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Abstract
In the article, we deal with the monotonicity of the function x → [(xp + a)1/p – x]/Ip(x)
on the interval (0,∞) for p > 1 and a > 0, and present the necessary and sufficient
condition such that the double inequality [(xp + a)1/p – x]/a < Ip(x) < [(xp + b)1/p – x]/b
for all x > 0 and p > 1, where Ip(x) = ex

p ∫ ∞
x e–t

p
dt is the incomplete gamma function.
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1 Introduction
Let a >  and x > . Then the classical gamma function �(x), incomplete gamma function
�(a, x) and psi function ψ(x) are defined by

�(x) =
∫ ∞


tx–e–t dt, �(a, x) =

∫ ∞

x
ta–e–t dt, ψ(x) =

�′(x)
�(x)

,

respectively. It is well known that the identities
∫ ∞

x
e–tp

dt =

p
�

(

p

, xp
)

,
∫ x


e–tp

dt =

p
�

(

p

)

–

p
�

(

p

, xp
)

(.)

hold for all x, p > .
Recently the bounds for the integral

∫ ∞
x e–tp dt or

∫ x
 e–tp dt have attracted the attention

of many researchers. In particular, many remarkable inequalities for bounding both inte-
grals can be found in the literature [–]. Let

Ip(x) = exp
∫ ∞

x
e–tp

dt. (.)

Then I(x) is actually the Mills ratio and it has been investigated by many researchers [–
], and the functions I(x) and I(x) can be used to research the heat transfer problem
[] and electrical discharge in gases [], respectively.

Komatu [] and Pollak [] proved that the double inequality

√
x +  + x

< I(x) <
√

x + /π + x

holds for all x > .

© 2016 Yang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1160-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1160-7&domain=pdf
mailto:chuyuming2005@126.com


Yang et al. Journal of Inequalities and Applications  (2016) 2016:221 Page 2 of 10

In [], Gautschi proved that the double inequality



[(

xp + 
)/p – x

]
< Ip(x) <


a

[(
xp + a

)/p – x
]

(.)

holds for all x >  and p > , where

a = �p/(–p)
(

 +

p

)

. (.)

An application of inequality (.) was given in []. Alzer [] proved that the double
inequality

�

(

 +

p

)
[
 –

(
 – e–αxp)/p] < Ip(x) < �

(

 +

p

)
[
 –

(
 – e–βxp)/p]

holds for all x >  and p >  with p �=  if and only if α ≥ max{,�–p( + /p)} and β ≤
min{,�–p( + /p)}.

Motivated by inequality (.), in the article we deal with the monotonicity of the function

R(x) =
(xp + a)/p – x
exp ∫ ∞

x e–tp dt
=

(xp + a)/p – x
Ip(x)

(.)

and prove that the double inequality


a
[(

xp + a
)/p – x

]
< Ip(x) <


b
[(

xp + b
)/p – x

]
(.)

holds for all x >  and p >  if and only if a ≥  and b ≤ a = �p/(–p)( + /p).

2 Lemmas
In order to prove our main results, we need to introduce an auxiliary function at first.

Let –∞ ≤ a < b ≤ ∞, f and g be differentiable on (a, b), and g ′ �=  on (a, b). Then the
function Hf ,g [, ] is defined by

Hf ,g(x) =
f ′(x)
g ′(x)

g(x) – f (x). (.)

Lemma . (See [], Theorem ) Let ∞ ≤ a < b ≤ ∞, f and g be differentiable on (a, b)
with f (b–) = g(b–) =  and g ′(x) <  on (a, b), Hf ,g be defined by (.), and there exists λ ∈
(a, b) such that f ′(x)/g ′(x) is strictly increasing on (a,λ) and strictly decreasing on (λ, b).
Then the following statements are true:

() if Hf ,g(a+) ≥ , then f (x)/g(x) is strictly decreasing on (a, b);
() if Hf ,g(a+) < , then there exists x ∈ (a, b) such that f (x)/g(x) is strictly increasing on

(a, x) and strictly decreasing on (x, b).

Lemma . (See [], Theorem .) Let –∞ < a < b < ∞, f , g : [a, b] → R be continu-
ous on [a, b] and differentiable on (a, b), and g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing
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(decreasing) on (a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . The inequality

�/(–x)( + x) >



(.)

holds for all x ∈ (, ).

Proof We clearly see that inequality (.) is equivalent to

log�( + x) + ( – x) log  >  (.)

for x ∈ (, ).
Let

h(x) = log�( + x) + ( – x) log . (.)

Then simple computations lead to

h() = , (.)

h′(x) = ψ(x + ) – log  < ψ() – log  =  – γ – log  <  (.)

for x ∈ (, ), where γ = . . . . is the Euler-Mascheroni constant.
Therefore, inequality (.) follows easily from (.)-(.). �

Lemma . The function �/x( + x) is strictly increasing on (,∞), and the double in-
equality

x < �/x( + x) <  (.)

holds for all x ∈ (, ).

Proof Let

ϕ(x) = log�( + x), ϕ(x) = x, ϕ(x) =
ϕ(x)
ϕ(x)

=
log�( + x)

x
, (.)

φ(x) = log�( + x) – x log x. (.)

Then simple computations lead to

ϕ() = ϕ() = , (.)
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φ
(
+)

= φ() = , (.)
[

ϕ′
(x)

ϕ′
(x)

]′
= ψ ′(x + ) >  (.)

for x ∈ (,∞), and

φ′′(x) = ψ ′( + x) –

x

<  (.)

for x ∈ (, ).
It follows from (.), (.), (.), and Lemma . that ϕ(x) and eϕ(x) = �/x( + x) is

strictly increasing on (,∞).
Inequality (.) leads to the conclusion that the function φ(x) is strictly concave on the

interval (, ) and the inequality

φ(x) > φ()( – x) + φ()x (.)

holds for all x ∈ (, ).
Therefore, φ(x) >  and the first inequality of (.) holds for all x ∈ (, ) follows from

(.), (.), and (.). While the second inequality of (.) can be derived from the mono-
tonicity of the function �/x( + x) on the interval (, ). �

Lemma . Let p >  and x > . Then the function a → [(xp + a)/p – x]/a is strictly de-
creasing on (,∞).

Proof Let

ω(a) =
(
xp + a

)/p – x, ω(a) = a, ω(a) =
ω(a)
ω(a)

=
(xp + a)/p – x

a
. (.)

Then we clearly see that

ω() = ω() = , (.)
[

ω′
(a)

ω′
(a)

]′
=

 – p
p(xp + a)(p–)/p <  (.)

for all p > , x >  and a > .
Therefore, Lemma . follows easily from Lemma . and (.)-(.). �

Lemma . Let p > , a >  and x > , Hf ,g(x) be defined by (.), and f(x) and g(x) be
defined by

f(x) =
[(

xp + a
)/p – x

]
e–xp

, g(x) =
∫ ∞

x
e–tp

dt, (.)

respectively. Then Hf,g (+) = �( + /p) – a/p.

Proof Let

u = u(x) =
(

xp + a
xp

)/p

∈ (,∞). (.)
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Then from (.) and (.) one has

f() = a/p, g() =

p
�

(

p

)

= �

(

 +

p

)

, (.)

f ′
 (x)

g ′
(x)

= –
(

xp + a
xp

)/p–

+ pxp
[(

xp + a
xp

)/p

– 
]

+ 

=  +
(pa – )u + u–p – pa

up – 
. (.)

It follows from (.), (.), and (.) that

Hf,g

(
+)

= lim
x→+

f ′
 (x)

g ′
(x)

lim
x→+

g(x) – lim
x→+

f(x)

= �

(

 +

p

)[

 + lim
u→∞

(pa – )u + u–p – pa
up – 

]

– a/p

= �

(

 +

p

)

– a/p. �

3 Main results
Theorem . Let p > , a > , x >  and R(x) be defined by (.). Then the following state-
ments are true:

() if a ≥ , then R(x) is strictly increasing on (,∞);
() if a ≤ �p( + /p), then R(x) is strictly decreasing on (,∞);
() if �p( + /p) < a < , then there exists x ∈ (,∞) such that R(x) is strictly increasing

on (, x) and strictly decreasing on (x,∞).

Proof Let f(x), g(x), u = u(x) ∈ (,∞) be defined by (.) and (.), and h(u) and h(u)
be defined by

h(u) = (p – )(ap – )up – apup– + (p + ap – )up +  – p, (.)

h(u) = (p – )(ap – )up – ap(p – )up– + p + ap – . (.)

Then from (.), (.), (.), (.), (.), (.), and Lemma . we have

R(x) =
f(x)
g(x)

, (.)

h() = h() = , (.)
[

f ′
 (x)

g ′
(x)

]′
=

d
du [ + (pa–)u+u–p–pa

up– ]
dx
du

=
(up – )/p–

a/pup– h(u), (.)

h′(u) = pup–h(u), (.)

h′
(u) = p(p – )up–[(ap – )(u – ) + (a – )

]
, (.)


p

< �p
(

 +

p

)

<  (.)

for p > .
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We divide the proof into four cases.
Case : a ≥ . Then from (.)-(.) we clearly see that the function f ′

 (x)/g ′
(x) is

strictly increasing on (,∞). Therefore, R(x) is strictly increasing on (,∞) follows from
Lemma . and (.) together with the monotonicity of the function f ′

 (x)/g ′
(x) on the

interval (,∞) and f(∞) = g(∞) = .
Case : a ≤ /p. Then from (.)-(.) we clearly see that the function f ′

 (x)/g ′
(x) is

strictly decreasing on (,∞). Therefore, R(x) is strictly decreasing on (,∞) follows from
Lemma . and (.) together with the monotonicity of the function f ′

 (x)/g ′
(x) on the

interval (,∞) and f(∞) = g(∞) = .
Case : /p < a ≤ �p( + /p). Then (.), (.), and Lemma . lead to

lim
u→∞ h(u) = ∞, lim

u→∞ h(u) = ∞, (.)

Hf,g

(
+) ≥ . (.)

Note that (.) can be rewritten as

h′
(u) = p(ap – )(p – )up–(u – u) (.)

with u =  + ( – a)/[(ap – )] ∈ (,∞).
From (.) we clearly see that h(u) is strictly decreasing on (, u) and strictly increasing

on (u,∞). Then from (.), (.), and (.) we know that there exists λ ∈ (,∞) such that
h(u) <  for u ∈ (,λ) and h(u) >  for u ∈ (λ,∞).

From (.) we clearly see that the function x → u(x) is strictly decreasing from (,∞)
onto (,∞). Then (.) and h(u) <  for u ∈ (,λ) and h(u) >  for u ∈ (λ,∞) lead to the
conclusion that f ′

 (x)/g ′
(x) is strictly increasing on (,μ) and strictly decreasing on (μ,∞),

where μ = [a/(λp – )]/p.
Therefore, R(x) is strictly decreasing on (,∞) follows from (.), (.), Lemma .(),

and the piecewise monotonicity of the function f ′
 (x)/g ′

(x) on the interval (,∞) together
with the fact that g ′

(x) = –e–xp <  and f(∞) = g(∞) = .
Case : �p( + /p) < a < . Then we clearly see that (.) and (.) again hold. Making

use of the same method as in Case  we know that there exists η >  such that f ′
 (x)/g ′

(x)
is strictly increasing on (,η) and strictly decreasing on (η,∞).

It follows from Lemma . that

Hf,g

(
+)

< . (.)

Therefore, there exists x ∈ (,∞) such that R(x) is strictly increasing on (, x) and
strictly decreasing on (x,∞) follows from (.), (.), Lemma .(), and the piecewise
monotonicity of the function f ′

 (x)/g ′
(x) on the interval (,∞) together with the fact that

g ′
(x) = –e–xp <  and f(∞) = g(∞) = . �

Let p > , x > , a > , R(x), f(x), g(x) and u = u(x) be defined by (.), (.), and (.),
respectively. Then we clearly see that

f(∞) = g(∞) = . (.)



Yang et al. Journal of Inequalities and Applications  (2016) 2016:221 Page 7 of 10

It follows from (.), (.), (.), and (.) that

R
(
+)

=
a/p

�( + 
p )

, (.)

R(∞) = lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′
 (x)

g ′
(x)

=  + lim
u→+

(pa – )u + u–p – pa
up – 

= a. (.)

From (.) and (.) together with Theorem . we get Corollary . immediately.

Corollary . Let p > , a, x > , Ip(x) and R(x) be defined by (.) and (.), and x be the
unique solution of the equation R′(x) =  on the interval (,∞) for �p( + /p) < a < . Then
the following statements are true:

() if a ≥ , then the double inequality


a
[(

xp + a
)/p – x

]
< Ip(x) < a–/p�

(

 +

p

)
[(

xp + a
)/p – x

]

holds for all p >  and x > ;
() if  < a ≤ �p( + /p), then the double inequality

a–/p�

(

 +

p

)
[(

xp + a
)/p – x

]
< Ip(x) <


a
[(

xp + a
)/p – x

]

holds for all p >  and x > ;
() if �p( + /p) < a < , then the two-sided inequality


R(x)

[(
xp + a

)/p – x
] ≤ Ip(x) < max

{

a

,
�( + 

p )
a/p

}
[(

xp + a
)/p – x

]

is valid for all p >  and x > .

Theorem . Let p > , a, b, x > , Ip(x) and a be defined by (.) and (.), respectively.
Then the bilateral inequality


a
[(

xp + a
)/p – x

]
< Ip(x) <


b
[(

xp + b
)/p – x

]
(.)

holds for all p >  and x >  if and only if a ≥  and b ≤ a.

Proof If a ≥  and b ≤ a, then inequality (.) is valid for all p >  and x >  follows easily
from (.) and Lemma ..

If the inequality Ip(x) < [(xp + b)/p – x]/b takes place for p >  and x > , then (.) leads
to

lim
x→+

(xp + b)/p – x
Ip(x)

=
b/p

�( + 
p )

≥ b,

which implies b ≤ a.
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Next, we use the proof by contradiction to prove that a ≥  if the inequality Ip(x) >
[(xp + b)/p – x]/a holds for all x >  and p > .

From Lemmas . and . we clearly see that

�p
(

 +

p

)

< a < . (.)

We divide the proof into two cases.
Case : a ≤ a. Then it follows from the sufficiency of Theorem . which was proved

previously that Ip(x) < [(xp + b)/p – x]/a for all p >  and x > .
Case : a < a < . Let R(x) be defined by (.), then Theorem .(), (.), and (.)

lead to the conclusion that there exists x ∈ (,∞) such that R(x) is strictly decreasing on
(x,∞) and

(xp + a)/p – x
Ip(x)

= R(x) > R(∞) = a

or

Ip(x) <

a
[(

xp + a
)/p – x

]

for all p >  and x ∈ (x,∞). �

Let p > , a > , x > , q = /p ∈ (, ), and u = xp > . Then from (.) and (.) one has

Ip(x) = qeu�(q, u),
(
xp + a

)/p – x = (u + a)q – uq,

and Corollary . and Theorem . can be rewritten as follows.

Corollary . Let q ∈ (, ), a > , and u > . Then the following statements are true:
() if a ≥ , then the double inequality

(u + a)q – uq

qa
< eu�(q, u) <

�( + q)[(u + a)q – uq]
qaq (.)

holds for all q ∈ (, ) and u > , and inequality (.) is reversed if
 < a ≤ �/q( + q);

() if �/q( + q) < a < , then the two-sided inequality

(u + a)q – uq

qθ (q, u, a)
≤ eu�(q, u) < max

{

a

,
�( + q)

aq

}
(u + a)q – uq

q

holds for all q ∈ (, ) and u > , where θ (q, u, a) = [(u + a)q – uq
]/[qeu�(q, u)]

and u is the unique solution of the equation

d[ (u+a)q–uq

qeu�(q,u) ]
du

= 

on the interval (,∞) for �/q( + q) < a < .
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Corollary . Let a, b, u > , q ∈ (, ) and a be defined by (.). Then the double inequal-
ity

(u + a)q – uq

qa
< eu�(q, u) <

(u + b)q – uq

qb

holds for all q ∈ (, ) and u >  if and only if a ≥  and b ≤ a.

Let q → + and Ei(u) = limq→+ �(q, u). Then Corollaries . and . lead to Remarks .
and ..

Remark . Let a >  and u > , then the following statements are true:
() if a ≥ , then the double inequality

log( + a
u )

a
< euEi(u) < log

(

 +
a
u

)

(.)

holds for all u > , and inequality (.) is reversed if  < a < e–γ ;
() if e–γ < a < , then we have the sided inequality

eu Ei(u)
log( + a

u
)

log

(

 +
a
u

)

≤ euEi(u) < max

{

a

, 
}

log

(

 +
a
u

)

(.)

for all u > , where u is the unique solution of the equation

d
du

log( + a
u )

euEi(u)
=  (.)

on the interval (,∞) for e–γ < a < .

Remark . Let a, b >  and a be defined by (.). Then the double inequality

log( + a
u )

a
< euEi(u) <

log( + b
u )

b

holds for all u >  if and only if a ≥  and b ≤ a.

In particular, if a = , then numerical computations show that u = . . . . is the
unique solution of the equation

d
du

log( + 
u )

euEi(u)
= 

and eu Ei(u)/ log( + /u) = . . . . > ,/,. Therefore, Remark . leads to
Remark ..

Remark . The double inequality

,
,

log

(

 +

u

)

< euEi(u) < log

(

 +

u

)

is valid for all u > .



Yang et al. Journal of Inequalities and Applications  (2016) 2016:221 Page 10 of 10

Remark . Unfortunately, in the article we cannot deal with the monotonicity for the
function R(x) defined by (.) and present the bounds for the function Ip(x) given by (.)
in the case of p ∈ (, ); we leave it as an open problem to the reader.
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