∫ ∞


AK ,L(r, v) dr

)n+p)/p

=
(

nn+pβ(n + p, n)
V (L)

∫
Sn–

∣∣〈u, v〉∣∣p
(


V (K)

∫
K

ρL(x, v) dx
)n+p)/p

=
(

nn+pβ(n + p, n)
V (L)

∫
Sn–

∣∣〈u, v〉∣∣p
ρ

n+p
R(K ,L,λn)(v) dv

)/p

= CK ,L(n, p)h�(R(K ,L,λn))(u).

This implies hZ̄p(K ,L)(u) ≤ CK ,L(n, p)h�p(R(K ,L,λn))(u). �

The following property will be used to prove that Z̄p : Kn ×Kn →Kn is continuous.

Property . If p ≥ , Ki, Li ∈Kn and Ki → K ∈Kn, Li → L ∈Kn, then

Z̄p(Ki, Li) → Z̄p(K , L).

Proof Since Ki → K , {Ki} are uniformly bounded. Thus there is RK > , such that Ki ⊆
RK Bn. Similarly, Li ⊆ RLBn with RL > . Taking (.) together with Minkowski’s inequality,
it follows that for u ∈ Sn–

∣∣hZ̄p(Ki ,Li)(u) – hZ̄p(K ,L)(u)
∣∣

=
∣∣∣∣
(


V (Ki)V (Li)

∫
RK Bn

∫
RLBn

Ki (x)Li (y)
∣∣〈u, (x – y)

〉∣∣p dx dy
)/p
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–
(


V (K)V (L)

∫
RK Bn

∫
RLBn

K (x)L(y)
∣∣〈u, (x – y)

〉∣∣p dx dy
)/p∣∣∣∣

≤
(


V (Ki)V (Li)

∫
RK Bn

∫
RLBn

∣∣Ki (x)Li (y) – K (x)L(y)
∣∣∣∣〈u, (x – y)

〉∣∣p dx dy
)/p

+
∣∣∣∣
((


V (Ki)V (Li)

–


V (K)V (L)

)∫
RK Bn

∫
RLBn

K (x)L(y)
∣∣〈u, (x – y)

〉∣∣p dx dy
)/p∣∣∣∣.

This means hZ̄p(Ki ,Li)(u) → hZ̄p(K ,L)(u), which is the desired result. �

The following property will prove that Z̄p : Kn ×Kn →Kn is GL(n) covariant.

Property . If p ≥ , K ∈Kn and T ∈ GL(n), then

Z̄p(TK , TL) = T
(
Z̄p(K , L)

)
.

Proof Combining (.) with the substitution x = Tx, y = Ty, we obtain

hZ̄p(TK ,TL)(z) =
(


V (TK)V (TL)

∫
TK

∫
TL

∣∣〈z, (x – y)
〉∣∣p dx dy

)/p

=
(


V (TK)V (TL)

|T |
∫

K

∫
L

∣∣〈z, (Tx – Ty)
〉∣∣p dx dy

)/p

=
(


V (K)V (L)

∫
K

∫
L

∣∣〈Ttz, (x – y)
〉∣∣p dx dy

)/p

= hZ̄p(K ,L)
(
Ttz

)

= hTZ̄p(K ,L)(z).

Namely, Z̄p(TK , TL) = T(Z̄p(K , L)). �

4 Proof of main result
If u ∈ Sn–, then we denote by u⊥ the (n – )-dimensional subspace orthogonal to u, by lu

the line through o parallel to u, and by lu(x) the line through the point x parallel to u. We
denote by Ku the image of the orthogonal projection of K onto u⊥ for a convex body K .
Let lu(K ; y′) : Ku → R and lu(K ; y′) : Ku → R for the overgraph and undergraph functions
of K in the direction u; namely,

K =
{

y′ + tu : –lu
(
K ; y′) ≤ t ≤ lu

(
K ; y′) for y′ ∈ Ku

}
.

Thus, the overgraph and undergraph functions of the Steiner symmetrical Su of K ∈Kn

in direction u are defined by

lu
(
SuK ; y′) = lu

(
SuK ; y′) =



(
lu

(
K ; y′) + lu

(
K ; y′)).

For y′ ∈ Ku, my′ = my′ (u) denotes my′ (u) = 
 (lu(K ; y′) – lu(K ; y′)). Let the midpoint of the

chord K ∩ lu(y′) be y′ + my′ (u)u, note that lu(y′) is the line through y′ parallel to u, and
let the length |K ∩ lu(y′)| of this chord be σy′ = σy′ (u). For x = (x′, s) ∈ R

n– × R, we write
hK (x′, s) throughout this section.
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Lemma . ([]) If K ∈Kn
o , u ∈ Sn– and y′ ∈ relint Ku, then

lu
(
K ; y′) = min

x′∈u⊥
{

hK
(
x′, 

)
–

〈
x′, y′〉}, (.)

lu
(
K ; y′) = min

x′∈u⊥
{

hK
(
x′, –

)
–

〈
x′, y′〉}. (.)

Lemma . If K ∈Kn, p ≥ , u ∈ Sn–, and z′
, z′

 ∈ u⊥, then

hZ̄p(SuK ,SuL)

(
z′

 + z′



, 

)
≤ 


hZ̄p(K ,L)

(
z′

, 
)

+



hZ̄p(K ,L)
(
z′

, –
)
, (.)

hZ̄p(SuK ,SuL)

(
z′

 + z′



, –

)
≤ 


hZ̄p(K ,L)

(
z′

, 
)

+



hZ̄p(K ,L)
(
z′

, –
)
. (.)

Equality in (.) or (.) implies that all of the chords of K and L parallel to u have mid-
points that lie in a hyperplane, respectively.

Proof We only prove (.). Inequality (.) can be established in the same way. It follows
from the definition of the Lp-mixed mean zonoid that

hZ̄p(K ,L)
(
z′

, 
)

=
(


V (K)V (L)

∫
K

∫
L

∣∣〈(z′
, 

)
, (x – y)

〉∣∣p dx dy
)/p

=
(


V (K)V (L)

×
∫

Ku

∫ my′ +
σy′


my′ –
σy′


∫
Lu

∫ mx′ +
σx′



mx′ –
σx′



∣∣〈(z′
, 

)
,
((

x′, s
)

–
(
y′, s

))〉∣∣p ds dx′ ds dy′
)/p

=
(


V (K)V (L)

∫
Ku

∫ my′ +
σy′


my′ –
σy′


∫
Lu

∫ mx′ +
σx′



mx′ –
σx′



∣∣〈z′
,

(
x′ – y′)〉 + s – s

∣∣p ds dx′ ds dy′
)/p

=
(


V (K)V (L)

×
∫

Ku

∫ σy′


–
σy′


∫
Lu

∫ σx′


–
σx′



∣∣〈z′
,

(
x′ – y′)〉 + t – t + mx′ – my′

∣∣p dt dx′ dt dy′
)/p

=
(


V (SuK)V (SuL)

∫
SuK

∫
SuL

∣∣〈z′
,

(
x′ – y′)〉 + t – t + mx′ – my′

∣∣p dt dx′ dt dy′
)/p

,

by t = –mx′ + s, t = –my′ + s.

hZ̄p(K ,L)
(
z′

, –
)

=
(


V (K)V (L)

∫
K

∫
L

∣∣〈(z′
, –

)
, (x – y)

〉∣∣p dx dy
)/p

=
(


V (K)V (L)
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×
∫

Ku

∫ my′ +
σy′


my′ –
σy′


∫
Lu

∫ mx′ +
σx′



mx′ –
σx′



∣∣〈(z′
, –

)
,
((

x′, s
)

–
(
y′, s

))〉∣∣p ds dx′ ds dy′
)/p

=
(


V (K)V (L)

∫
Ku

∫ my′ +
σy′


my′ –
σy′


∫
Lu

∫ mx′ +
σx′



mx′ –
σx′



∣∣〈z′
,

(
x′ – y′)〉 – s + s

∣∣p ds dx′ ds dy′
)/p

=
(


V (K)V (L)

×
∫

Ku

∫ σy′


–
σy′


∫
Lu

∫ σx′


–
σx′



∣∣〈z′
,

(
x′ – y′)〉 + t – t – mx′ + my′

∣∣p dt dx′ dt dy′
)/p

=
(


V (SuK)V (SuL)

∫
SuK

∫
SuL

∣∣〈z′
,

(
x′ – y′)〉 + t – t – mx′ + my′

∣∣p dt dx′ dt dy′
)/p

.

Let t = mx′ – s, t = my′ – s. Thus, combining with Minkowski’s inequality we have

hZ̄p(SuK ,SuL)

(
z′

 + z′



, 

)

= 
(


V (SuK)V (SuL)

∫
SuK

∫
SuL

∣∣∣∣
〈(

z′
 + z′




, 
)

, (x – y)
〉∣∣∣∣

p

dx dy
)/p

=
(


V (SuK)V (SuL)

∫
SuK

∫
SuL

∣∣〈(z′
 + z′


)
,
(
x′ – y′)〉 + t – t

∣∣p dt dx′ dt dy′
)/p

≤
(


V (SuK)V (SuL)

∫
SuK

∫
SuL

∣∣〈z′
,

(
x′ – y′)〉 + t – t + mx′ – my′

∣∣p dt dx′ dt dy′
)/p

+
(


V (SuK)V (SuL)

×
∫

SuK

∫
SuL

∣∣〈z′
,

(
x′ – y′)〉 + t – t – mx′ + my′

∣∣p dt dx′ dt dy′
)/p

= hZ̄p(K ,L)
(
z′

, 
)

+ hZ̄p(K ,L)
(
z′

, –
)
.

From the condition of inequality in Minkowski’s inequality, we know that equality in
(.) or (.) holds if and only if for λ ≥ , we have

〈
z′

,
(
x′ – y′)〉 + t – t + mx′ – my′ = λ

(〈
z′

,
(
x′ – y′)〉 + t – t – mx′ + my′

)
,

for all (x′
, t) ∈ K , (y′

, t) ∈ L. This is equivalent to

〈(
z′

 – λz′

)
,
(
x′ – y′)〉 + ( + λ)(mx′ – my′ ) = (λ – )(t – t), (.)

for all (x′
, t) ∈ K , (y′

, t) ∈ L.
We fix x′, y′. If change t, t in (.) with (x′

, t) ∈ K , (y′
, t) ∈ L, then the left of (.) will

not change; thus we obtain λ = . Namely, equality in (.) or (.) implies all of the chords
of K and L parallel to u have midpoints that lie in a hyperplane, respectively. �

Lemma . If K , L ∈Kn, p ≥  and u ∈ Sn–, then

Z̄p(SuK , SuL) ⊆ Su
(
Z̄p(K , L)

)
. (.)
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If the inclusion is an identity, then all of the chords of K and L parallel to u have midpoints
that lie in a hyperplane, respectively.

Proof Let y′ ∈ relint(Z̄p(K , L))u. Lemma . means that there exist z′
 = z′

(y′) and z′
 = z′

(y′)
in u⊥ with

lu
(
Z̄p(K , L); y′) = hZ̄p(K ,L)

(
z′

, 
)

–
〈
z′

, y′〉,
lu

(
Z̄p(K , L); y′) = hZ̄p(K ,L)

(
z′

, –
)

–
〈
z′

, y′〉.
Combining (.), (.), (.), and (.), it follows that

lu
(
Su

(
Z̄p(K , L)

)
; y′) =




lu
(
Z̄p(K , L); y′) +




lu
(
Z̄p(K , L); y′)

=


(
hZ̄p(K ,L)

(
z′

, 
)

–
〈
z′

, y′〉) +


(
hZ̄p(K ,L)

(
z′

, –
)

–
〈
z′

, y′〉)

=



hZ̄p(K ,L)
(
z′

, 
)

+



hZ̄p(K ,L)
(
z′

, –
)

–
〈(




z′
 +




z′


)
, y′

〉

≥ hZ̄p(Su(K ,L))

(
z′

 + z′



, 

)
–

〈(



z′
 +




z′


)
, y′

〉

≥ min
x′∈u⊥

{
hZ̄p(SuK ,SuL)

(
x′, 

)
–

〈
x′, y′〉}

= lu
(
Z̄p(SuK , SuL); y′)

and

lu
(
Su

(
Z̄p(K , L)

)
; y′) =




lu
(
Z̄p(K , L); y′) +




lu
(
Z̄p(K , L); y′)

=


(
hZ̄p(K ,L)

(
z′

, 
)

–
〈
z′

, y′〉) +


(
hZ̄p(K ,L)

(
z′

, –
)

–
〈
z′

, y′〉)

=



hZ̄p(K ,L)
(
z′

, 
)

+



hZ̄p(K ,L)
(
z′

, –
)

–
〈(




z′
 +




z′


)
, y′

〉

≥ hZ̄p(Su(K ,L))

(
z′

 + z′



, –

)
–

〈(



z′
 +




z′


)
, y′

〉

≥ min
x′∈u⊥

{
hZ̄p(SuK ,SuL)

(
x′, –

)
–

〈
x′, y′〉}

= lu
(
Z̄p(SuK , SuL); y′).

Let the inclusion be an identity. Then equality in both (.) and (.) holds; thus all of
the chords of K and L parallel to u have midpoints that lie in a hyperplane, respectively.

�

Now, we show that Z̄p(K , L) contains the origin in its interior.

Lemma . Suppose that K , L ∈Kn, p ≥ . Then there exists c >  such that
∫

K

∫
L

∣∣〈u, (x – y)
〉∣∣p dx dy ≥ c,

for all u ∈ Sn–.
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Proof Given u ∈ Sn–. Taking the Euclidean n-balls B ⊆ K and B ⊆ L such that x – y is
not orthogonal to u for all (x, y) ∈ B × B, then it follows from the continuity that the
above result holds. �

Proof of Theorem . It follows from the standard Steiner symmetrization argument that
there exists a sequence of directions {ui} with the sequences of convex bodies {Ki} and
{Li}, defined by

Ki+ = Sui Ki, K = K ,

and

Li+ = Sui Li, L = L,

converge to BK and BL, respectively. Note that BK (BL) is the n-ball, where V (K) =
V (BK )(V (L) = V (BL)).

By Property . and Lemma ., we have

V
(
Z̄p(Ki, Li)

)
= V

(
Z̄p(Sui– Ki–, Sui– Li–)

)

≤ V
(
Z̄p(Ki–, Li–)

) ≤ · · ·
≤ V

(
Z̄p(K , L)

)
. (.)

From Lemma ., Lemma ., (.), and the definitions of BK and BL, we get

V
(
Z̄p(K , L)

) ≥ V
(
Z̄p(BK , BL)

)
.

Since K and L are the ellipsoids, it follows from Property . that

V
(
Z̄p(K , L)

)
= V

(
Z̄p(BK , BL)

)
.

Conversely, let V (Z̄p(K , L)) = V (Z̄p(BK , BL)). Clearly, for all u ∈ Sn– the inclusion in (.)
is the identity. Thus we see that all of the chords of K and L parallel to u have midpoints
that lie in a hyperplane, respectively, for all u ∈ Sn–, namely, K and L are ellipsoids.

This implies

V
(
Z̄p(K , L)

) ≥ V
(
Z̄p(BK , BL)

)
, (.)

where V (BK ) = V (K) and V (BL) = V (L), and equality holds if and only if K and L are dilated
ellipsoids having the same midpoints.

Furthermore, we know that h(Z̄p(BK , BL), u) is a constant independent of u. Thus
Z̄p(BK , BL) is an n-ball. Thus one has

(
V (Z̄p(BK , BL))

ωn

)/n

=
(


V (BK )V (BL)

∫
BK

∫
BL

∣∣〈u, (x – y)
〉∣∣p dx dy

)/p

. (.)



Ma et al. Journal of Inequalities and Applications  (2016) 2016:223 Page 12 of 14

The following formula is well known:

∫
Sn–

∣∣〈u, (x – y)
〉∣∣p du =

(n + p)ωn+p

ωωp–
|x – y|p. (.)

Together (.) with (.), it follows that

(
V (Z̄p(BK , BL))

ωn

)/n

=
(

(n + p)ωn+p

nωωp–ωnV (BK )V (BL)

∫
BK

∫
BL

|x – y|p dx dy
)/p

. (.)

Suppose that rBK and rBL denote radii of the balls BK and BL, respectively. Without loss of
generality, let BK ⊆ BL. For all u ∈ Sn–, it is obvious that ρDBK (u) = rBK and ρDBL (u) = rBL .
It follows from the spherical polar coordinates, (.), the Fubini theorem, and (.) that

∫
BK

∫
BL

|x – y|p dx dy =
∫

BK

∫
Sn–

∫ ρBL (y,u)


rn+p– dr du dy

=


n + p

∫
Sn–

∫
BK

ρBL (y, u)n+p dy du

=
∫

Sn–

∫ ρDBK (u)


V

(
BK ∩ (BL + tu)

)
tn+p– dt du

=
∫

Sn–

∫ rBK


V

(
BK ∩ (BL + tu)

)
tn+p– dt du. (.)

Since gBK ,BL (tu)/n = V (BK ∩ (BL + tu))/n is concave on DBK , it follows from Lemma .
that

V
(
BK ∩ (BL + tu)

) ≥ V (BK )
(

 –
t

rBK

)n

for  ≤ t ≤ rBK , (.)

with equality if and only if BK = BL.
Taking (.) together with (.), it follows that

∫
BK

∫
BL

|x – y|p dx dy ≥ nωn(rBK )n+pV (K)
∫ 


yn+p–( – y)n dy

= nωn(rBK )n+pβ(n + p, n + )V (K)

= n+pnω
– p

n
n β(n + p, n + )V (K)

n+p
n . (.)

Combining (.) with (.), we have

(
V (Z̄p(BK , BL))

ωn

)/n

≥
(

n+p(n + p)ωn+pβ(n + p, n + )

ωωp–ω
n+p

n
n

)/p(V (K)
n+p

n

V (L)

)/p

. (.)

From (.) and (.), this yields

V
(
Z̄p(K , L)

) ≥ C(n, p)V (K)
n+p

p V (L)– n
p , (.)

with equality if and only if K = L is an ellipsoid. �
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Proof of Corollary . Let p = . From the Lp-Minkowski inequality (.), we have

V (K)n–V (L) ≥ Ṽ(K , L)n.

Exchange the order of K and L, then

V (L)n–V (K) ≥ Ṽ(L, K)n,

namely,

V (K)
V (L)

≥
(

Ṽ(L, K)
V (L)

)n

, (.)

with equality if and only if K and L are dilates.
On the other hand, from inequality (.), we have

(
V (Z̄(K , L))

V (K)

) 
n

≥ (
C(n, )

) 
n V (K)

V (L)
, (.)

with equality if and only if K = L is an ellipsoid.
Taking (.) together with (.), it follows that

(
V (Z̄(K , L))

V (K)

) 
n

≥ (
C(n, )

) 
n

(
Ṽ(L, K)

V (L)

)n

.

Together with the equality conditions of inequalities (.) and (.), we see with equal-
ity in (.) if and only if K = L is an ellipsoid. �
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