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Abstract
This paper reports some new results in relation to simplicial algorithms considering
continuities of approximate fixed point sets. The upper semi-continuity of a
set-valued mapping of approximate fixed points using vector-valued simplicial
methods is proved, and thus one obtains the existence of finite essential connected
components in approximate fixed point sets by vector-valued labels; examples are
given to show that this is very different from the property for integer-valued labeling
simplicial methods. The existence of essential sets is also proved focusing on both
perturbations of domains and functions.
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1 Introduction
Fixed point theorems have important effects in mathematical and economic sciences. The
famous Brouwer fixed point theorem [] plays a key role in many existence problems and
also has prompted a wave of finding many kinds of equilibria and other applications, such
as the Nash equilibrium[], the general equilibrium [], network problems [–], approx-
imation theory [], computer science [], etc.

Naturally, designing algorithms to compute a Brouwer fixed point is also important field.
It is well known that Sperner’s lemma became a simple tool for the proof of the existence of
Brouwer fixed points. Based on Sperner’s lemma, simplicial algorithms continue to spring
up after the excellent work by Scarf [], such as Kuhn’s algorithm [, ], the restart al-
gorithms [–], variable dimension algorithms [], and homotopy algorithms [, ].
For simplicial algorithms, one frequently finds a complete labeled sub-simplex (full labeled
sub-simplex) in a simplex to approximate a fixed point. Two common labels are integer-
valued and vector-valued. Given a fixed grid size, it is well known that the approximate
degree of a complete vector-valued sub-simplex to fixed points is better than the other. Is
there any difference between the stability of these algorithms? Is a complete labeled sub-
simplex able to resist the perturbation of functions or simplices? This paper will focus on
these problems.

The stability of fixed points has attracted much attention. After the seminal work for es-
sential fixed points of continuous functions (Brouwer type fixed points) in [], essential
components and essential sets of fixed points were introduced [, ]. From the view
point of stability, as the analogs of singletons, minimal essential sets seem to be good
choices []. Essential stabilities (which are related to lower semi-continuity) were used
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to analyze many problems, such as coincidence points [, ], fixed points[], KKM
points [, ], game equilibrium points [–], maximal elements [], and variational
relation problems [–], etc.

In fact, when a simplicial algorithm is in order, we must face approximate fixed points
as the grid size shrinks. By employing the essential stabilities, this concerns the stabil-
ity of approximate fixed point sets using simplicial methods under the perturbation of
the corresponding functions and domains. We show that there is a significant difference
between vector-valued simplicial methods and integer-valued methods. The upper semi-
continuity of a set-valued mapping for approximate fixed points using vector-valued la-
beling is proved. The existence of finite essential connected components of approximate
fixed point sets is also proved for vector-labeled simplicial methods. These results are new.

2 Preliminaries and motivations
Let S be an n-simplex in Rn+ with vertices v, v, . . . , vn+, C(S) the space of continuous
functions f on S with uniform metric and Ik = {, , . . . , k}. The ith unit vector of Rn+ is
denoted by e(i), i = , , . . . , n, and the (n + )-vector (, , . . . , )T is represented by e.

We recall some definitions involving simplicial fixed point algorithms. Given the grid
size 

q , the standard triangulation of S is the collection of all sub-simplices σ (y,π ) with
vertices y, . . . , yn+ in S such that:

(i) each component of y is a multiple of 
q ;

(ii) π = (π,π, . . . ,πn) is a permutation of the elements of In;
(iii) yi+ = yi + v(πi+)–v(πi)

q , where v(i) = vi, ∀i ∈ In.
Note that the mesh of the standard triangulation of S with the grid size 

q is
√

n+
q or

√
n

q
if n is odd or even, respectively. For a function f ∈ C(S), a point x in S is labeled an integer
l(x) ∈ In+ where l(x) = i if

i = min
{

j
∣∣ fj(x) – xj = min

h∈In+

(
fh(x) – xh

)}
.

Particularly, if f (x) = x and x = , then assign the label of x as the first index i such that
xi > , i ∈ In+. We call l : S → In+ a standard integer-valued labeling function. Given the
mesh of a standard triangulation on S, from Sperner’s lemma, there exists at least one
sub-simplex with complete integer labels (completely labeled simplex, with the meaning
of vertices of the sub-simplex with totally different labels).

If a point x in S receives the (n + )-vector L(x), where

L(x) = –f (x) + x + e,

in this case, we call L : S → Rn+ a standard vector-valued labeling function. For a tri-
angulation of S, a sub-simplex σ (y, . . . , yn+) with vector-valued labels is complete if∑n+

i= λiL(yi) = e has a solution λ∗ = (λ,λ, . . . ,λn+) with λ∗ ∈ Rn+
+ .

Given a grid size 
q , for each f ∈ C(S), denote by F(f , q) (F ′(f , q)) the collection of all

sub-simplices with complete integer-valued (vector-valued) labels in S, then we define a
set-valued mapping from C(S) to S with F(F ′) : C(S) → S , in addition, for convenience
of notation, we write F(f ) as F(f , q). Note that each x ∈ F(f , q) (F ′(f , q)) is an approxima-
tion of fixed points of f on S. In addition, from the connectedness, F(f , q) (F ′(f , q)) can
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be decomposed as
⋃

i∈� Ci with Ci ∩ Cj = ∅ for any i 
= j, and Ci, ∀i ∈ � is a connected
component.

There are significant differences in relation to semi-continuities between F and F ′, and
the following example shows that the set-valued mapping F is not upper semi-continuous
on C(S); further results will be demonstrated in Section .

Example . Let S be standard simplex in R. A map f ∈ C(S) is the identity, that is, f (x) =
x, ∀x ∈ S. Given the grid size 

q with 
q = 

 , then, for the integer labels of the sub-simplices
of the triangulation with the grid size 

q , we have

l(x) =

⎧
⎪⎨
⎪⎩

, x = (, ),
, x = (, ),
, x = ( 

 , 
 ).

It can be checked that F(f , q) = {(x,  – x) |  ≤ x ≤ 
 }. For each n = , , . . . , define f n ∈

C(S) satisfying

f n(x, x) =
(
(x)

n
+n ,  – (x)

n
+n

)
.

Then the corresponding integer labels using f n for each n = , , . . . is the same as

l(x) =

⎧⎪⎨
⎪⎩

, x = (, ),
, x = (, ),
, x = ( 

 , 
 ).

We can calculate that F(f n, q) = {(x,  – x) | 
 ≤ x ≤ }. Obviously, for small enough open

set U with F(f , q) ⊂ U , however close f n is to f , we have F(f n, q) 
⊂ U . Therefore, F is not
upper semi-continuous on C(S), hence, the graph of F is not closed. In fact, clearly, F is
also not lower semi-continuous.

For each f ∈ C(S), denote by Fix(f ) the fixed point set of f on S. Note the fact of Exam-
ple . about F , the following definitions consider a kind of description for stability of F ′

and subsets of Fix(f ).

Definition . Given the grid size 
q , for each f ∈ C(S), a closed subset e(f ) of F ′(f , q)

is called an essential set with respect to C(S) if for any open set U with U ⊃ e(f ), there
exists an open neighborhood O(f ) of f in C(S) such that F ′(f ′, q) ∩ U 
= ∅, ∀f ′ ∈ O(f ). If a
connected component C ⊂ F ′(f , q) is an essential set, C is called an essential connected
component of F ′(f , q) with respect to C(S).

Definition . Let f ∈ C(S), e(f ) be a closed subset of Fix(f ). We call e(f ) an approximate
essential set if for each ε neighborhood B(e(f ), ε) of e(f ), there exists a δ >  such that, for
each f ′ ∈ C(S) with ‖f – f ′‖ < δ, we can find a number Z, such that F ′(f ′, q) ∩ B(e(f ), ε) 
= ∅,
∀q > Z.

Lemma . (see []) Let Y be a metric space, E be a Baire space, and F : E → Y be an
upper semi-continuous mapping with compact values. Then there is a dense residual subset
Q of E such that F is lower semi-continuous at each x ∈ Q.
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3 Stability results under function perturbations
Theorem . Given a triangulation of S with vertices v, v, . . . , vn+ with a grid size 

q , the
graph of the set-valued mapping F ′,

Gr F ′ =
{

(f , x) | f ∈ C(S), x ∈ F ′(f , q)
}

,

is closed.

Proof Let (f m, xm) ∈ Gr F ′ with (f m, xm) → (f , x), m = , , . . . . It is clear that (f , x) ∈
C(S) × S. We need to show that x is a point of a complete sub-simplex σf with vector-
valued labels in S. For each m = , , . . . , since (f m, xm) ∈ Gr F ′, there exists a com-
plete labeled sub-simplex σfm such that xm ∈ σf m ⊂ F ′(f m, q) ⊂ S, hence, denote σf m as
σf m (y

m, y
m, . . . , yn+

m ) = σf m (y
m,πm).

Since {π 
m} belongs in the finite set In+, {π 

m} has a convergence subsequence {π 
mk},

such that π 
mi = π 

mj for large enough i and j with i 
= j. For {π
mk}, we can also find such

a convergence subsequence which is denoted {π
mk} for convenience of notation. Then,

following this method, we will get a convergence subsequence {π i
mk} of {π i

m} which can be
unified as one {π i} with π i 
= π j, ∀i 
= j, that is, σf mk (y

mk ,πmk) = σf mk (y
mk ,π ). Since {y

mk} ⊂
X, there is a sequence, being its convergence subsequence, that, without loss of generality,
we also denote it by {y

mk} with y
mk → y

 (k → ∞). So far, by choosing some real numbers
pi

mk , i ∈ In+, we can write σf mk (y
mk ,π ) as

y
mk =

(
p

mk , p
mk , . . . , pn+

mk
)
/q

and

yi+
mk = yi

mk +
(
vπ i+ – vπ i)/q, ∀i ∈ In.

Then we have a point yi
 such that yi

mk → yi
 ∈ S for each i ∈ In+. That is, σ (y

,π ) =
σ (y

, y
, . . . , yn+

 ) is definitely a sub-simplex in the triangulation of S given the grid size 
q .

Note that (f mk , xmk) ∈ Gr F ′ with (f mk , xmk) → (f , x) as k tends to infinity. Since
σ (y

mk , y
mk , . . . , yn+

mk ) is a complete sub-simplex with vector-valued labels, there exists a
nonnegtive vector (λ

mk ,λ
mk , . . . ,λn+

mk ) such that

n+∑
i=

λi
mk

(
–f mk(yi

mk
)

+ yi
mk + e

)
= e. ()

There is a convergence subsequences {λi
mkj} of {λi

mk} with λi
mkj → λi

 ≥  (j → ∞), ∀i ∈
In+. Then, by substituting mk with mkj in equation (), as j → ∞, we have

n+∑
i=

λi

(
–f (yi


)

+ yi
 + e

)
= e. ()

Therefore, σf  = σ (y
, y

, . . . , yn+
 ) is a complete sub-simplex with vector-valued labels.

Next, we have x ∈ σf  . Since xmkj ∈ σf mkj , there exists β i
mkj ≥  such that

xmkj =
n+∑
i=

β i
mkjy

i
mkj ()
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with
∑n+

i= β i
mkj = . Without loss of generality, we can assume that β i

mkj is convergent with
the limit β i

, that is, β i
mkj → β i

 (j → ∞). Then, as j → ∞, for equation (), we have x =∑n+
i= β i

yi
 ∈ σf  . �

From Theorem ., we have the following direct corollary.

Corollary . Given a triangulation of S with a grid size 
q , the set-valued mapping F ′ is

upper semi-continuous on C(S).

The following example shows that F ′ does not possess the property of being lower semi-
continuous on C(S).

Example . Let S, f ∈ C(S) be the same as Example .. With the grid size 
q with 

q = 
 ,

for the vector-valued labels of the sub-simplices of the triangulation with f , we have for
each grid point x = (/, /), (/, /), L(x) = (, ). Then the sub-simplex σ = {(x, x) ∈
S : / ≤ x ≤ /} is complete and σ ⊂ F ′(f , q). We take a point x̄ = (/, /) ∈ σ . For each
n = , , . . . , we define f n ∈ C(S) such that

f n(x, x) =
(
(x)

n+
n ,  – (x)

n+
n

)
.

Then, for each n = , , . . . , the vector-valued labels for the sub-simplex σ using f n is

L(x) =

{
( 

 – ( 
 ) n+

n , ( 
 ) n+

n + 
 ) = (a, c), x = (/, /),

( 
 – ( 

 ) n+
n , ( 

 ) n+
n + 

 ) = (b, d), x = (/, /),

hence, the right-hand side of the equation

[
a b
c d

]– [



]
=


ad – bc

[
d – b
a – c

]

is the solution (λ∗
 ,λ∗

) of the equations λL(/, /) + λL(/, /) = e, then λ∗
 = a–c

ad–bc . By

a straightforward calculation, for each n = , , . . . , we have a–c = 

n –

· 
n

> , while ad – bc =
(–


n )


n –

· 
n

< . Then λ∗
 < , ∀n = , , . . . . Thus, by labeling the sub-simplex σ using f n, one

sees that σ is not complete. Therefore, for a small enough open neighborhood U of x̄, we
have F ′(fn, q)∩U = ∅, for each n = , , . . . , that is, F ′ is not lower semi-continuous on C(S).

From Theorem ., the set-valued mapping F ′ with F ′ : C(S) → S is upper semi-
continuous. If the set-valued mapping F ′ is lower semi-continuous at a point f , then, given
a grid size 

q , clearly, each point in F ′(f , q) is essential. Thus, by Fort’s lemma (Lemma .)
and Definition ., we can obtain the following generic stability result.

Corollary . Given a grid size 
q , there exists a dense residual set Q in C(S) such that for

each f ∈ C(S), each point in F ′(f , q) is essential with respect to C(S).

Theorem . Given a triangulation of S with a grid size 
q , for each f ∈ C(S), there exist

finite essential connected components in F ′(f , q) with respect to C(S).
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Proof From Theorem ., the set-valued mapping F ′ is upper semi-continuous on S. Then
the set F ′(f , q) itself is an essential set with respect to C(S). Let 	 denote the collection of all
essential sets in F ′(f , q). Note that each decreasing chain in 	 with the set inclusion order
has its intersection as a lower bound. Therefore, there exists a minimal element e(f ) in 	,
which is an essential set in F ′(f , q). Hence, it is clear that each connected component C
with C ⊃ e(f ) is an essential connected component by Definition .. Then the remaining
problem is to show that each e(f ) is connected.

If not, let e(f ) = D ∪ D. Nonessential closed sets D and D can be separated by two
open sets U and U with Di ⊂ Ui, i = , . For each i = ,  and ε > , there exists an open
set W i and f i ∈ C(S) with Di ⊂ W i ⊂ W i ⊂ Ui such that ‖f – f i‖ < ε

 but F ′(f i, q) ∩ W i = ∅;
meanwhile, for any f ′ ∈ C(S) with ‖f ′ – f ‖ < ε, we have F ′(f ′, q)∩ (W  ∪W ) 
= ∅. Construct
a special f ′ ∈ C(S) by defining

f ′(x) = λ(x)f (x) +
(
 – λ(x)

)
f (x), ∀x ∈ S,

where λ(x) = d(x, W )/(d(x, W ) + d(x, W )). Routinely, we can check that ‖f ′ – f ‖ < ε, this
means that there is at least a point x such that x ∈ F ′(f ′, q) ∩ (W  ∪ W ). For each i = , ,
if x ∈ W i, such that f ′(x) = f i(x), then the labels for the sub-simplices’ vertices in W i using
f i or f are no different. Therefore, F ′(f i, q) ∩ W i = F ′(f ′, q) ∩ W i, from which one deduces
the fact that x /∈ F ′(f ′, q), a contradiction.

Finally, from the finiteness of the complete labeled simplex in S, the result follows. �

The following result shows that essential connected components under the grid size 
q

can be close to an approximate fixed point set as q tends to infinity.

Theorem . Given a continuous function f ∈ C(S), for each grid size 
q , let Cq ⊂ F ′(f , q)

be an essential connected component with respect to C(S), there exists a subsequence {Cqk }
of {Cq} with Cqk

h→ C and C is an approximate essential connected set in Fix(f ), where
h is the Hausdorff metric induced by the Euclidean metric on Rn+.

Proof Since {Cq} is a sequence in K(S), where K(S) is the collection of nonempty compact
subsets of S, from the compactness of S, there is a subsequence {Cqk } of {Cq} with the limit
C ∈ K(S). We denote the subsequence just as {Cq} for convenience. For each x ∈ C,
there is a sequence {xq} with xq ∈ Cq and xq → x. For each ε > , since f is continuous,
there exists a number N such that, for each sub-simplex σf in the triangulation of S under
the grid size 

N , we have

max
i∈In+

{∣∣fi(x) – fi(y)
∣∣} <


N

<
ε


√

n + 
, ∀x, y ∈ σf .

For each q > N , since xq ∈ Cq ⊂ F ′(f , q), we have ‖f (xq) – xq‖ < ε
 . Then we can find a large

enough q such that the following inequality holds:

∥∥f
(
x) – x∥∥ ≤ ∥∥f

(
x) – f

(
xq)∥∥ +

∥∥f
(
xq) – xq∥∥ +

∥∥xq – x∥∥

<
ε


+

ε


+

ε


= ε.

Therefore, we assert that x ∈ Fix(f ), hence, C ⊂ Fix(f ).
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Assume that C is not connected, then C can be decomposed as two disjoint compact
sets like C = C′ ∪ C′′ with two open sets W ′ and W ′′ such that C′ ⊂ W ′, C′′ ⊂ W ′′, and
W ′ ∩W ′′ = ∅. By the compactness of C′ and C′′, there are two open sets U ′ and U ′′ such that
C′ ⊂ U ′ ⊂ Ū ′ ⊂ W ′ and C′′ ⊂ U ′′ ⊂ Ū ′′ ⊂ W ′′. Since Cq is connected, we have Cq ⊂ U ′ or
Cq ⊂ U ′′ as q large enough. Then the limit of Cq is in W ′ or W ′′, which contradicts the fact
that Cq h→ C′ ∪ C′′ and C′ ⊂ W ′, C′′ ⊂ W ′′, and W ′ ∩ W ′′ = ∅. Therefore, C is connected.

Finally, we show that C is an approximate essential set of Fix(f ). If not, then there exists
a ε̄ >  and f j (j = , , . . .) with f j → f , such that for each number q, F ′(f j, q) ∩ B(C, ε̄) = ∅,
j = , , . . . . Since Cq h→ C, there is a number N such that Cq ⊂ B(C, ε̄) when q ≥ N .
Because CN is essential, for the open set B(C, ε), there is a δ >  such that for any f ′ with
‖f – f ′‖ < δ, we have F(f ′, N) ∩ B(C, ε) 
= ∅. From the fact that f j → f , for large enough j,
we have F(f j, N) ∩ B(C, ε) 
= ∅, a contradiction. �

4 Stability results under perturbations of simplices and functions
In order to analyze the perturbation of domains, let X ⊂ Rn+ be a n dimensional com-
pact set, M the collection of all n-simplex in X. For any two S(v

, v
 , . . . , vn+

 ) and
S(v

, v
, . . . , vn+

 ) in M, define

ρ(S, S) = min
π

n+∑
k=

∥∥vk
 – vπk


∥∥.

Lemma . ρ is a metric on M.

Proof (i) For any S(v
, v

 , . . . , vn+
 ), S(v

, v
, . . . , vn+

 ) ∈ M, we have ρ(S, S) = ρ(S, S). Let
π̄ = (π̄, π̄, . . . , π̄n+) match ρ(S, S). We have ρ(S, S) =

∑n+
k= ‖vk

 – vπ̄k
 ‖. Then

ρ(S, S) = min
π

n+∑
k=

∥∥vπ̄k
 – vπk


∥∥

=
n+∑
k=

∥∥vπ̄k
 – vk


∥∥ = ρ(S, S).

(ii) For any S(v
, v

 , . . . , vn+
 ), S(v

, v
, . . . , vn+

 ) ∈ M, we have ρ(S, S) =  ⇔ S = S.
From the definition of ρ , one needs only the proof of the necessity. Let ρ(S, S) = , then
there exists π̄ such that

∑n+
k= ‖vk

 – vπ̄k
 ‖ = , which means that ‖vk

 – vπ̄k
 ‖ = , ∀k ∈ In+.

That is, S = S.
(iii) For any S(v

, v
 , . . . , vn+

 ), S(v, v, . . . , vn+), S(v
, v

, . . . , vn+
 ) ∈ M, we have ρ(S,

S) ≤ ρ(S, S) + ρ(S, S). Let ρ(S, S) =
∑n+

k= ‖vk
 – vπ̄k ‖. Then we have

ρ(S, S) = min
π

n+∑
k=

∥∥vk
 – vπk


∥∥

≤ min
π

( n+∑
k=

∥∥vk
 – vπ̄k

∥∥ +
n+∑
k=

∥∥vπ̄k – vπk


∥∥
)

=
n+∑
k=

∥∥vk
 – vπ̄k

∥∥ + min
π

n+∑
k=

∥∥vπ̄k – vπk


∥∥
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= ρ(S, S) + min
π

n+∑
k=

∥∥vk – vπk


∥∥

= ρ(S, S) + ρ(S, S). �

Concerning a stability analysis of approximate fixed points, we intend to restrain do-
mains to avoiding a domain perturbed in a large-scale range. Let � be an n dimensional
subset of a compact set X in Rn+. Let M′ ⊂ M satisfy M′ = {S ∈ M : � ⊂ S ⊂ X}.

Lemma . The metric space (M′,ρ) is complete.

Proof Take a Cauchy sequence {Sm(v
m, v

m, . . . , vn+
m )} in M′. Then, for each ε > , there

exists a number N such that ρ(Ss, St) < ε for any s, t > N . Without loss of generality, we can
assume that ρ(Ss, St) =

∑n+
k= ‖vk

s – vk
t ‖. Therefore, {vk

m} is a Cauchy sequence with the limit
vk

, ∀k ∈ In+. Denote by S the simplex S(v
, v

, . . . , vn+
 ). Then we have ρ(Sm, S) → .

Since � ⊂ ⋂∞
m= Sm ⊂ X, it follows that � ⊂ S ⊂ X, hence S is an n-simplex in M′. �

Let P be the set of pairs (f , S) such that

P =
{

(f , S) ∈ C(X) × M′ : f (x) ∈ S,∀x ∈ S
}

.

Define the metric d between two u = (f, S) and u = (f, S) in M′ as

d(u, u) = max
x∈X

∥∥f(x) – f(x)
∥∥ + ρ(S, S).

Given a grid size 
q , for each u = (f , S) ∈ P, let T(u, q) be the set of all sub-simplices with

complete vector-valued labels with the function f in the triangulation of S under the grid
size 

q , then we define a set-valued mapping T from P to X.
Similar to Definition ., we consider the essential stability of approximate fixed points

under both perturbations of functions and domains.

Definition . Given the grid size 
q , for each u = (f , S) ∈ P, we call a closed subset e(f )

in T(u, q) an essential set with respect to P if, for any open set U with U ⊃ e(f ), there is
an open O(u) of u in P such that U ∩ T(u′, q) 
= ∅, ∀u′ ∈ O(u). A minimal element in the
collection (ordered by set inclusion) of essential sets in T(u, q) is called a minimal essential
set with respect to P.

Theorem . Given a grid size 
q and a continuous function f ∈ C(X), the graph of the

set-valued mapping T , Gr T = {(u, x) | u ∈ P, x ∈ T(u, q)}, is closed.

Proof Let {(um, xm)} ⊂ Gr T with (um, xm) → (u, x), where um = (fm, Sm), u = (f, S), and
Sm is the simplex with v

m, v
m, . . . , vn+

m as its vertices for each m = , , . . . . Since (um, xm) ∈
Gr T , there exists a complete sub-simplex σfm (y

m, y
m, . . . , yn+

m ) with vector-valued labels
such that xm ∈ σfm ⊂ T(um, q) ⊂ Sm, m = , , . . . .

Denote σfm (y
m, y

m, . . . , yn+
m ) as σfm (y

m,πm). Similar to Theorem ., there exists a sub-
sequence {mk} of {m} and a permutation π such that σfmk (y

mk ,πmk) = σfmk (y
mk ,π ). There

is a convergent subsequence of {y
mk} ⊂ X, which is also denoted by {y

mk} with y
mk → y
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(k → ∞). So far, for each mk, by choosing some real numbers pi
mk (i ∈ In+) with pi

mk → pi


(k → ∞), the sub-simplex σfmk (y
mk ,π ) can be written as

y
mk =

(
p

mk , p
mk , . . . , pn+

mk
)
/q

and

yi+
mk = yi

mk +
(
vπ i+

mk – vπ i
mk

)
/q, ∀i ∈ In.

Since um
d→ u, which means that Sm

ρ→ S ∈ M′, then, by the definition of ρ , we have
vπ i

mk → vπ i
 , ∀i ∈ In+. Noting that y

mk → y
, we have σfmk (y

mk ,π ) ρ→ σ (y
,π ) as k → ∞.

Clearly, σf (y
,π ) is a simplex in the triangulation of S(v

, v
, . . . , vn+

 ) with the grid size 
q .

To finish the proof that x ∈ σ (y
,π ) and σ (y

,π ) is a complete sub-simplex with vector-
valued labels by function f, we can adopt the corresponding part of Theorem .. �

From Theorem ., T is upper semi-continuous on P. Following the proof of Theo-
rem . for the part of the existence of minimal element of essential sets, we obtain the
following result.

Theorem . For each u = (f , S) ∈ P, given a triangulation of S with a grid size 
q , there

exists a minimal essential set in T(u, q) with respect to P.

Remark . Theorems ., . and Theorem . obtain the stability for approximate fixed
points with simplicial methods. From the point of applications, this may facilitate the sta-
bility analysis of equilibrium problems, such as Nash equilibria and ε-approximate Nash
equilibria.
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