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Abstract
In this study, a highly efficient spectral-Galerkin method is posed for the fourth-order
Steklov equation with boundary eigenvalue. By making use of the spectral theory of
compact operators and the error formulas of projective operators, we first obtain the
error estimates of approximative eigenvalues and eigenfunctions. Then we build a
suitable set of basis functions included in H1

0(�)∩ H2(�) and establish the matrix
model for the discrete spectral-Galerkin scheme by adopting the tensor product.
Finally, we use some numerical experiments to verify the correctness of the
theoretical results.
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1 Introduction
Increasing attention has recently been paid to numerical approximations for Steklov equa-
tions with boundary eigenvalue, arising in fluid mechanics, electromagnetism, etc. (see,
e.g., [–]). However, most existing work usually treated the second-order Steklov equa-
tions with boundary eigenvalue and there are relatively few articles treating fourth-order
ones. The fourth-order Steklov equations with boundary eigenvalue also have been used
in both mathematics and physics, for example, the main eigenvalues play a very key role
in the positivity-preserving properties for the biharmonic-operator � under the border
conditions w = �w – χwν =  on ∂� (see []).

In this article, we take into account the following fourth-order Steklov equation with
boundary eigenvalue:

�w = , in �, (.)

w = , on ∂�, (.)

�w = χwν , on ∂�, (.)

© 2016 An et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1158-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1158-1&domain=pdf
http://orcid.org/0000-0001-7564-1011
mailto:zhdluo@ncepu.edu.cn


An et al. Journal of Inequalities and Applications  (2016) 2016:211 Page 2 of 12

where � ⊂ R
d (d = , ) is a rectangular domain or a cuboid domain, wν represents the

outer normal derivative of w on ∂�.
A conforming finite element method was first studied and a bound for the exact eigen-

values was provided in [] for (.)-(.). Compared with finite element methods, spec-
tral methods have the characteristics of high accuracy (see []). Especially, as far as we
know, there is no work at all on spectral methods for the fourth-order Steklov equations
with boundary eigenvalue, which is different from the equation and technique in [].
So, this article aims to build a successful spectral-Galerkin formulation for the fourth-
order Steklov equation with boundary eigenvalue. The article includes at least the follow-
ing three features.

() We adopt the generalized Jacobian polynomial to deduce in detail the error formula
of the high dimensional projective operator associated with the fourth-order Steklov equa-
tion with boundary eigenvalue. Then by employing the spectral method of compact oper-
ators, we obtain the satisfactory error formulas of approximative eigenvalues and eigen-
functions.

() We formulate a suitable set of basis functions and build the matrix formulation for
the discrete variational scheme by means of the tensor product. Especially, we combine
a set of basis function in spectral space included in H

(�) with two basis functions in
spectral space included in H

(�) to formulate the basis functions. In this way, the matrix
formulation obtained is sparse so that it can easily and efficiently be solved.

() We not only present the numerical example in the two-dimensional domain for the
equation, but we also provide the three-dimensional one which has not been reported as
far as we know. The numerical results explain the effectiveness of our approach.

The remainder of this article is arranged as follows. Section  provides some prepara-
tions. Section  provides the error formulas of the projective-operator and the spectral-
Galerkin approximate solutions. In Section , we establish the matrix model based on the
tensor product for the discrete variational model such that it can easily be solved. In Sec-
tion , we enumerate some numerical examples to confirm the accuracy and efficiency of
the theoretical results. Finally, in Section , we give main conclusions.

2 Some preparations
Let Hs(�) and Hs(∂�) be the standard Sobolev space on � and ∂� with integer order
s, respectively. H(�) = L(�), H(∂�) = L(∂�), H

(�) = {v ∈ H(�) : v =  on ∂�}. The
norm in Hs(�) and Hs(∂�) are represented by ‖ · ‖s and ‖ · ‖s,∂�, respectively. Throughout
this article, C is a generic positive constant independent of the degree N of polynomials
that may be unequal at the various places.

Put V = H(�) ∩ H
(�). The variational formulation for (.)-(.) is stated as follows.

Seek χ ∈R and nonzero w ∈ V that satisfy

a(w,υ) = χb(w,υ), ∀v ∈ V , (.)

where a(w,υ) =
∫
�

�w�v dx, b(w,υ) =
∫
∂�

wνυν ds.
The source equation corresponding to (.) is denoted in the following form.
Seek w ∈ V that satisfies

a(w,υ) = b(f ,υ), ∀υ ∈ V . (.)
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It is obvious that a(·, ·) is a continuous, symmetric, and V -elliptic bilinear function on
V × V and b(f , ·) is a linear and continuous function on V (see []). Thus, we can define
the norm in V by ‖ · ‖a =

√
a(·, ·) equivalent with the norm ‖ · ‖ in H(�). Further, by

the Lax-Milgram theorem, for equation (.) there exists a unique solution. Therefore, for
g ∈ V , the source equation (.) may determine an operator � : V → V that satisfies

a(�g,υ) = b(g,υ), ∀υ ∈ V . (.)

From [] and (.), we obtain the following equivalent operator formula:

�w =

χ

w. (.)

It follows from Lemma . in [] that the operator � : V → V is self-adjoint and compact.
Then, from the spectral method of compact operators (see, e.g., [, ]), we deduce that
all eigenvalues of � are real and finite multiple numbers, which are increasingly arranged
as follows:

 < χ ≤ χ ≤ χ ≤ · · · ↗ +∞.

The eigenfunctions with respect to two disparate eigenvalues of � must be orthomet-
ric. Therefore, there must be a standard orthometric basis in the eigenspace for the same
eigenvalue. Thus, we can formulate a complete orthometric system of V by means of the
eigenfunctions of � with respect to {χj} as follows:

w, w, . . . , wj, . . . .

Next, we specify some notations which will appear in the sequel. For simplicity, we con-
sider � = Id (d = , ) where I = (–, ). Let Ln(x) represent the Legendre polynomial of
degree n and let

PN = span
{

L(x), L(x), . . . , LN (x)
}

, SN = PN ∩ H
(I), XN = Sd

N .

Then the spectral-Galerkin discrete formulation of (.) is denoted in the following form.
Seek χN ∈ R and nonzero wN ∈ XN that satisfy

a(wN ,υN ) = χN b(wN ,υN ), ∀υN ∈ XN . (.)

The discrete formulation with respect to (.) can be denoted in the following form.
Seek wN ∈ XN that satisfies

a(wN ,υ) = b(f ,υ), ∀υ ∈ XN . (.)

Similarly, it follows from the Lax-Milgram theorem that for (.) there exists one and only
one solution. Further, for g ∈ V there is the operator �N : V → XN that satisfies

a(�N g,υ) = b(g,υ), ∀υ ∈ XN . (.)
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From [] and (.), we obtain the following equivalent operator formula in operator form:

�N wN =


χN
wN . (.)

It is obvious that the rank of the operator �N : V → XN is finite.
Define a projection-operator 	

,
N : V → XN by

a
(
w – 	

,
N w,υ

)
= , ∀w ∈ V ,υ ∈ XN . (.)

Lemma . If � and �N be bounded linear operators determined by (.) and (.), re-
spectively, then we have the following equality:

�N = 	
,
N �.

Proof For ∀w ∈ V ,υ ∈ XN , we have

a
(
	

,
N �w – �N w,υ

)
= a

(
	

,
N �w – �w,υ

)
+ a(�w – �N w,υ) = . (.)

By taking υ = 	
,
N �w – �N w in (.), we obtain

a
(
	

,
N �w – �N w,	,

N �w – �N w
)

= .

Because a(·, ·) is V -elliptic, we immediately obtain �N = 	
,
N �. �

It is obvious that the rank of the operator �N |XN : XN → XN is finite. Therefore, the
eigenvalues of (.) may be increasingly arranged as follows:

 < χN ≤ χN ≤ χN ≤ · · · ≤ χKN (K = dim XN ).

3 Error analysis
We will devote this section to estimating the errors between χN and χ , and wN and w.

Lemma . If (χ , w) and (χN , wN ) are the kth eigenpairs of (.) and (.), respectively,
then we have

χN – χ =
‖wN – w‖

a
‖(wN )ν‖

L(∂�)
– χ

‖(wN – w)ν‖
L(∂�)

‖(wN )ν‖
L(∂�)

. (.)

Proof From (.), we have

a(wN – w, wN – w) – χb(wN – w, wN – w)

= a(wN , wN ) – a(wN , w) + a(w, w) – χb(wN , wN ) + χb(wN , w)

– χb(w, w) = a(wN , wN ) – χb(wN , w) + χb(w, w)

– χb(wN , wN ) + χb(wN , w) – χb(w, w)

= a(wN , wN ) – χb(wN , wN ).
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Dividing b(wN , wN ) in both sides of the above equation and using (.), we obtain

χN – χ =
‖wN – w‖

a
‖(wN )ν‖

L(∂�)
– χ

‖(wN – w)ν‖
L(∂�)

‖(wN )ν‖
L(∂�)

. �

Put

ηN = sup
w∈V ,‖w‖a=

inf
v∈XN

‖�w – v‖a. (.)

It is obvious that

ηN →  (N → ∞). (.)

Theorem . We have

‖� – �N‖a →  (N → ∞). (.)

Proof With the norm of the operator, we obtain

‖� – �N‖a = sup
w∈V ,‖w‖a=

∥
∥(� – �N )w

∥
∥

a

= sup
w∈V ,‖w‖a=

∥
∥�w – 	

,
N �w

∥
∥

a

= sup
w∈V ,‖w‖a=

inf
υ∈XN

‖�w – υ‖a

= ηN →  (N → ∞). �

Let M(χ ) represent the eigenfunction subspace with respect to the eigenvalue χ of (.).

Theorem . If (χ , w) and (χN , wN ) are the kth eigenpairs of (.) and (.), respectively,
then we have

‖w – wN‖a ≤ sup
w∈M(χ ),‖w‖a=

C
χ

∥
∥w – 	

,
N w

∥
∥

a, (.)

χN – χ ≤ sup
w∈M(χ ),‖w‖a=

C
χ

‖w – 	
,
N w‖

a
‖(wN )ν‖

L(∂�)
. (.)

Proof From Theorem ., we deduce that ‖� – �N‖a →  (N → ∞). Thus, from Theo-
rem . in [], we obtain

‖w – wN‖a ≤ C
∥
∥(� – �N )|M(χ )

∥
∥

a. (.)

Therefore, for any w ∈ M(χ ) that satisfies ‖w‖a = , we deduce that

∥
∥(� – �N )w

∥
∥

a =
∥
∥�w – 	

,
N �w

∥
∥

a =

χ

∥
∥w – 	

,
N w

∥
∥

a,

∥
∥(� – �N )|M(χ )

∥
∥

a = sup
w∈M(χ ),‖w‖a=

∥
∥(� – �N )w

∥
∥

a.
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Combining (.) with the above two inequalities yields the desired conclusion (.). By
using Lemma ., we obtain

χN – χ ≤ ‖wN – w‖
a

‖(wN )ν‖
L(∂�)

. (.)

Combining the above inequality with (.) yields (.). �

Denote by Jσ ,κ
n (x) the Jacobi polynomials that are orthometric about the Jacobi weight

function ωσ ,κ (x) := ( – x)σ ( + x)κ over I := (–, ), i.e.,

∫ 

–
Jσ ,κ
n (x)Jσ ,κ

m (x)ωσ ,κ (x) dx = γ σ ,κ
n δmn,

where γ σ ,κ
n = ‖Jσ ,κ

n ‖
ωσ ,κ .

Since for σ ≤ – and/or κ ≤ –, the function ωσ ,κ (x) is not in L(I), it cannot be used
as a general weight function. However, the usual Jacobi polynomials only include the case
where σ > – and κ > –. Thus, it is necessary to extend the definition of the usual Jacobi
polynomials to the following cases where one or both negative integer(s)

Jk,l
n (x) =

⎧
⎪⎪⎨

⎪⎪⎩

( – x)–k( + x)–lJ–k,–l
n–n (x), if k, l ≤ –,

( – x)–kJ–k,l
n–n (x), if k ≤ –, l > –,

( + x)–lJk,–l
n–n (x), if k > –, l ≤ –,

where n ≤ n and

n =

⎧
⎪⎪⎨

⎪⎪⎩

–(k + l), if k, l ≤ –,

–k, if k ≤ –, l > –,

–l, if k > –, l ≤ –.

Let Ĵ k,l
n (x) be the normalized Jacobi polynomials that satisfy

∫ 

–
Ĵ k,l
n (x)Ĵ k,l

m (x)ωk,l(x) dx = δmn.

Now, the d-dimensional (d = , ) generalized Jacobi polynomial tensors and weight
functions are defined by

Jk,l
n (x) =

d∏

j=

Ĵ kj ,lj
nj (xj), ωk,l(x) =

d∏

j=

ωkj ,lj (xj),

where n = (n, n, . . . , nd) ∈ N
d , k = (k, k, . . . , kd), l = (l, l, . . . , ld) with nj ≥ , kj = lj = –

(j = , , . . . , d). Then the d-dimensional generalized Jacobi polynomial tensors Jk,l
n (x) con-

stitute a complete orthometric basis in L
wk,l (Id). Thus, the d-dimensional polynomial sub-

space of degree N can be defined by

Qk,l
N := span

{
Jk,l

n (x) : |n|∞ ≤ N
}

,
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where |n|∞ = max≤j≤d nj. Further, the orthometric projection 	̃
k,l
N : L

wk,l (Id) → Qk,l
N is de-

fined by

∫

Id

(
	̃

k,l
N w – w

)
υNωk,l dx = , ∀υN ∈ Qk,l

N .

Finally, the d-dimensional Jacobi-weighted Sobolev space, which is an extension of the
one-dimensional case, is defined by

Bm
k,l

(
Id) :=

{
w : ∂m

x w ∈ L
wk+m,l+m

(
Id),  ≤ |m| ≤ m

}
, ∀m ∈ N,

whose semi-norm and norm are, respectively, as follows:

|w|Bm
k,l(I

d) :=

( d∑

j=

∥
∥∂m

xj
w

∥
∥

wk+mej ,l+mej ,Id

) 


,

‖w‖Bm
k,l(I

d) :=
( ∑

≤|m|≤m

∥
∥∂m

x w
∥
∥

wk+m,l+m ,Id

) 


,

where m = (m, m, . . . , md) ∈N
d, |m| =

∑d
j= mj, ∂m

x w = ∂
m
x · · · ∂md

xd w, and ej is the jth unit
vector of Rd .

The following lemma is directly obtained from Theorem . and Remark . in [].

Lemma . For any w ∈ Bm
k,l(I

d) and  ≤ m ≤ N + , we have the following error formula:

∣
∣	̃k,l

N w – w
∣
∣
B

k,l(I
d) ≤ c

√
(N – m)!
(N – )!

(N + m)
–m

 |w|Bm
k,l (I

d),

where c � √
 for N � .

Before we proceed with the error formulas, it is important to make the following obser-
vation: (∇(	̃k,l

N w – w),∇υN ) = –(	̃k,l
N w – w,�υN ) = –(	̃k,l

N w – w, wk,l�υN )wk,l =  (∀υN ∈
XN ). Thus, 	̃k,l

N is also an orthometric projection from V into XN .

Theorem . If (χ , w) and (χN , wN ) are the kth eigenpairs of (.) and (.), respectively,
then, for any w ∈ Bm

k,l(I
d), we have

‖w – wN‖a ≤ sup
w∈M(χ ),‖w‖a=

C
χ

N–m|w|Bm
k,l (I

d),

χN – χ ≤ sup
w∈M(χ ),‖w‖a=

C
χ‖(wN )ν‖

L(∂�)
N(–m)|w|Bm

k,l(I
d),  ≤ m ≤ N + .

Proof From (.) and the properties of a(w,υ), we can derive

∥
∥w – 	

,
N w

∥
∥

a = a
(
w – 	

,
N w, w – 	

,
N w

)

= inf
φN ∈XN

a(w – φN , w – φN )
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≤ C inf
φN ∈XN

|w – φN |H(Id)

≤ C
∣
∣w – 	̃

k,l
N w

∣
∣
H(Id)

≤ C
∣
∣	̃k,l

N w – w
∣
∣
B

k,l(I
d).

Thus, from Lemma ., we obtain

∥
∥w – 	

,
N w

∥
∥

a ≤ C
∣
∣	̃k,l

N w – w
∣
∣
B

k,l(I
d) ≤ C

(N – m)!
(N – )!

(N + m)–m|w|Bm
k,l (I

d).

By combining Theorem . and (.) in [], we immediately obtain the desired con-
clusion. �

4 Efficient implementation of the spectral-Galerkin solutions
We will devote this section to providing the approach to solve equation (.) efficiently.
To this end, we first formulate a basis of normal orthometric functions for XN .

Let φk(x) = √
(k+)(k+)

(Lk(x) – (k+)
k+ Lk+(x) + k+

k+ Lk+) (k = , , . . . , N – ), φN–(x) =

L(x) – L(x), and φN–(x) = L(x) – L(x). It is obvious that {φk}N–
k= constitutes a basis for

XN .
From Lemma . in [] and the orthogonality of Legendre polynomial, we immediately

obtain the following lemma.

Lemma . If akj = (φ′′
j ,φ′′

k ), bkj = (φj,φk), and ckj = (φ′
j ,φ′

k), then we have the following
results.

() When k, j = , , . . . , N – , akj = δkj and the only nonzero elements of bkj and ckj are

bkk = d
k
(
ek + h

kek+ + g
k ek+

)
,

bk,k+ = bk+,k = dkdk+(hkek+ + gkhk+ek+),

bk,k+ = bk+,k = dkdk+gkek+,

ckk = –(k + )d
k hk ,

ck,k+ = ck+,k = –(k + )dkdk+,

where ek = 
k+ , gk = k+

k+ , and hk = –( + gk).
() When k = N – , N – , j = , , . . . , N – , akj = , and the only nonzero elements of bkj

and ckj are

bN–, = b,N– =

√




, bN–, = b,N– = –
√




,

bN–, = b,N– =
√




, bN–, = b,N– = –
√




,

cN–, = c,N– =
√




, cN–, = c,N– =
√




.
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() When k = N – , N – , j = N – , N – , the only nonzero elements of akj, bkj, and ckj

are

aN–,N– = , aN–,N– = ,

bN–,N– = /, bN–,N– = /,

cN–,N– = , cN–,N– = .

From the fact that ϕ′
i(±) =  (i = , , . . . , N – ), ϕ′

N–(±) = ∓, and ϕ′
N–(±) = –, we

immediately obtain the following lemma.

Lemma . Let pij = ϕ′
j (–)ϕ′

i(–), qij = ϕ′
j ()ϕ′

i(), then

pij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, i = j = N – ,

, i = j = N – ,

pji = –, i = N – , j = N – ,

, otherwise,

qij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, i = j = N – ,

, i = j = N – ,

qji = , i = N – , j = N – .

, otherwise.

Next we will build the matrix formulation for the discrete equation (.) by means of the
tensor product.

• Case d = .
It is easy to see that XN =span{φi(x)φj(y) : i, j = , , . . . , N – }. Thus, we shall seek

wN =
∑N–

i,j= wijφi(x)φj(y). (.)

Put

W =

⎛

⎜
⎜
⎜
⎜
⎝

w w · · · w,N–

w w · · · w,N–
...

... · · · ...
wN–, wN–, · · · wN–,N–

⎞

⎟
⎟
⎟
⎟
⎠

.

By denoting the column vectors of W by w̄, plugging the (.) into (.), taking υN

through all the basis functions in XN , and using tensor product, we can simplify the
Legendre-Galerkin approximation to the system (.) in two-dimensional case as follows:

Aw̄ = χNBw̄, (.)

where A = B ⊗ A + A ⊗ B + C ⊗ C, B = (P + Q) ⊗ B + B ⊗ (P + Q), A = {aij}N–
i,j=, B = {bij}N–

i,j=,
C = {cij}N–

i,j=, P = {pij}N–
i,j=, Q = {qij}N–

i,j=, and ⊗ denotes the notation of tensor product of
matrix.

• Case d = .
It is easy to see that XN = span{φi(x)φj(y)φk(z) : i, j, k = , , . . . , N – }. Hence, we shall

look for

wN =
∑N–

i,j,k= wijkφi(x)φj(y)φk(z). (.)
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Put

Wk =

⎛

⎜
⎜
⎜
⎜
⎝

wk
 wk

 · · · wk
,N–

wk
 wk

 · · · wk
,N–

...
... · · · ...

wk
N–, wk

N–, · · · wk
N–,N–

⎞

⎟
⎟
⎟
⎟
⎠

.

By denoting the column vectors of Wk by w̄k (j = , , . . . , N – ), plugging the (.) into
(.), taking υN through all the basis functions in XN , and using tensor product, we can
simplify the Legendre-Galerkin approximation to the discrete equation (.) in the three-
dimensional case as follows:

Aw̄k = χNBw̄k , (.)

where A = B ⊗ B ⊗ A + B ⊗ A ⊗ B + A ⊗ B ⊗ B + B ⊗ C ⊗ C + C ⊗ B ⊗ C + C ⊗ C ⊗ B,
B = (P + Q) ⊗ B ⊗ B + B ⊗ (P + Q) ⊗ B + B ⊗ B ⊗ (P + Q).

Based on (.) and (.) we can efficiently compute the approximative eigenvalues of
(.)-(.) on the rectangle domain and cubic one, respectively.

5 Numerical examples
We now carry out some numerical experiments to compute the eigenvalues of (.) on
�̄ = [,π/] and �̄ = [,π/], respectively. By using finite element methods, [] com-
puted the first four eigenvalues of (.) on �̄ = [,π/] and gave the bounds of the exact
eigenvalues as follows:

χ ∈ (., .), χ ∈ (., .),

χ ∈ (., .), χ ∈ (., .).

However, as far as we know, there has appeared no report of numerical results on three-
dimensional regions. In this article, we employ the Legendre polynomials to formulate
the basis functions such that the matrices in the discrete variational formulation are
sparse, which makes it efficient and easy for us to compute eigenvalues of (.) on three-
dimensional regions. We operate our programs in MATLAB. The numerical results are
listed in Table  and Table , where DOF denotes the degree of freedom (number of un-
knowns).

We can see that the eigenvalues in Table  have at least ten-digit accuracy with N = ,
i.e., DOF = . As a comparison, we observe that the eigenvalues obtained by using finite
element in [] only have four-digit accuracy for h =

√
π/(), i.e., DOF = ,.

Table 1 The approximative eigenvalues on �̄ = [0,π /2]2

N DOF χ1 χ2 χ4

15 196 2.212697396 4.416172185 6.081723134
20 361 2.212697395 4.416172142 6.081722889
25 576 2.212697395 4.41617214 6.081722871
30 841 2.212697395 4.41617214 6.081722871
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Table 2 The approximative eigenvalues on �̄ = [0,π /2]3

N DOF χ1 χ2 χ5

10 729 2.989297949 4.966408489 6.533085863
15 2,744 2.989297401 4.966394295 6.532973331
20 6,859 2.989297388 4.966394153 6.532972744
25 13,824 2.989297388 4.966394148 6.532972712

It also can be seen from Table  that the eigenvalues have at least eight-digit accuracy
with N = . By computing, for the problem (.) on �̄ = [,π/], we also see that χ is a
simple eigenvalue, χ and χ are all eigenvalues with multiplicity .

6 Conclusions
In this study, we have establish an efficient spectral-Galerkin formulation for the fourth-
order Steklov equation with boundary eigenvalue. By analyzing the error formulas of pro-
jective operators and adopting the compact-operator spectral method, we have derived
the error formulas of approximative eigenvalues and eigenfunctions. Then we have for-
mulated a suitable set of basis functions included in H

(�) ∩ H(�) and built the matrix
formulation for the discrete variational scheme by means of the tensor product. In this
way, we can efficiently solve the discrete system and obtain highly accurate approximative
eigenvalues. We have provided the numerical examples in rectangle domain and cubic one
and the satisfactory results obtained show that our method is very effective. In this study,
we confined our focus to the cases in the rectangle domain and the cubic one. In fact, the
technique used in this article could be expanded to more general domains by adopting a
spectral-element technique.
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