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Abstract
In this paper, we first study the deterministic Swift-Hohenberg equation on
a bounded domain. After obtaining some a priori estimates by the uniform Gronwall
inequality, we prove the existence of an attractor by the Sobolev compact
embeddings. Then, we consider the stochastic Swift-Hohenberg equation driven by
additive noise on an unbounded domain and prove that the random dynamical
system is asymptotically compact by uniform a priori estimates for the far-field values
of the solution, which implies the existence of a random attractor for the random
dynamical system associated with the stochastic Swift-Hohenberg equation.
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1 Introduction
The Swift-Hohenberg (SH) equation describes the pattern formation in fluid layers con-
fined between horizontal well-conducting boundaries, which was proposed by Swift and
Hohenberg [] as a model for the convective instability in the Rayleigh-Bénard convection.
The localized one-dimensional version of the model is as follows:

ut = μu – ( + ∂xx)u – u. (.)

There have been some results for the local one-dimensional SH equation [–]. The Swift-
Hohenberg equation has featured in different branches of physics, ranging from hydrody-
namics to nonlinear optics, such as the Taylor-Couette flow [, ], study of lasers [], and
so on. The dynamical properties of the Swift-Hohenberg equation, such as the existence
of a global attractor, are important for the studies of pattern formation, which ensure the
stability of pattern formation and provide a mathematical foundation for the study of pat-
tern dynamics. The authors considered the asymptotic dynamical difference between the
nonlocal and local Swift-Hohenberg models in []. Recently, the global attractor, the sta-
bility of stationary solution, and pattern selections of the modified local Swift-Hohenberg
equation have been investigated; see the references [, ].
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After consulting the literature, we have found that there are few results about the exis-
tence of a global attractor for the local Swift-Hohenberg equation. Therefore, the existence
of a global attractor for the local Swift-Hohenberg equation on a bounded domain will be
given in Section .

In fact, when the distance from the change of stability is sufficiently small, or Rayleigh
number is near thermal equilibrium, the influence of small noise or molecular noise is
detected in various convection experiments [–]. It is difficult to stabilize the control
parameters (e.g. temperature in the Rayleigh-Bénard convection) to the precision of the
noise strength, which is extremely small in the case of thermal fluctuations. When the
effects of thermal fluctuations on the onset of convective motion into the Bénard system
are considered, the local stochastic Swift-Hohenberg equation with additive noise [] is
proposed:

ut = μu – ( + ∂xx)u – u + σξ . (.)

Furthermore, it is also allowed to consider the effects of small possible noise from μ. So a
local stochastic Swift-Hohenberg equation with multiplicative noise [] arises:

ut = μu – ( + ∂xx)u – u + σu ◦ ξ , (.)

where σ > , and ξ = dW
dt is the generalized derivative of a real-valued one-dimensional

Brownian motion W (t).
There are few results on the dynamical behavior of the stochastic Swift-Hohenberg

equation. Recently, some authors [] proved the dynamics and invariant manifolds for a
nonlocal stochastic Swift-Hohenberg equation. Here, the existence of a global random at-
tractor for the stochastic Swift-Hohenberg equation with additive noise on an unbounded
domain is considered. This is the main motivation of this paper. The Sobolev embeddings
are no longer compact on unbounded domains. In order to overcome this difficulty, we
use the method developed in [] to prove the existence of a random attractor in the en-
tire space. Specifically, the stochastic equation is transformed into the corresponding de-
terministic equation with random parameter by making use of the Ornstein-Uhlenbeck
transform, and the asymptotic compactness of the random dynamical system is proved
by using uniform a priori estimates for the far-field values of the solution via a truncation
function.

Remark . For bounded case, “a” can be an arbitrary constant. After obtaining some a
priori estimates of the solution, we can prove the existence of a global attractor by applying
the compact Sobolev embeddings. In the case of unbounded domain, since the Sobolev
inequality ‖u‖L ≤ C‖u‖L is invalid, we need the additional condition a >  to prove the
existence of a random attractor using the current method.

In this paper, we consider the two-dimensional stochastic Swift-Hohenberg equation
with additive noise

du +
(
�u + �u + au + u)dt = �(x) dω(t), t ∈ R+, (.)
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with initial condition

u(x, ) = u(x), (.)

The paper is organized as follows. In Section , we recall some definitions and known re-
sults concerning global random attractors. In Section , we introduce the O-U transformer
and transform (.)-(.) into a continuous stochastic dynamical system. In Section , we
prove the existence of a global attractor for the corresponding deterministic dynamical
system on an bounded domain. In Section , we obtain some uniform a priori estimates
for the far-field values of the solution by the technique of a cut-off function. In Section ,
we prove the asymptotic compactness of the random dynamical system and thus deduce
the existence of a global random attractor for the stochastic Swift-Hohenberg equation.

2 Preliminaries
We recall some basic concepts related to random attractors. Let (X,‖ · ‖X) be a separable
Hilbert space with Borel σ -algebra B(X) endowed with the distance d, and let (�,F ,P)
be a probability space. We also consider the mappings S(t, s;ω) : X → X, –∞ < s ≤ t < ∞,
parameterized by ω. There exists a group θt , t ∈ R, of measure-preserving transformations
of (�,F ,P) such that, for all s < t and x ∈ X,

S(t, s;ω)x = S(t – s, ; θsω)x, P-a.e.,

where ω(t) is from the two-sided Wiener space C(R; X) of continuous functions with
values in a Banach space X, equal to  at t = . In this case, θt is defined as

(θtω)(s) = ω(t + s) – ω(t), s, t ∈R.

Definition . Let t ∈R and ω ∈ �. A stochastic dynamical system with time t on a com-
plete separable metric space (X, d) with Borel σ -algebra B over {θt} on (�,F ,P) is a mea-
surable map

S(t, s;ω) : X → X, –∞ < s ≤ t < ∞,

such that S(, ;ω) = id and S(t, ;ω) = S(t, s;ω)S(s, ;ω) for all t, s ∈R and all ω ∈ �.

Definition . Given t ∈ R and ω ∈ �, K(t,ω) ⊂ X is called an attracting set if for all
bounded sets B ⊂ X,

d
(
S(t, s;ω)B, K(t,ω)

) → , s → –∞,

where d(A, B) is the semidistance defined by

d(A, B) = sup
x∈A

inf
y∈B

d(x, y).

Definition . A family A(ω) (ω ∈ �) of the closed subsets of X is measurable if for all
x ∈ X, the mapping ω 	→ d(A(ω), x) is measurable.
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Definition . Define the random omega limit set of a bounded set B ⊂ X at time t as

A(B, t;ω) =
⋂

T<t

⋃

s<T

S(t, s;ω)B.

Definition . Let S(t, s;ω)t≥s,ω∈� be a stochastic dynamical system, and let A(ω) be a
stochastic set satisfying the following conditions:

() It is the minimal closed set such that, for t ∈R and B ⊂ X ,

d
(
S(t, s;ω)B, A(ω)

) → , s → –∞.

Then A(ω) is said to attract B (B is a deterministic set).
() A(ω) is the largest compact measurable set that is invariant in sense that

S(t, s;ω)A(θsω) = A(θtω), s ≤ t.

Then A(ω) is said to be the random attractor.

Theorem . (see [, ]) Let S(t, s;ω)t≥s,ω∈� be a stochastic dynamical system satisfying
the following conditions:

(i) S(t, r;ω)S(r, s;ω)x = S(t, s;ω)x for all s ≤ r ≤ t and x ∈ X ,
(ii) S(t, s;ω) is continuous in X for all s ≤ t,

(iii) for all s < t and x ∈ X , the mapping ω 	→ S(t, s;ω)x is measurable from (�,F ) to
(X,B(X)),

(iv) for all t ∈R, x ∈ X , and P-a.e. ω, the mapping s 	→ S(t, s;ω)x is right continuous at
any point.

Assume that there exists a group θt , t ∈R, of measure-preserving mappings such that

S(t, s;ω)x = S(t – s, ; θsω)x, P-a.e.

and for P-a.e. ω ∈ �, there exists a compact attracting set K(ω) at time . We set 
(ω) =
⋃

B⊂X A(B,ω), where the union is taken over all bounded subsets of X, and A(B,ω) is given
by

A(B, ;ω) =
⋂

T<

⋃

s<T

S(, s;ω)B.

Then 
(ω) is a random attractor.

Theorem . (Uniform Gronwall lemma; see []) Let g, h, y be three positive locally in-
tegrable functions on (t,∞) satisfying

y′(t) ≤ gy + h for t ≥ t,
∫ t+r

t
g(s) ds ≤ a,

∫ t+r

t
h(s) ds ≤ a,

∫ t+r

t
y(s) ds ≤ a for all t ≥ t,
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where r, a, a, a are positive constants. Then

y(t + r) ≤
(

a

r
+ a

)
exp(a) for all t ≥ t.

For the convenience of the following contents, we introduce some functional spaces and
some notations.

Lq(D) is the Lebesgue space with norm ‖ · ‖Lq . The inner product on L(D) is denoted
by

(f , g) =
∫

D
fg dx.

Particularly, ‖u‖L∞ = ess supx∈D |u(x)| for q = ∞.
Hσ (D) is the Sobolev space {u ∈ L(D), Dku ∈ L(D), k ≤ σ } with norm ‖ · ‖Hσ . If D = R,

then we use the same notations. In particular, H
(D) is the Sobolev space {u ∈ L(D), Dku ∈

L(D), k ≤ ,�u|∂D = }.
C (I, X) is the space of continuous functions from the interval I to X.
For notational simplicity, C is a generic constant and may assume various values from

line to line.

3 The hydrodynamical equation with additive noise
Here we show that there is a continuous random dynamical system (S(t, s;ω); L(R)) gen-
erated by the stochastic local Swift-Hohenberg equation on R

du +
(
�u + �u + au + u)dt =

m∑

i=

�i(x) dωi(t) (.)

with the initial condition

u(x, s) = us(x), (.)

where �i(x) is a given smooth enough function on R. We need to convert the stochastic
equation with random additive term into a deterministic equation with random parame-
ter.

Now, we introduce the Ornstein-Uhlenbeck process

zi(t) =
∫ t

–∞
e–A(t–s) dωi(s),

where A = � is a positive operator. It is well known and easy to check that zi(·) is a sta-
tionary process with P-a.e. continuous trajectories.

Putting z(t) =
∑m

i= �i(x)zi(t), we have

dz + �z dt =
m∑

i=

�i(x) dωi(t).
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In addition, for P-a.e. ω ∈ �, we have that

m∑

i=

(∣∣zi(t)
∣∣ +

∣∣zi(t)
∣∣p) (.)

at most polynomically grows as t → –∞, where p ≥  (see []).
To study (.)-(.), it is usual to translate the known v = u – z (z has the above form)

and obtain the following equation:

dv
dt

+ �v + �v + �z + av + az + v + z + vz + vz = , (.)

v(s,ω) = vs = us – z(s,ω). (.)

By the Galerkin method one can show that, for all vs ∈ L(R), system (.)-(.) has a
unique solution v ∈ C (s, T ; L(R)) ∩ L(s, T ; H(R)) with v(s) = vs for P-a.e. ω ∈ �. It is
obvious that there is a continuous stochastic dynamical system (S(t, s;ω); L(R)) generated
by the stochastic local Swift-Hohenberg equation with additive noise.

4 Global attractor on a bounded domain
For completeness, we first consider the following initial-boundary value problem for the
deterministic local Swift-Hohenberg equation on a bounded domain:

ut + �u + �u + au + u = , x ∈ D, t ∈ R+, (.)

with initial condition

u(x, ) = u(x), x ∈ D, (.)

and boundary conditions

u|∂D = �u|∂D = , x ∈ ∂D, (.)

where D is an open connected bounded domain in R, and a is an arbitrary constant.

Theorem . For any u(x) ∈ H
(D), there exists a unique, globally defined solution

V (t)u = σ (u, t) in H
(D) of system (.)-(.), and V (t) is a semigroup on H

(D). More-
over, the semigroup is point dissipative in H

(D) and compact in H
(D) for t > . Hence,

system (.)-(.) has a global attractor in H
(D).

Proof () Taking the inner product of (.) with u in H , we can obtain that




d
dt

∥
∥u(t)

∥
∥

L + ‖�u‖
L – ‖∇u‖

L + a‖u‖
L + ‖u‖

L = . (.)

Adding the term ‖u(t)‖
L to the above equation, we have




d
dt

∥
∥u(t)

∥
∥

L +
∥
∥u(t)

∥
∥

L + ‖�u‖
L + ‖u‖

L = (–a + )‖u‖
L + ‖∇u‖

L . (.)
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For the first term on the right-hand side of (.), using the inequality ‖u‖L ≤ C‖u‖L and
ε-Young inequality, we can easily deduce that

(–a + )‖u‖
L ≤ C

(|a| + 
)‖u‖

L ≤ 

‖u‖

L + C.

For the second term on the right-hand side of (.), we have the estimate

‖∇u‖
L ≤ C‖u‖ 


L‖�u‖ 


L

≤ 

‖u‖

L + C‖�u‖L

≤ 

‖u‖

L +



‖�u‖
L + C,

where we applied the Gagliardo-Nirenberg inequality

‖∇u‖L ≤ C‖u‖ 

L‖�u‖ 


L

and the ε-Young inequality.
Combining the above consequences, we get the inequality

d
dt

∥
∥u(t)

∥
∥

L + 
∥
∥u(t)

∥
∥

L + ‖�u‖
L ≤ C. (.)

By the Gronwall inequality, we have

∥∥u(t)
∥∥

L ≤ e–t∥∥u()
∥∥

L + C. (.)

Now we integrate with respect to s from t to t +  on the both sides of (.) and deduce
that

∥∥u(t + )
∥∥

L +
∫ t+

t

∥∥�u(s)
∥∥

L ds ≤ C +
∥∥u(t)

∥∥
L .

By (.) we have

∫ t+

t

∥∥�u(s)
∥∥

L ds ≤ C.

() Taking the inner product of (.) with �u in H , we have




d
dt

∥
∥�u(t)

∥
∥

L +
∥
∥�u

∥
∥

L + 
(
�u,�u

)
+ a‖�u‖

L +
(
u,�u

)
= . (.)

Using the Hölder inequality and ε-Young inequality, we then easily obtain


∣
∣(�u,�u

)∣∣ ≤ ‖�u‖L
∥
∥�u

∥
∥

L ≤ ε


∥
∥�u

∥
∥

L +

ε
‖�u‖

L . (.)

For the estimate of (u,�u), by the Gagliardo-Nirenberg inequality

‖u‖L ≤ C‖u‖


L

∥∥�u
∥∥



L ,
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the Hölder inequality, and ε-Young inequality, we obtain the estimate

∣
∣(u,�u

)∣∣ ≤ ‖u‖
L

∥
∥�u

∥
∥

L ≤ C‖u‖ 

L

∥
∥�u

∥
∥



L ≤ ε

∥
∥�u

∥
∥

L + C, (.)

where the last inequality is owing to the boundedness of ‖u‖L .
Plugging (.)-(.) into (.) yields

d
dt

∥∥�u(t)
∥∥

L + 
∥∥�u

∥∥
L + a‖�u‖

L ≤ 
∣∣(�u,�u

)∣∣ + 
∣∣(u,�u

)∣∣

≤ ε
∥
∥�u

∥
∥

L +

ε
‖�u‖

L + C,

Letting ε = 
 , we can easily write it as

d
dt

∥
∥�u(t)

∥
∥

L + (a – )‖�u‖
L ≤ C. (.)

By (.) and Theorem . we get that

∫ t+

t
g(s) ds =

∫ t+

t
(a – ) ds = a – ,

∫ t+

t
C ds = C,

∫ t+

t

∥
∥�u(s)

∥
∥

L ds ≤ C.

Then

∥
∥�u(t + )

∥
∥

L ≤ C. (.)

Hence, (.) provides a uniform bound for ‖�u(t + )‖L . Thus, the existence of an ab-
sorbing ball in the H

(D) is proved. This implies that V (t) is point dissipative in H
(D).

Similarly to [], we can obtain that V (t) is compact for t > ; for details, we refer to Theo-
rem . in []. Hence, Theorem . implies the existence of a global attractor for problem
(.)-(.) in the space H

(D). �

5 Uniform estimates on an unbounded domain
In this section, we derive uniform estimates of a solution for system (.)-(.) on R for
the purpose of proving the existence of a bounded random absorbing set and the asymp-
totic compactness of the stochastic dynamical system associated with the equation. In
particular, we show that the tails of the solution, that is, the norms of solutions evaluated
at large values of |x|, are uniformly small as t → .

Lemma . Let �i(x) ∈ H(R), a > , v(t) be the solution of system (.)-(.). Then, for
any given η >  and us ∈ H satisfying ‖us‖ ≤ η, there exist random radii r(w), r(w), r(w)
and s(w) ≤ – such that for all s ≤ s(w), the following inequalities hold P-a.e.:

∥∥v(t)
∥∥ ≤ r(w),

∥∥u(t)
∥∥ ≤ r(w),

∫ 

–

∥∥�v(τ )
∥∥

L dτ ≤ r(w).
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Proof Taking the inner product of (.) with v(t) in H , we can obtain that




d
dt

∥∥v(t)
∥∥

L + ‖�v‖
L + (�v, v) + (�z, v) + a‖v‖

L + a(z, v)

+ ‖v‖
L +

(
z, v

)
+

(
vz, v

)
+

(
vz, v

)
= . (.)

Applying the Hölder inequality and ε-Young inequality, we have

∣∣(�v, v)
∣∣ ≤ ‖�v‖L‖v‖L ≤ 


‖�v‖

L + ‖v‖
L .

Utilizing similar arguments, the following three estimates are also valid:

∣∣(�z, v)
∣∣ ≤ ‖�z‖L‖v‖L ≤ 


‖v‖

L + C‖�z‖
L ,

∣∣a(z, v)
∣∣ ≤ a‖z‖L‖v‖L ≤ 


‖v‖

L + C‖z‖
L ,

and

∣∣(z, v
)∣∣ ≤ ‖z‖

L‖v‖L ≤ 

‖v‖

L + C‖z‖
L .

For the last term on the left-hand side of (.), applying the Gagliardo-Nirenberg inequality

‖v‖L ≤ C‖v‖ 

L‖�v‖ 


L ,

the Hölder inequality, and ε-Young inequality, we obtain that

∣∣(vz, v
)∣∣ ≤ ‖v‖

L‖z‖L

≤ C‖v‖ 

L‖�v‖ 


L‖z‖L

≤ 

‖v‖

L + C‖�v‖L‖z‖
L

≤ 

‖v‖

L +



‖�v‖
L + C‖z‖

L .

Because (vz, v) = 
∫
�

vz ≥ , we drop (vz, v) on the left-hand side of (.).
Combining the above estimates, we obtain the inequality

d
dt

‖v‖
L + ‖�v‖

L + (a – )‖v‖
L + ‖v‖

L

≤ C‖�z‖
L + C‖z‖

L + C‖z‖
L + C‖z‖

L .

Let F(t) = C(‖�z‖
L + ‖z‖

L + ‖z‖
L + ‖z‖

L ). Then

d
dt

∥
∥v(t)

∥
∥

L + (a – )
∥
∥v(t)

∥
∥

L + ‖�v‖
L ≤ F(t). (.)
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By the Gronwall inequality for s ≤ – and t ∈ [–, ] we have

∥∥v(t)
∥∥

L ≤ e–(a–)(t–s)∥∥v(s)
∥∥

L +
∫ t

s
F(σ )e–(a–)(t–σ ) dσ

≤ e(a–)(s+)∥∥v(s)
∥∥

L +
∫ 

–∞
F(σ )e(a–)(s+) dσ , (.)

where F(σ ) grows at most polynomially as σ → –∞ P-a.e. Because F(σ ) is multiplied by
a function that decays exponentially, the integral in (.) converges. Then, given η > , we
can choose s(ω) ≤ – depending only on ω such that

e(a–)sη ≤ , ∀s(ω) ≤ –.

We can deduce from (.) that, for all s ≤ s(ω),

∥
∥v(t)

∥
∥

L ≤ r(ω) = e(a–)
(

 + sup
s≤–

e(a–)s∥∥z(s)
∥
∥

)
+

∫ 

–∞
F(σ )e(a–)(s+) dσ .

Similarly, because z(s) grows at polynomially as s → –∞ and z(s) is multiplied by a func-
tion that decays exponentially, the term

sup
s≤–

e(a–)s∥∥z(s)
∥∥

is bounded. Now we integrate with respect to t from – to  on the both sides of (.) and
deduce that

∫ 

–

∥∥�v(t)
∥∥

L dt ≤
∫ 

–
F(t) dt + r(ω) = r(ω).

On the other hand, we can obtain

∥∥u(t)
∥∥

L ≤ 
∥∥v(t)

∥∥
L + 

∥∥z(t)
∥∥

L ≤ r(ω) +  sup
–≤t≤

∥∥z(t)
∥∥

L .

The proof is complete. �

Lemma . Let �i(x) ∈ H(R), a > , v(t) be the solution of system (.)-(.). Then, for
any given η >  and us ∈ H satisfying ‖us‖ ≤ η, there exist random radii r(ω), r(ω), r(ω)
such that the following inequalities hold P-a.e.:

∫ 

–∞
e(a–)τ∥∥v(τ )

∥
∥

L dτ ≤ r(ω),

∫ 

–∞
e(a–)τ∥∥�v(τ )

∥∥
L dτ ≤ r(ω),

∫ 

–∞
e(a–)τ∥∥v(τ )

∥∥
L dτ ≤ r(ω).



Guo et al. Journal of Inequalities and Applications  (2016) 2016:228 Page 11 of 19

Proof Integrating from s (s ≤ –) to  on the both sides of (.), we have

∥
∥v()

∥
∥

L + (a – )
∫ 

s
e(a–)τ∥∥v(τ )

∥
∥

L dτ +
∫ 

s
e(a–)τ (∥∥�v(τ )

∥
∥

L +
∥
∥v(τ )

∥
∥

L
)

dτ

≤
∫ 

s
e(a–)τ F(τ ) dτ + e(a–)s∥∥v(s)

∥
∥

L . (.)

For the first term of the right-hand side of (.), since F(τ ) grows at most polynomially
as τ → –∞ P-a.e., and it is multiplied by a function that decays exponentially, the integral
in (.) converges. Then, for the second term of the right-hand side of (.), there exists a
s(ω) ≤ s(ω) satisfying

e(a–)s∥∥v(s)
∥∥

L ≤ e(a–)sη ≤ .

The proof is complete. �

Lemma . Let �i(x) ∈ H(R), a > , v(t) be the solution of system (.)-(.).Then, for
any given η >  and us ∈ H satisfying ‖us‖ ≤ η, there exist random radii r(ω), r(ω), and
s(ω) ≤ – such that for all s ≤ s(ω), the following inequality holds P-a.e.:

∥
∥�v(t)

∥
∥ ≤ r(ω),

∥
∥�u(t)

∥
∥ ≤ r(ω), t ∈ [–, ].

Proof Taking the inner product of (.) with �v in H , we can obtain




d
dt

∥
∥�v(t)

∥
∥

L +
∥
∥�v

∥
∥

L +
(
�v,�v

)
+

(
�z,�v

)
+ a‖�v‖

L + a
(
z,�v

)

+
(
v,�v

)
+

(
z,�v

)
+

(
vz,�v

)
+

(
vz,�v

)
= . (.)

Applying the Hölder inequality and ε-Young equality, we have

∣∣(�v,�v
)∣∣ ≤ ‖�v‖L

∥∥�v
∥∥

L ≤ 


∥∥�v
∥∥

L + ‖�v‖
L .

It can easily be shown that

∣
∣(�z,�v

)∣∣ ≤ ‖�z‖L
∥
∥�v

∥
∥

L ≤ 

∥
∥�v

∥
∥

L + C‖�z‖
L .

For the estimate of a(z,�v), it is evident that

∣∣a
(
z,�v

)∣∣ ≤ a‖z‖L
∥∥�v

∥∥
L ≤ 


∥∥�v

∥∥
L + C‖z‖

L .

According to the Gagliardo-Nirenberg inequality

‖v‖L ≤ C
∥
∥�v

∥
∥



L‖v‖



L ,

the Hölder inequality, and ε-Young inequality, we deduce that

∣∣(v,�v
)∣∣ ≤ ‖v‖

L

∥∥�v
∥∥

L ≤ C
∥∥�v

∥∥


L‖v‖ 


L ≤ 


∥∥�v

∥∥
L + C,
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where the last inequality is owing to the boundedness of ‖v‖L . It is obvious that

∣
∣(z,�v

)∣∣ ≤ ‖z‖
L

∥
∥�v

∥
∥

L ≤ 

∥
∥�v

∥
∥

L + C‖z‖
L .

By the Gagliardo-Nirenberg inequality

‖v‖L ≤ C‖v‖ 

L

∥
∥�v

∥
∥



L ,

Hölder inequality, and ε-Young inequality, we have the estimate

∣∣(vz,�v
)∣∣ ≤ ‖v‖

L‖z‖L∞
∥∥�v

∥∥
L

≤ C
∥
∥�v

∥
∥



L‖v‖ 


L‖z‖L∞

≤ 

∥
∥�v

∥
∥

L + C‖z‖ 

L∞ ,

where the last inequality is owing to the boundedness of ‖v‖L .
On account of the boundedness of ‖v(t)‖L , it is easy to check that

∣
∣(vz,�v

)∣∣ ≤ ‖v‖L‖z‖
L∞

∥
∥�v

∥
∥

L ≤ 

∥
∥�v

∥
∥

L + C‖z‖
L∞ .

Combining the above estimates, we obtain the inequality

d
dt

∥∥�v(t)
∥∥

L + (a – )‖�v‖
L ≤ C‖�z‖

L + C‖z‖
L + C‖z‖ 


L∞ + C‖z‖

L∞ + C‖z‖
L + C.

Let G(t) = C(‖�z‖
L + ‖z‖

L + ‖z‖ 

L∞ + ‖z‖

L∞ + ‖z‖
L ), which grows at most polynomially

as t → –∞ P-a.e. Then

d
dt

∥
∥�v(t)

∥
∥

L ≤ ‖�v‖
L + G(t) + C.

Integrating from θ to t for any – ≤ θ ≤ t ≤ , we have

∥∥�v(t)
∥∥

L ≤ e
∫ t
θ  dσ

∥∥�v(θ )
∥∥

L +
∫ t

θ

(
G(τ ) + C

)
e
∫ τ
θ  dσ dτ

≤
(∥

∥�v(θ )
∥
∥

L +
∫ 

–

(
G(τ ) + C

)
dτ

)
e
∫ 

–  dσ . (.)

Now integrating with respect to θ on [–, ] on both sides of (.), as Lemma ., satisfies
for all s < s(ω), there exists s(ω) such that, for all s < s(ω),

∥
∥�v(t)

∥
∥

L ≤
(∫ 

–

∥
∥�v(θ )

∥
∥

L +
∫ 

–

(
G(τ ) + C

)
dτ

)
e

≤
(

r(ω) +
∫ 

–

(
G(τ ) + C

)
dτ

)
)e = r(ω). (.)
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On the other hand, we can obtain

∥∥�u(t)
∥∥

L ≤ 
∥∥�v(t)

∥∥
L + 

∥∥�z(t)
∥∥

L ≤ r(ω) +  sup
–≤t≤

∥∥�z(t)
∥∥ = r(ω).

The proof is complete. �

Lemma . Let �i(x) ∈ H(R), a > ,η >  be given, and us ∈ H satisfy ‖us‖ ≤ η. Then, for
every ε >  and P-a.e. ω ∈ �, there exist s̄(ω) ≤ – and k̄(ε) >  such that, for all s ≤ s̄(ω)
and k > k̄(ε), the solution v(t) of system (.)-(.) with vs = us – z(s) satisfies

∫

|x|≥k

∣∣v(t)
∣∣ dx ≤ ε.

Proof Let θ (s) be a smooth function defined on R+ such that  ≤ θ (s) ≤  for all s ∈ R+ and

θ (s) =  ( ≤ s ≤ ); θ (s) =  (s ≥ ).

Then there exists a positive constant C such that |θ ′(s)| + |θ ′′(s)| < C for all s ∈ R+.
Multiplying (.) with θ ( |x|

k )v and then integrating the resulting identity, we find




d
dt

∫

R
θ

( |x|
k

)
|v| dx +

∫

R
θ

( |x|
k

)
v�v dx

+ 
∫

R
θ

( |x|
k

)
v�v dx + 

∫

R
θ

( |x|
k

)
v�z dx

+ a
∫

R
θ

( |x|
k

)
v dx + a

∫

R
θ

( |x|
k

)
vz dx +

∫

R
θ

( |x|
k

)
v dx

+
∫

R
θ

( |x|
k

)
vz dx + 

∫

R
θ

( |x|
k

)
vz dx + 

∫

R
θ

( |x|
k

)
vz dx = . (.)

For the estimate of
∫

R θ ( |x|
k )v�v dx,

∫

R
θ

( |x|
k

)
v�v dx =

∫

R
�

[
θ

( |x|
k

)
v
]
�v dx

=
∫

R

(
�

[
θ

( |x|
k

)]
v + ∇

[
θ

( |x|
k

)]
∇v + θ

( |x|
k

)
�v

)
�v dx

=
∫

R
θ ′′

( |x|
k

)
x

k v�v dx +
∫

R
θ ′

( |x|
k

)

k v�v dx

+
∫

R
θ ′

( |x|
k

)
x
k ∇v�v dx +

∫

R
θ

( |x|
k

)
|�v| dx. (.)

For the first term on the right-hand side of (.), we have

∣
∣∣
∣

∫

R
θ ′′

( |x|
k

)
x

k v�v dx
∣
∣∣
∣ ≤ C

∫

k≤|x|≤√
k

x

k |v||�v|dx

≤ C
k

∫

k≤|x|≤√
k

|v||�v|dx
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≤ C
k

∫

R
|v||�v|dx

≤ C
k

(‖v‖
L + ‖�v‖

L
)
. (.)

Similarly, for the second and third terms on the right-hand side of (.), we have

∣∣
∣∣

∫

R
θ ′

( |x|
k

)

k v�v dx

∣∣
∣∣ ≤ C

k

∫

R
|v||�v|dx ≤ C

k

(‖v‖
L + ‖�v‖

L
)

(.)

and
∣
∣∣
∣

∫

R
θ ′

( |x|
k

)
x
k ∇v�v dx

∣
∣∣
∣ ≤ C

∫

k≤|x|≤√
k

|x|
k |∇v||�v|dx

≤ C
k

∫

k≤|x|≤√
k

|∇v||�v|dx

≤ C
k

(‖∇v‖
L + ‖�v‖

L
)
. (.)

Substituting estimates (.)-(.), it follows that

∫

R
θ

( |x|
k

)
v�v dx ≥ –

C
k

(‖v‖
L + ‖∇v‖

L + ‖�v‖
L

)
+

∫

R
θ

( |x|
k

)
|�v| dx.

By the Hölder inequality and ε-Young inequality we have

∣
∣∣
∣

∫

R
θ

( |x|
k

)
v�v dx

∣
∣∣
∣ ≤

(∫

|x|≥k
θ

( |x|
k

)
|�v| dx

) 

(∫

|x|≥k
θ

( |x|
k

)
|v| dx

) 


≤ 


∫

R
θ

( |x|
k

)
|�v| dx + 

∫

R
θ

( |x|
k

)
|v| dx.

Similarly, we get

∣∣∣
∣

∫

R
θ

( |x|
k

)
v�z dx

∣∣∣
∣ =

∣∣∣
∣

∫

|x|≥k
θ

( |x|
k

)
v�z dx

∣∣∣
∣

≤
(∫

|x|≥k
|�z| dx

) 

(∫

|x|≥k
θ

( |x|
k

)
v dx

) 


≤ 
∫

R
θ

( |x|
k

)
|v| dx + C‖�z‖

L

≤ 
∫

R
θ

( |x|
k

)
|v| dx + C‖z‖

H ,

where the second inequality is owing to the boundedness of function θ .
For the estimate of

∫
R θ ( |x|

k )vz dx, we obtain

∣∣∣
∣

∫

Rn
θ

( |x|
k

)
vz dx

∣∣∣
∣ =

∣∣∣
∣

∫

|x|≥k
θ

( |x|
k

)
vz dx

∣∣∣
∣

≤
(∫

|x|≥k
|z| dx

) 

(∫

|x|≥k
θ

( |x|
k

)
v dx

) 
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≤ 


∫

R
θ

( |x|
k

)
|v| dx + C‖z‖

≤ 


∫

R
θ

( |x|
k

)
|v| dx + C‖z‖

H .

For the estimate of
∫

R θ ( |x|
k )vz dx, we get

∣
∣∣
∣

∫

R
θ

( |x|
k

)
vz dx

∣
∣∣
∣ ≤

(∫

|x|≥k
|z| dx

) 

(∫

|x|≥k
θ

( |x|
k

)
v dx

) 


≤ 


∫

R
θ

( |x|
k

)
|v| dx + C‖z‖

≤ 


∫

R
θ

( |x|
k

)
|v| dx + C‖z‖

H .

For the estimate of
∫

R θ ( |x|
k )vz dx, we have

∣∣
∣∣

∫

R
θ

( |x|
k

)
vz dx

∣∣
∣∣ =

(∫

R

(
θ

( |x|
k

)
v

) 


dx
) 


(∫

R
z dx

) 


≤
(∫

R

(
θ

( |x|
k

)) 


v dx
) 


(∫

R
z dx

) 


≤
(∫

R
θ

( |x|
k

)
v dx

) 

(∫

R
z dx

) 


≤ 


∫

R
θ

( |x|
k

)
v dx + C‖z‖

L

≤ 


∫

R
θ

( |x|
k

)
v dx + C‖z‖

H .

Because
∫

R θ ( |x|
k )vz dx ≥ , we drop it on the left-hand side of (.).

From the above estimates we can obtain the inequality

d
dt

∫

R
θ

( |x|
k

)
|v| dx +

∫

R
θ

( |x|
k

)
|�v| dx + (a – )

∫

R
θ

( |x|
k

)
|v| dx

≤ C
k

(‖v‖
L + ‖∇v‖

L + ‖�v‖
L

)
+ C

(‖z‖
H + ‖z‖

H + ‖z‖
H

)
. (.)

By the Gronwall inequality for s ≤ – and t ∈ [–, ] we have

∫

R
θ

( |x|
k

)∣
∣v(t)

∣
∣ dx

≤ e–
∫ t

s (a–) dσ

∫

R
θ

( |x|
k

)∣
∣v(s)

∣
∣ dx

+
∫ t

s
e–

∫ t
τ (a–) dσ

[
C
k

(‖v‖
L + ‖∇v‖

L + ‖�v‖
L

)

+ C
(‖z‖

H + ‖z‖
H + ‖z‖

H
)]

dτ
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≤ e(a–)(s+)∥∥v(s)
∥∥ + e(a–) C

k

∫ 

–∞
e(a–)τ (‖v‖

L + ‖∇v‖
L + ‖�v‖

L
)

dτ

+ e(a–)C
∫ 

–∞
e(a–)τ (‖z‖

H + ‖z‖
H + ‖z‖

H
)

dτ . (.)

For the first term of the right-hand side of (.), there exists s(ω) such that, for all s ≤
s(ω), e(a–)(s+) decays exponentially as s → –∞. Then there exists s̄ < s(ω) such that, for
all s ≤ s̄, we have

e(a–)(s+)∥∥v(s)
∥∥ ≤ ε


. (.)

For the second term of the right-hand side of (.), by the Gagliardo-Nirenberg inequality
and ε-Young inequality we have

‖∇v‖
L ≤C‖v‖ 


L‖�v‖ 


L

≤C‖v‖
L + ‖�v‖L

≤C
(‖v‖

L + ‖�v‖
L + 

)
.

According to Lemma ., there exists k >  such that, for all k > k, we have

e(a–) C
k

∫ 

–∞
e(a–)τ (‖v‖

L + ‖∇v‖
L + ‖�v‖

L + 
)

dτ ≤ ε


. (.)

It follows from (.)-(.) that

∫

R
θ

( |x|
k

)∣∣v(t)
∣∣ dx ≤ ε


+ e(a–)C

∫ 

–∞
e(a–)τ (‖z‖

H + ‖z‖
H + ‖z‖

H
)

dτ .

Let E(t) = C(‖z‖
H + ‖z‖

H + ‖z‖
H ). When k is large enough, we have

e(a–)C
∫ 

–∞
e(a–)τ (‖z‖

H + ‖z‖
H + ‖z‖

H
)

dτ ≤ ε



because E(t) = C(‖z‖
H + ‖z‖

H + ‖z‖
H ) ≤ ε

∑m
k=(|zk| + |zk| + |zk|) when |x| ≥ k and

∑m
k=(|zk| + |zk| + |zk|) grows at most polynomially.
Then we can obtain that, for ε > , there exist s̄, k̄ = max{k, k} such that, for all s ≤ s̄

and k ≥ k̄,

∫

|x|≥k

∣∣v(t)
∣∣ dx ≤

∫

R
θ

( |x|
k

)∣∣v(t)
∣∣ dx ≤ ε, t ∈ [–, ]. �

Lemma . Let �i(x) ∈ H(R), a > ,η >  be given, and us ∈ H satisfy ‖us‖ ≤ η. Then, for
every ε >  and P-a.e. ω ∈ �, there exist s′(ω) ≤ – and k′(ε) >  such that, for all s ≤ s′(ω)
and k > k′(ε), the solution u(t) satisfies the inequality

∫

|x|≥k

∣∣u(t)
∣∣ dx ≤ ε, t ∈ [–, ].
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Proof Since z(t) ∈ H, we have

∫

|x|≥k

∣∣z(t)
∣∣ dx ≤ ε


, t ∈ [–, ]. (.)

By Lemma . we know that

∫

|x|≥k

∣∣v(t)
∣∣ dx ≤ ε


, t ∈ [–, ]. (.)

Let s̄(ω) and k̄ be the constants in Lemma .. Then choosing s′ > s̄ and k′ > k̄, for all
s ≤ s′, k > k′, by (.) and (.) we have

∫

|x|≥k

∣∣u(t)
∣∣ dx =

∫

|x|≥k

∣∣v(t) + z(t)
∣∣ dx

≤ 
∫

|x|≥k

∣∣v(t)
∣∣ dx + 

∫

|x|≥k

∣∣z(t)
∣∣ dx

≤ ε, t ∈ [–, ]. �

6 Random attractors
Motivated by these previous works, in this section, we are interested in the existence of a
random attractor for the random dynamical system S(t, s;ω) associated with the stochastic
Swift-Hohenberg equation on R.

Lemma . Assume that �i(x) ∈ H(R). Then the random dynamical system S(t, s;ω) is
asymptotically compact in L(R); that is, for P-a.e. ω ∈ �, the sequence u(, sn;ω) has a
convergent subsequence in L(R), provided that sn → –∞.

Proof Let sn → –∞. Then by Lemma ., for P-a.e. ω ∈ �, we obtain

{
u(, sn;ω)

}∞
n= is bounded in L(R).

Hence, there is ξ ∈ L(R) such that, up to a subsequence,

u(, sn;ω) → ξ weakly in L(R) as sn → –∞. (.)

Next, we prove that the weak convergence of (.) is in fact the strong convergence.
Given ε > , by Lemma . there are T(η,ω, ε) and k(ω, ε) such that, for all s < T, we

have
∫

|x|≥k

∣∣u(, s;ω)
∣∣ dx ≤ ε


. (.)

Since sn → –∞, there is N(η,ω, ε, ) such that sn < N for every n > N. Therefore, it follows
from (.) that, for all n > N, we have

∫

|x|≥k

∣
∣u(, sn;ω)

∣
∣ dx ≤ ε


. (.)
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On the other hand, by Lemma . there are T(η,ω) and r(ω) such that, for all s < T, we
have

∥∥u(, sn;ω)
∥∥

H(R) ≤ r(ω). (.)

Denote QR = {x ∈ R : |x| ≤ R}. By the compactness of embedding H(QR) ↪→ L(QR) it
follows from (.) that there is a subsequence

u(, sn;ω) → ξ strongly in L(QR) as sn → –∞, (.)

which shows that, for given ε > , there exists N(η,ω, ε) such that, for all n > N,

∥
∥u(, sn;ω) – ξ

∥
∥

L(QR) ≤ ε


.

Note that ξ ∈ L(R), so there exists R′(ε) > R such that

∫

|x|≥R′
|ξ | ≤ ε


(.)

and

∥∥u(, sn;ω) – ξ
∥∥

L(QR′ ) ≤ ε


. (.)

Let N = max{N, N}. By (.), (.), and (.) we find that, for all n ≥ N, we have

∥
∥u(, sn;ω) – ξ

∥
∥

L(R) ≤
∫

|x|≥R′

∣
∣u(, sn;ω) – ξ

∣
∣ dx +

∫

|x|≤R′

∣
∣u(, sn;ω) – ξ

∣
∣ dx,

≤ ε, (.)

which shows that

u(, sn;ω) → ξ strongly in L(R) as sn → –∞, (.)

as desired. The proof is complete. �

We are now in a position to present our main result, the existence of a random attractor
for S(t, s;ω) in L(R).

Theorem . Let �(x) ∈ H(R) and a > . Then the random dynamical system S(t, s;ω)
has a unique random attractor in L(R).

Proof Notice that S(t, s;ω) has a closed random absorbing set in H(R) by Lemmas .
and . and is asymptotically compact in L(R) by Lemma .. Hence, the existence of a
unique random attractor for S(t, s;ω) follows from Theorem . immediately. �
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