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Abstract
Exploring some results of (Raïssouli in J. Math. Inequal. 10(1):83-99, 2016) from
another point of view, we introduce here some power-operations for (bivariate)
means. As application, we construct some classes of means in one or two parameters
including some standard means. We also define a law between means which allows
us to obtain, among others, a simple relationship involving the three familiar means,
namely the first Seiffert mean, the second Seiffert mean, and the Neuman-Sándor
mean. At the end, more examples of interest are discussed and open problems are
derived as well.
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1 Introduction
By a (bivariate) mean we understand a map m between positive real numbers satisfying
the following double inequality:

∀a, b >  min(a, b) ≤ m(a, b) ≤ max(a, b).

As usual, continuous (resp. symmetric/homogeneous) means are defined in the habitual
way. The standard examples of such means are given in the following:

A(a, b) =
a + b


, G(a, b) =

√
ab, H(a, b) =

ab
a + b

, C(a, b) =
a + b

a + b
,

L(a, b) =
b – a

ln b – ln a
, P(a, b) =

b – a
 arctan

√
b/a – π

=
b – a

 arcsin b–a
b+a

,

T(a, b) =
b – a

 arctan(b/a) – π/
=

b – a
 arctan b–a

b+a
, M(a, b) =

b – a
 arcsinh b–a

b+a
,

with L(a, a) = P(a, a) = T(a, a) = M(a, a) = a, and they are known as the arithmetic mean,
geometric mean, harmonic mean, contra-harmonic mean, logarithmic mean, first Seiffert
mean [], second Seiffert mean [], and Neuman-Sándor mean [], respectively. Other
examples of means (not needed here) can be found in the literature; see [] for instance
and the references cited therein. As usual, we identify a mean m with its value at (a, b)
by setting m := m(a, b) for the sake of simplicity. We write m < m for meaning that
m(a, b) < m(a, b) for all a, b >  with a �= b. The notation m∗ refers to the dual mean of
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m defined by m∗(a, b) = (m(a–, b–))– for all a, b > . As is well known, if m is symmetric
and homogeneous then m∗(a, b) = ab/m(a, b), which we briefly write m∗ = G/m.

In [], the following result has been established (see Corollary .).

Theorem A Let m be a continuous homogeneous symmetric mean. Then the binary map
mσ , defined by mσ (a, a) = a and

(
mσ (a, b)

)– =


b – a

∫ b/a


m

(
,


t

)
dt (.)

for all a, b >  with a �= b, is a continuous homogeneous symmetric mean (called the integral
mean-transform of m).

For example, we have Aσ = H , Gσ = L and Hσ = T (see [] for more details and exam-
ples). A continuous homogeneous symmetric mean will be called regular mean, for the
sake of simplicity. A regular mean m will be called σ -regular if the map x �−→ m(x, ) is
continuously differentiable on (,∞) and the function fm (called the generated function
of m) defined by

fm(x) =
d

dx

(
x – 

m(x, )

)

for all x > , with fm() = , satisfies the double inequality

min
(
, /x) ≤ fm(x) ≤ max

(
, /x)

for all x > . All the previous means are regular and σ -regular, except C, which is not σ -
regular; see [] (Examples ., ., .).

With this, the following result has been proved in [] (see Theorem .).

Theorem B Let m be a σ -regular mean with its generated function fm. Then the binary
map rm, defined by

rm(a, b) = bfm(
√

b/a)

for all a, b > , is a regular mean with rσ
m = m.

If we denote by Mr and Mσ the sets of all regular means and σ -regular means, respec-
tively, then the mean-map m �−→ mσ is a bijection from Mr into Mσ and we can write

(
rσ

m = m, rm ∈Mr
) ⇐⇒ (

rm = m–σ , m ∈Mσ

)
. (.)

For example, we have H–σ = A, L–σ = G and T–σ = H . See [] for more examples and
detail.

It is easy to see that the map (a, b) �−→ z := A/G(a, b) is surjective from (,∞) × (,∞)
into [,∞), with z =  if and only if a = b. For m ∈Mσ , we put

Fm(z) :=
m–σ

G
, with z = A/G ≥ ,
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which we call the regularized function of m. It is easy to see that, if m, m ∈Mσ are such
that Fm = Fm then m = m. Further, it is proved in [] that

(∀z >  Fm (z) > Fm (z)
) �⇒ m < m. (.)

The following result has also been proved there (see Corollary .).

Theorem C The following relationships are met:

FL(z) = , FH (z) = z, FT (z) =

z

, FA(z) =


z + 
,

FG(z) =
√

z + 


, FP(z) =
√


z + 

, FM(z) =
√


z + z

.

By a simple observation, it is easy to see that, for all z > ,

FT (z) < FM(z) < FA(z) < FP(z) < FL(z) =  < FG(z) < FH(z). (.)

This, with (.), immediately implies (simultaneously and in a fast way) the following well-
known chain of mean-inequalities:

H < G < L < P < A < M < T .

See [] for more detail.
The remainder of this paper will be organized as follows: after this introduction, Sec-

tion  is devoted to a list of lemmas that will be needed throughout the paper. In Section 
we define m(q) the mean-power of a mean m of order q, with |q| ≤ . As examples, we
obtain P = G(–), T = H (–), and P = A(/). This allows us to construct, in Section , a fam-
ily of means involving one parameter. Section  displays the definition of a new concept,
so-called index of a mean, in the aim to define m(q) when |q| > . We obtain, among oth-
ers, P() = A = G(–) and L(q) = L for each q real number. In Section , we introduce a law
� between means and we study its properties. As a first application, we obtain a simple
relationship involving the three means P, M, and T , namely M = T (/) � P. Further appli-
cations are discussed in Section  where we construct some families of means involving
two parameters and including all the previous means. Finally, Section  is focused on giv-
ing more examples of applications as well as deriving open problems for future research.

2 Some lemmas needed
As already pointed out, we state here some lemmas that will be needed in the sequel. First,
we mention that every homogeneous mean m can be written in the form m = Gg(A/G) for
some function g , since a and b can be both expressed in terms of A and G. The following
lemma explains this situation.

Lemma . Let m ∈Mσ be given and we set

Fm(z) =
m–σ

G
, with z = A/G ≥ .
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Then we have

∀z ≥  l(z) := z –
√

z –  ≤ Fm(z) ≤ z +
√

z –  := u(z). (.)

Proof Since m–σ is a mean

∀a, b >  min(a, b) ≤ m–σ (a, b) ≤ max(a, b).

This, with G(a, b) =
√

ab and the fact that m–σ is homogeneous, yields

∀a, b >  min(
√

a/b,
√

b/a) ≤ Fm(z) ≤ max(
√

a/b,
√

b/a),

where, with A := (a + b)/, we put

z := A/G = (/)
√

a/b + (/)
√

b/a.

Setting t =
√

a/b we obtain t – zt +  = , which gives t = z –
√

z –  or t = z +
√

z – .
The remainder of the proof is straightforward and therefore omitted here. �

We notice that Fmin(z) = u(z) and Fmax(z) = l(z), where min and max denote the trivial
means (a, b) �−→ min(a, b) and (a, b) �−→ max(a, b), respectively.

A function g , defined from [,∞) into (,∞) and satisfying l(z) ≤ g(z) ≤ u(z) for all z ≥ ,
will be called here an admissible function. The functions l and u are the lower and upper
admissible functions, respectively. To obtain other examples of admissible functions g , it
is sufficient to take g(z) = η(l(z), u(z)) for some mean η (symmetric, homogeneous, or not).
The following example explains the latter situation.

Example . Simple computation (with Theorem C) leads to:
(i) g(z) := A(l(z), u(z)) = z = FH (z).

(ii) g(z) := G(l(z), u(z)) =  = FL(z).
(iii) g(z) := H(l(z), u(z)) = /z = FT (z).

Inversely, let g be an admissible function, does m ∈ Mσ exist such that g(z) = m–σ /G
whenever z = A/G? The following result answers affirmatively the latter question.

Lemma . Let g be a continuous admissible function. Then there exists a unique m ∈Mσ

such that

Fm(z) = g(z), with z = A/G.

Such a mean m is given by m–σ = Gg(A/G), or explicitly, for all a, b > , a �= b,

(
m(a, b)

)– =


b – a

∫ b/a




t

g
(

t + 
t

)
dt.

Proof If g is as assumed, it is easy to see that Gg(A/G) is a regular mean. Detail is simple
and therefore omitted here. �
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Remark that, for all z ≥ , we have  < l(z) ≤  ≤ u(z) and l(z) = /u(z). This implies that
if g is admissible then its point-wise inverse g– i.e. g–(z) = /g(z), is also admissible. More
generally, let q be a real number and define the point-wise q-power of g by gq(z) := (g(z))q,
with g(z) = , for all z ≥ . If g is admissible, it is easy to see that g is in general not
admissible. A function g for which gq is admissible, for some real number q, will be called
q-admissible. It is immediate that, if g is q-admissible then so is g– := /g . With this, the
following result may be stated.

Lemma . Let g be an admissible function. Then g is q-admissible whenever |q| ≤ .

Proof Let g be admissible i.e.

∀z ≥   < l(z) ≤ g(z) ≤  ≤ u(z).

Assume that  ≤ q ≤ . It is easy to see that

∀z ≥   < l(z) ≤ (
l(z)

)q ≤ (
g(z)

)q ≤  ≤ (
u(z)

)q ≤ u(z),

which implies that gq is admissible. Now, if – ≤ q ≤  we write gq = /g–q, with  ≤ –q ≤ .
We then deduce that gq is admissible, since g–q is admissible as well. The proof is com-
pleted. �

The following lemma will also be needed in some situations below.

Lemma . Let g be an admissible function and q ≥ . Assume that g(z) ≤  (resp. g(z) ≥ )
for all z ≥ . If g is q-admissible then g is s-admissible whenever  ≤ s ≤ q.

Proof If g(z) ≤  for all z ≥  and g is q-admissible, we have for  ≤ s ≤ q,

l(z) ≤ (
g(z)

)q ≤ (
g(z)

)s ≤ g(z) ≤ u(z).

If g(z) ≥  then g–(z) := /g(z) ≤ . We apply the above for g–. The proof is complete. �

We end this section by stating another needed lemma recited in the following.

Lemma . Let h(z) = j(z)/k(z) >  for all z ≥ , where j and k are two polynomial functions
with deg(j) = c and deg(k) = d. Let q be a real number. If the inequalities

l(z) ≤ (
h(z)

)q ≤ u(z)

hold for all z ≥  then q|c – d| ≤ . In particular, q ≤  provided c �= d.

Proof Since l(z) = /u(z) we can, without loss the generality, assume that c ≥ d. It is easy
to see that

(
h(z)

)q ∼ αzq(c–d) and u(z) ∼ z, when z → ∞



Raïssouli Journal of Inequalities and Applications  (2016) 2016:224 Page 6 of 23

for some constant α > . If q(c – d) >  = deg(z) then (h(z))q ≤ u(z) does not hold for z
enough large. We then deduce q(c – d) ≤ . If c �= d then q ≤ /(c – d) ≤ , since c and d are
both integers. The proof is complete. �

3 Mean-power and mean-iterate
In this section, we will observe the previous results from another point of view in the aim
to interpret them in service of means.

Let g be a continuous admissible function. By Lemma ., there exists a unique m ∈Mσ

such that

Fm(z) :=
m–σ

G
= g(z), z = A/G.

Due to Lemma ., with Lemma . again, for each q ∈ [–, ] there exists rq ∈ Mσ such
that

Frq (z) :=
r–σ

q

G
= gq(z), z = A/G.

We then deduce that

Frq (z) =
(
Fm(z)

)q := Fq
m(z), z = A/G.

Summarizing, we then obtain the following result.

Proposition . Let m ∈ Mσ and q ∈ [–, ]. Then there exists a unique rq ∈ Mσ such
that Frq (z) = Fq

m(z), with z = A/G. Further, rq is given by

rq =
(

G
(

m–σ

G

)q)σ

, with r = Gσ = L. (.)

We can then state the following definition.

Definition . Let q ∈ [–, ]. The mean rq ∈ Mσ defined by the previous proposition
will be called the q-mean-power of m and we write rq = m(q), with m() = L. If q = /n,
with n ≥  integer, m(/n) will be called the n-mean-iterate of m. In particular, m(/) is the
mean-root of m and m(–) is the mean-inverse of m. Clearly, m() = m.

Using (.), it is easy to see that (m(q))(q) = m(qq) whenever q, q ∈ [–, ]. The follow-
ing examples illustrate the previous concepts.

Example . According to Theorem C, with the previous definition, we immediately de-
duce the following statements.

(i) For each q ∈ [–, ], L(q) = L.
(ii) P = G(–) and T = H (–).

(iii) P = A(/) and G = A(–/).

Example . By using (.), elementary computations lead to (with |q| ≤  and a, b > ,
a �= b)

(min)(q)(a, b) = q
b – a

bq – aq max
(
aq, bq)
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and

(max)(q)(a, b) = q
b – a

bq – aq min
(
aq, bq).

In particular, (min)(–) = max and (max)(–) = min. This also follows from the fact that
Fmin(z) = u(z) and Fmax(z) = l(z) with l(z) = /u(z).

Other various examples of interest will be discussed throughout the following sections.
Now, we state the following result summarizing the elementary properties of the mean-
map m �−→ m(q) for q ∈ (, ).

Proposition .
(i) Let m, m ∈Mσ be such that Fm (z) < Fm (z) for all z > . Then m(q)

 > m(q)
 for each

q ∈ (, ).
(ii) Let m ∈Mσ be such that Fm(z) <  (resp. Fm(z) > ) for all z > . Then we have

m(q) < m(q) < m (resp. m < m(q) < m(q)) whenever  ≤ q < q ≤ .

Proof It is straightforward. We therefore omit it for the reader. �

If q, q, q ∈ (–, ) then the mean-inequalities in the previous proposition are reversed.
Now, we will discuss the comparison between m and m(q) when m belongs to the set of
the previous standard means A, G, H , L, P, T , and M. First, by (.) with Proposition .,
we immediately deduce

(min)(q) < H (q) < G(q) < L(q) = L < P(q)

< A(q) < M(q) < T (q) < (max)(q) (.)

and

H < H (q), G < G(q), P(q) < P, A(q) < A, M(q) < M, T (q) < T . (.)

Further, by virtue of the relation A(/) = P, with Proposition .(ii), we deduce

if  < q < /, then A(q) < P and if / < q < , then P < A(q). (.)

Now, we state the following results which give more information as regards comparison
between the previous means.

Proposition . Let q ∈ (, ). Then we have:
(i) If  < q ≤ / then G < H (q) and T (q) < P.

(ii) If / ≤ q <  then H (q) < G.
(iii) If  < q < / then M(q) < A and so M(q/) < P.

Proof We use (.) and Theorem C. We have to compare FG(z) =
√

(z + )/ and FH(q) (z) :=
(FH (z))q = zq. Setting �(z) = zq – z – , z > , and studying the monotonicity of � we
deduce the desired result about G and H (q) in a simple way. Similar method for the other
mean-inequalities. Detail is simple and therefore omitted here. �
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The previous proposition when combined with (.), (.), and (.) yields the following
corollary.

Corollary . If  < q ≤ / then we have

(H <) G < H (q) < G(q) < L(q) = L < P(q)

< A(q) < M(q) < T (q) < P (< A < M < T). (.)

In particular, for all integer n ≥  we have

(H <) G < H (/n) < G(/n) < L(/n) = L < P(/n)

< A(/n) < M(/n) < T (/n) < P (< A < M < T). (.)

Remark . For some values of q, like q ∈ (/, /), Proposition . does not give any
information as regards comparison of G and H (q). In fact, FG(z) and (FH(z))q are not
comparable, because the related function � is not monotonic and satisfies �() = ,
limz↑∞ �(z) = –∞. Of course, we cannot deduce any conclusion as for comparison of G
and H (q), since (.) is just an implication. This is the reason why analogous of (.) when
q /∈ (, /] cannot be stated in a similar manner as previous.

Now, let us go back to the relationships of Example .. They tell us that the two means P
and T can be written in a short and simple form involving the simplest means A, G and H .
Some questions arise from this observation:

(a) What about the mean M? See Theorem ., Section  below.
(b) What is the expression of A(q), for each q ∈ [–, ], extending the relationship

A(/) = P? The answer to this question will be the aim of the next section. We also
give the expression of T (q).

(c) State a reciprocal study of the previous one i.e. let r ∈Mσ and q ∈ [–, ]. Does
m ∈Mσ exist such that m(q) = r? This will be the purpose of Section  below.

4 On a family of 1-power means
As pointed before, this section will be devoted to an expression of A(q) for q ∈ [–, ].
Such an expression should coincide with that of P when we take q = /, since A(/) = P.
Precisely, the following result may be stated.

Theorem . Let q ∈ [–, ]. Then A(q) is given by

A(q)(a, b) =
b – a

q(�q(b/a) – �q())
(.)

for all a, b > , a �= b, where for all x >  we set

�q(x) =
∫ x



tq–

(t + )q dt =

q

∫ xq



dt
(t/q + )q . (.)

Further, A(q) is strictly increasing (resp. decreasing) in q ∈ (, ) (resp. in q ∈ (–, )).
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Proof By (.), with Definition . and the fact that A–σ = G/(A + G) (see [], Theo-
rem .) we have

A(q) =
(
G

(
A–σ /G

)q)σ =
(

G
(

G
A + G

)q)σ

.

Simple computation leads to (for all t > )

G
(
, /t) = /t and

G
A + G

(
, /t) =

t
(t + ) .

These, when substituting in (.), with m := G(G/(A + G))q, yield (for all a, b > , a �= b)

(
A(q)(a, b)

)– =
q

b – a

∫ b/a



tq–

(t + )q dt.

We then deduce (.) after simple manipulations and some elementary topics of inte-
gration. Detail is simple and omitted here. Now, by Proposition .(ii) and the fact that
FA(z) < , for all z > , we deduce that A(q) is strictly increasing in q ∈ (, ). The case
q ∈ (–, ) is similar. The proof is complete. �

The above theorem immediately gives (again) A() = A and A(/) = P. Taking q = /n,
with n ≥  integer, in the previous theorem we obtain a sequence of regular means. Such
sequence satisfies interesting properties as summarized in the following result.

Proposition . Let Pn := A(/n) for each integer n ≥ . Then the mean-sequence (Pn) is
strictly point-wisely decreasing. Further, (Pn) converges point-wisely to L, the logarithmic
mean i.e.

L = P∞ < · · · < P < P < P = P < P = A.

Proof The fact that (Pn) is strictly point-wisely decreasing follows from Proposition ..
This, with the fact that Pn is a mean i.e. min(a, b) ≤ Pn(a, b) ≤ max(a, b) for all a, b >  and
n ≥ , implies that (Pn) converges point-wisely to a mean, which we call P∞. We need to
prove P∞ = L. Such a result follows from the next lemma and the proof of the theorem will
then be completed. �

Lemma . Let q ∈ (, ). For x >  we set

αq(x) =

q

∫ xq



dt
(t/q + )q .

Then we have

lim
q↓

αq(x) = ln x.

Proof By the classical mean value theorem we can write

αq(x) =
xq – 

q


(s/q + )q
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for some s := sq(x) between  and xq. Assume that xq ≥  then  ≤ s/q +  ≤ x + . We then
obtain

xq – 
q


(x + )q ≤ αq(x) ≤ 

q
xq – 

q
,

with reversed inequalities if xq ≤ . Since limq↓
xq–

q = ln x (by Hopital’s rule, for example)
we deduce the desired result. �

By (.) we deduce limn↑∞ P(/n)(a, b) = L(a, b). We can also see this by writing P(/n) =
(A(/))(/n) = A(/n).

Now, let us compute T (q) for  < q ≤ . By similar way as for A(q), we obtain the following
result (details are omitted here).

Theorem . Let q ∈ [–, ]. For all a, b >  with a �= b, we have

T (q)(a, b) =
b – a

q–(�q/(b/a) – �q/())
, (.)

where �q/(x), for x > , is defined as in (.). Moreover, T (q) is strictly increasing (resp.
decreasing) in q ∈ (, ) (resp. in q ∈ (–, )).

We also have limn↑∞ T (/n)(a, b) = L(a, b), by the same arguments as previously. This,
with (.), immediately gives limn↑∞ M(/n)(a, b) = L(a, b). Otherwise, from (.) with (.),
it is easy to see that, for all a, b >  and each q ∈ [, ],

A(q/)(a, b) = A(a, b)T (q)(a, b).

Taking q =  in the latter equality we obtain L(a, b) = A(a, b)L(a, b) while if we take q = 
we find A(/)(a, b) = P(a, b) = A(a, b)T(a, b). These latter relations are well known and
can be obtained from the definitions of A, L, P, and T .

Since H = T (–) we deduce H (q) = T (–q) for each |q| ≤ . The expression of H (q) follows
from (.). For another way of computation of G(q) and P(q), see the next section (Examples
., .). For M(q), see Section  below.

5 Index of a mean
Let q be a real number. A mean m ∈Mσ will be called q-coherent if its regularized func-
tion Fm is q-admissible. By Lemma ., we deduce that every m ∈ Mσ is q-coherent for
each |q| ≤ . We can then introduce the following definition.

Definition . Let m ∈Mσ . We set

ind(m) := sup{s, m is q-coherent for each  ≤ q ≤ s},

which we will call the index of m.

It is clear that ind(m) ≥  for every m ∈ Mσ , since m is q-coherent for |q| ≤ . The
following result may be stated as well.
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Proposition . Let m ∈ Mσ be such that ind(m) = i. Then the following assertions hold
true:

(i) ind(m(–)) = i.
(ii) ind(m(q)) = i/|q| for every |q| ≤  with q �= .

(iii) There exists r ∈Mσ such that r(/q) = m whenever  ≤ q ≤ i.

Proof (i) follows from the definition of index with the fact that l(z) = /u(z).
(ii) It is easy to see that m(q) is s-coherent if and only if m is qs-coherent. If q ∈ (, ], we

can then write

ind
(
m(q)) = sup

{
s, m(q) is p-coherent for each  ≤ p ≤ s

}

= sup{s, m is pq-coherent for each  ≤ p ≤ s}
=


q

sup{qs, m is pq-coherent for each  ≤ pq ≤ sq} =
i
q

.

If q ∈ [–, ) we write m(q) = (m(–))(–q) and the desired result follows from the previous
case with (i).

(iii) If ind(m) = i then, by definition, Fq
m(z) := (Fm(z))q is admissible for each  ≤ q ≤ i.

Then, by Lemma ., there exists r ∈ Mσ such that (Fm(z))q = Fr(z) or again Fm(z) =
(Fr(z))/q := Fr(/q) (z), where r(/q) is defined by (.). We then deduce m = r(/q) and the proof
is complete. �

The following example illustrates the previous concepts.

Example .
(i) Since FL(z) = , L is q-coherent for all real number q and so ind(L) = ∞. This rejoins

Proposition .(ii) with m() = L, by adopting the convention i/ = ∞.
(ii) Since Fmin(z) = u(z) we deduce that the largest q ≥  such that (for all z ≥ )

l(z) ≤ (
Fmin(z)

)q =
(
u(z)

)q ≤ u(z)

is q = . This means that ind(min) = . Similarly, we verify that ind(max) = .

The following proposition gives more examples of interest.

Proposition . The following assertions hold true:
(i) ind(A) = ind(H) = ind(T) = ind(M) = .

(ii) ind(G) = ind(P) = .
(iii) L is the unique σ -regular mean such that ind(L) = ∞.

Proof (i) Let q be the index of A (resp. H , T or M). Lemma . (with Theorem C) immedi-
ately implies that q ≤ . Since ind(m) ≥  for every mean m ∈Mσ , we deduce the desired
result.

(ii) Since P = A(/) we deduce by Proposition .(ii), ind(P) =  ind(A) = . The relation
P = G(–), with Proposition .(i), yields ind(G) = ind(P) = .
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(iii) Let m ∈ Mσ be such that ind(m) = ∞. This means that m is q-coherent for every
real number q. By definition we then have, for all z ≥ ,

l(z) ≤ (
Fm(z)

)q ≤ u(z).

We would like to show that m = L or equivalently  = FL(z) = Fm(z) for all z ≥ . Assume
that Fm(z) �=  for some z ≥ . Since l(z) = /u(z) we can assume that Fm(z) > . Writing

l(z) ≤ (
Fm(z)

)q ≤ u(z),

which must be valid for arbitrary real number q, we then obtain a contradiction by letting
q ↑ ∞. The proof is completed. �

The following example is also of interest.

Example . Let q ≥ . Since ind(A) = , Proposition .(ii) implies that ind(A/q) = q,
where A(/q) is defined by (.). Similarly, ind(T /q) = q, where T (/q) is defined by (.). If
follows that, for each q ≥ , there exists m ∈ Mσ (not unique) such that ind(m) = q. In
another way, the map m �−→ ind(m) defined from Mσ into [,∞) is surjective but not
injective.

Now, we are in a position to state the following definition.

Definition . Let m ∈Mσ be such that ind(m) = i and  ≤ q ≤ i. Then the mean r ∈Mσ

defined by Proposition .(ii) will be denoted by r := m(q) and called the q-mean-power
of m. In particular, if i ≥  and q =  then m() is called the mean-square of m.

Definition . introduces m(q) when |q| ≤  for all m ∈ Mσ , while Definition . de-
fines m(q) when  ≤ q ≤ i provided ind(m) = i. We can then define m(q) for q ≤ –i when
ind(m) = i. In fact, we write m(q) := (m(–))(–q), with ind(m) = ind(m(–)).

We now observe the following question: how could one compute m(q) when ind(m) = i
and  ≤ q ≤ i. Following the previous definition, with the help of (.) and (.), we have
(with q ≥ )

r := m(q) ⇐⇒ m = r(/q) =
(
G

(
r–σ /G

)/q)σ

⇐⇒ m–σ /G =
(
r–σ /G

)/q

⇐⇒ r–σ = G
(
m–σ /G

)q

⇐⇒ r := m(q) =
(
G

(
m–σ /G

)q)σ .

Summarizing, m(q) can be, in all cases, computed by the same formulas (.) whenever
|q| ≤ ind(m).

Now, let us observe the following example explaining the previous discussion.

Example .
(i) By ind(L) = ∞ we then deduce that L(q) is also defined for each q ≥ . We then have

L(q) = L for every real number q.
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(ii) Since ind(P) = , the relationship P = A(/) is, following the previous definition,
equivalent to P() = A.

(iii) By ind(A) = , the relation Pn := A(/n) can then be written as P(n)
n = A, since

ind(A(/n)) = n according to Proposition .(ii).
(iv) Since ind(G) = , G(q) exists (as a mean) for each |q| ≤ . We can show that (we

omit detail here)

G() =
(

A + G


)σ

=
GL

G + AL
.

See similar examples in Section  (Theorem .), where some details are presented.

We end this section by stating the following result, which summarizes some elementary
properties of the index.

Proposition . Let m ∈Mσ . Then the following assertions are met:
(i) (m(q))(q) = m(qq) for all |q| ≤  and |q| ≤ .

(ii) (m(q))(q) = m(qq) for all q, q such that |q| ≤ ind(m) and |qq| ≤ ind(m). In
particular, (m(/q))(q) = m for each |q| ≥  and (m(q))(/q) = m for every |q| ≤ ind(m).

(iii) ind(m(q)) = ind(m)/|q| for each |q| ≤ ind(m).

Proof It is straightforward and we therefore omit all detail here. �

Now, we present the following example, which illustrates the previous results.

Example . Since P = A(/) and ind(P) = , P(q) exists (as a mean) for every |q| ≤ . By
Proposition .(ii), we can write P(q) = (A(/))(q) = A(q/). This, with (.), immediately gives
(for all a, b > , a �= b, |q| ≤ ),

P(q)(a, b) =
b – a

q(�q/(b/a) – �q/())
. (.)

As for A(q) and T (q), we can easily see that P(q) is strictly increasing in p ∈ (, ] and strictly
decreasing in q ∈ [–, ).

Before ending this section, we will give an explanation as regards the interest of the index
concept. Indeed, Proposition .(iii) does not hold for q > i = ind(m). That is, there is no
r ∈ Mσ such that r(/q) = m for q > ind(m). In fact, let us choose m such that ind(m) = ,
m = H for fixing the idea. Assume that there exists r ∈ Mσ such that r(/q) = H for some
q > ind(H) = . By (.), such r should satisfy (G(r–σ /G)/q)σ = H or equivalently, since H
is σ -regular and H–σ = A,

r–σ = G
(
H–σ /G

)q = G(A/G)q = AqG–q.

Now, we will show that, for q > , AqG–q is not a mean. Assume that, for all a, b > , we
have

min(a, b) ≤ Aq(a, b)G–q(a, b) ≤ max(a, b).
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Taking b =  and a ≥ , it is then necessary to have

 ≤
(

a + 


)q

a(–q)/ ≤ a or equivalently aq– ≤
(

a + 


)q

≤ aq+.

Since q > q + , the latter inequality is false for a ≥  large enough. Summarizing, our
desired claim is justified.

6 On a law between means
We preserve the same notation as in the above sections. Inspired by the previous study,
we will construct here an internal operation (law) between σ -regular means.

Let C be defined by

C =
{

(m, m) ∈Mσ ×Mσ , l(z) ≤ Fm (z)Fm (z) ≤ u(z) for all z ≥ 
}

.

If ind(m) ≥ i then (m(i), m(i)) ∈ C whenever i + i = i. In particular, (m, m) ∈ C for every
m ∈Mσ such that ind(m) ≥ .

Now, let (m, m) ∈ C and define the following law:

m � m = m if and only if Fm (z)Fm (z) = Fm(z) for all z ≥ .

Remark that, if ind(m) ≥  then m�m = m(), where m() was introduced in Definition ..
More generally, it is not hard to show that m(p) � m(q) = m(p+q) whenever p, q ≥  and
p + q ≤ ind(m), where m(q) was defined in the previous sections.

A triplet (m, m, m) of σ -regular means will be called �-compatible if (m, m) ∈ C ,
(m, m) ∈ C , (m � m, m) ∈ C and (m, m � m) ∈ C . If ind(m) ≥  then (m, m, m) is �-
compatible. More generally, if ind(m) ≥ i then (m(i), m(i), m(i)) is �-compatible whenever
i + i + i = i.

The following result summarizes some properties of the law �.

Proposition . With the above, the following assertions are met:
(i) For all (m, m) ∈ C , (m, m) ∈ C and m � m = m � m.

(ii) (m � m) � m = m � (m � m) for all �-compatible triplet (m, m, m).
(iii) For all m ∈Mσ , (m, L) ∈ C and m � L = L � m = m.
(iv) For all m ∈Mσ , (m, m(–)) ∈ C and

m � m(–) = m(–) � m = L,

where m(–) was defined in Definition . and is given by

m(–) =
((

m–σ
)∗)σ .

Proof (i) and (ii) are immediate from the definition of �, while (iii) follows from Lemma .
with the fact that FL(z) = . We then need to show (iv). In fact, let m ∈Mσ . We first search
m′ ∈ Mσ such that m � m′ = L i.e. Fm(z)Fm′ (z) = FL(z) = , and consequently (m, m′) ∈ C .
According to the definition of m(–), we then should have

Fm′ (z) = /Fm(z) := F–
m (z) = Fm(–) (z),
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from which we deduce m′ = m(–). Now, by (.), we have

m(–) =
(

G
(

m–σ

G

)–)σ

=
(

G

m–σ

)σ

=
((

m–σ
)∗)σ ,

so completing the proof. �

The operation � is not a law as in the usual sense, but it is defined between elements
of Mσ subject to a convenient condition. Following Proposition ., such an operation
satisfies properties similar to those of an abelian group. A remedy to this situation will be
discussed in the following. Indeed, let us put

I =
{

m ∈Mσ , ind(m) ≥ 
}

.

Following the previous study, G, L, P belong to I but min, max, A, H , T , and M do not.
A simple observation on the statement of Example . implies that I is an infinite and
uncountable set. Otherwise, it is easy to see that, if (m, m) ∈ I × I then (m, m) ∈ C ,
that is, I ×I is a subset of C . The law � is still stable on I in the sense that, if m, m ∈ I

then m � m ∈ I. This follows from a simple manipulation. After this, the following
result may be stated.

Proposition . With the above, (I,�) is an abelian group.

Proof First, as previously pointed, � is stable on I. Further, it is easy to verify that if
m, m, m ∈ I then the triplet (m, m, m) is �-compatible. This, with Proposition .(i),
(ii), asserts that � is commutative and associative on I. Now, we have L ∈ I and so L
is the unit element of � on I. Lastly, if m ∈ I then m(–) ∈ I, since ind(m) = ind(m(–)).
The proof is completed. �

We now are in a position to state the following result giving a simple and nice relation-
ship between the three familiar means P, T and M in terms of the law �.

Theorem . We have

M = T (/) � A(/) = H (–/) � A(/) = T (/) � P.

Proof By Theorem C, with the definition of m(/), it is easy to see that

FM(z) =
(
FT (z)

)/(FA(z)
)/ = FT (/) (z)FA(/) (z).

This, with the definition of �, implies that M = T (/) � A(/). The other equalities follow
then, since T = H (–) and P = A(/). �

We notice that the relation M = T (/) � P is not equivalent to M() = T � P(), since
ind(M) =  and so M is not -coherent. Also, we cannot write M = T (/) � A(/) in the
form M = (T � A)(/), since (T , A) /∈ C and so T � A is not defined.

Otherwise, the previous theorem is interesting from theoretical point of view as well
as in practical purposes. First, it gives M in a short form involving the simplest means A
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and H . Second, it regroups P, T and M in a unified expression, simple to prove and easy
to remember. Third, we can derive some families of means involving two parameters and
including all the previous familiar means A, G, H , L, P, T and M. In the next section, we
will give some clarification as regards the latter situation.

We end this section by stating the following result.

Theorem . Let m, m ∈Mσ be such that (m, m) ∈ C . Then we have


ind(m � m)

≤ 
ind(m)

+


ind(m)
. (.)

Proof Let us put s = ind(m) and p = ind(m). Let q ≥  be defined by /q = /s + /p. We
can write

(
Fm�m (z)

)q :=
(
Fm (z)

)q(Fm (z)
)q =

((
Fm (z)

)s)q/s((Fm (z)
)p)q/p.

This, with the fact that s = ind(m) and p = ind(m), implies that

l(z) =
(
l(z)

)q/s+q/p ≤ (
Fm�m (z)

)q ≤ (
u(z)

)q/s+q/p = u(z).

We then deduce, by definition of the index, that ind(m � m) ≥ q. The desired result
follows. �

If m = m(–)
 then inequality (.) gives  ≤ / ind(m), since m � m(–)

 = L and ind(L) =
∞. This means that (.) is not, in general, an equality. It is the best possible in the sense
that if m = m, it remains an equality. We can then state the following open question.

Problem  Under what condition between m and m, is (.) an equality? We conjecture
that (.) is an equality if and only if m = m(q)

 for some q ≥ .

7 On some families of 2-power means
We start this section by stating the following needed lemma.

Lemma . Let p, q ≥  be such that p + q ≤ . Then A(p) and T (q) satisfy (A(p), T (q)) ∈ C
i.e. A(p) � T (q) is well defined.

Proof By definition of �, with Theorem C, we have

FA(p)�T (q) (z) = FA(p) (z)FT (q) (z) =
(
FA(z)

)p(FT (z)
)q =

p

zq(z + )p .

By the definition of C , we then need to show that the double inequality

l(z) ≤ p

zq(z + )p ≤ u(z)

holds for all z ≥ . For the right inequality, we write zq(z + )pu(z) ≥ ( + )p = p, since
u(z) ≥  and zq ≥ . For the left inequality, it is equivalent to zq(z + )p ≤ pu(z), since
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l(z) = /u(z). Using p + q ≤  i.e. q ≤  – p and u(z) ≥ z we can then write

zq(z + )p ≤ z–p(z + )p =
(

 +

z

)p

z ≤ pz ≤ pu(z).

The lemma is completely proved. �

Notice that A(p) and T (q) were previously computed and are given by (.) and (.),
respectively. We then set

Wp,q := A(p) � T (q).

It is clear that

W, = L, W, = A, W, = T , W/, = A(/) = P, W/,/ = M.

We can extend Wp,q by setting

Wp, = A(p) if |p| ≤  and W,q = T (q) if |q| ≤ . (.)

With this, we have W,– = T (–) = H and W–/, = A(–/) = G.
We can give an expression of Wp,q as recited in the following result.

Theorem . Let p, q ≥  be such that p + q ≤ . Then we have, for all a, b > , a �= b,

Wp,q(a, b) =
b – a

p+q(�p,q(b/a) – �p,q())
, (.)

where �p,q(x) is defined for all x >  by

�p,q(x) =
∫ x



tp+q–

(t + )p(t + )q dt.

Proof By definition of Wp,q (with Theorem C), we have

W –σ
p,q

G
:= FWp,q (z) =

(
FA(z)

)p(FT (z)
)q =

p

zq(z + )p , with z = A/G. (.)

Replacing z by A/G in the latter equality we obtain after a simple reduction

Wp,q =
(

p Gp+q+

Aq(A + G)p

)σ

. (.)

We then use (.). Simple computation leads to

Gp+q+(, /t) =


tp+q+ , Aq(, /t) =
(t + )q

qtq , (A + G)p(, /t) =
(t + )p

ptp .

Substituting these expressions in (.), again with (.), we obtain (.) after simple ma-
nipulation and reduction. �
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If in (.) we take p =  and |q| ≤ , or q =  and |p| ≤ , we obtain (after simple com-
putation) equations (.) and (.), respectively. This means that (.) is also valid for the
particular situation (.). In another way, (.) includes all the previous means A, G, H , L,
P, T , and M.

In order to give more example of construction of -power means, we need the next
lemma.

Lemma . Let p, q ≥  be such that q + p/ ≤ . Then we have

P(p) � M(q) = T (q/) � A(p/+q/).

Proof According to Theorem C and similarly to the proof of Lemma . (we omit the
routine detail here), we have

FP(p) (z)FM(q) (z) =
(
FP(z)

)p(FM(z)
)q =

p/+q/

zq/(z + )p/+q/ .

This, when compared with (.), yields the desired result after a simple manipulation. �

The previous lemma implies that P(p) �M(q) exists. It further implies, with Theorem .,
an expression of Zp,q := P(p) � M(q) as recited in the following result.

Theorem . Let p, q ≥  be such that q + p/ ≤ . Then we have, for all a, b > , a �= b,

Zp,q(a, b) =
b – a


p+q

 (�q/,(p+q)/(b/a) – �q/,(p+q)/())
. (.)

When q =  and  ≤ p ≤ , (.) coincides with (.). For p =  and  ≤ q ≤ , it imme-
diately yields an expression of M(q). All the above expressions are uncomputable exactly,
except for a few trivial values of p and q.

8 Further examples
As already pointed out before, this section displays some other examples of interest in the
aim to illustrate more the previous concepts as well as their related results.

The two means

U := U(a, b) =
b – a√

 arctan( b–a√
ab

)
, U(a, a) = a,

and

V := V (a, b) =
b – a√

 arcsinh( b–a√
ab

)
, V (a, a) = a,

were introduced in [] (see p. and p., respectively). These two means are included
in the so-called Seiffert type means discussed in []. For recent developments about the
means U and V and their optimal bounds in terms of the (power) standard means, see for
instance [, –] and the related references cited therein.

Applying the above theoretical study to the means U and V , we obtain the following
result.
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Theorem . The following assertions are met:
(i) The means U and V are σ -regular, with

FU (z) =

z

√
z + 


and FV (z) =

√
z + 
z

; z = A/G.

(ii) U = G � T = G � H (–) = P(–) � T , V = G � T (/) and U = V � T (/).
(iii) ind(U) =  and ind(V ) ≥ .

Proof (i) We leave it to the reader as an interesting exercise. We can also consult [] for
similar situations.

(ii) follows from (i), with the definition of �.
(iii) Let us prove that ind(U) = . If we put ind(U) = q ≥ , Lemma . immediately im-

plies that q ≤ . We first show that U is -coherent i.e.

z –
√

z –  ≤ F
U (z) =

z + 
z ≤ z +

√
z – 

for all z ≥ . For the right inequality, it is sufficient to write

z(z +
√

z – 
)

= z + z
√

z –  ≥ z = z + z ≥ z + .

For the left inequality, it is equivalent (after simple manipulation) to the following one

z(z – ) ≤ (z + )
√

z – 

or, by squaring,

z(z – ) ≤ (z + ),

which is obviously satisfied. Now, to prove that U is s-coherent for each  ≤ s ≤ , it is
sufficient to remark that FU (z) ≤  for all z ≥  and then to apply Lemma .. It follows
that ind(U) = . We now show that ind(V ) ≥ . Since FV (z) ≤  for all z ≥ , by Lemma .,
we have to show that V is -coherent. Remark that FV (z) ≤  implies (FV (z))q ≤  ≤ u(z),
for all z ≥  and every q ≥ . Summarizing, we have to show that the inequality

l(z) := z –
√

z –  ≤ (
FV (z)

) :=
(

z + 
z

)

holds for all z ≥ . This inequality is equivalent to (after an elementary manipulation)

z – (z + )z ≤ (z + )
√

z – .

Remarking that

z – (z + )z = z(z – )
(
–z + z + 

)
,
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it is then sufficient to prove that the inequality

z(z – )
(
z – z – 

) ≤ (z + )

holds for all z ≥ . If we write

(z + ) = (z + )(z + )(z + ) ≥ z(z – )(z + ),

it is sufficient that

(z + ) ≥ ∣∣z – z + 
∣∣

holds for all z ≥ . It is a simple verification which we omit here. The proof is then com-
plete. �

We also mention that, although ind(U) = ind(G) = , the relation U = G�T is not equiv-
alent to U () = G() � T () since ind(T) =  and so T is not -coherent. Otherwise, it is easy
to see that, for all z > , we have

FT (z) =

z

< FU (z) < FP(z) =
√


z + 

.

This, with (.), immediately yields (simultaneously and in a fast way) the double mean-
inequality P < U < T , which was differently proved in []. Since P < M < T , the double
inequality P < U < T does not give any information as regards a comparison between U
and M. About this, the following result may be stated.

Proposition . We have

L < V < P < U < M.

Proof A simple verification asserts that FU (z) > FM(z) for all z > . By (.) again, we then
deduce that U < M. Similarly, it is easy to verify that FP(z) < FV (z) and FV (z) <  = FL(z), for
all z > . We then deduce L < V < P. Summarizing, the desired inequalities are obtained.

�

Since ind(U) =  and ind(V ) ≥ , U () and V () both exist (as means). Then the two
relations V = G � T (/) and U = V � T (/) are equivalent to the following ones: V () =
G() � T and U () = V () � T , respectively. We might also be interested by computing the
explicit forms of U () and V (). The following result answers the latter claim.

Theorem . The σ -regular means U () and V () are given through


U () =


T

+

C

,


V () =


T

+

L

.



Raïssouli Journal of Inequalities and Applications  (2016) 2016:224 Page 21 of 23

Proof As in similar situations above, elementary computations lead to, for a, b > , a �= b,

(
U ()(a, b)

)– =


b – a

∫ b/a



(t + )

(t + ) dt

and

(
V ()(a, b)

)– =


(b – a)

∫ b/a



(t + )

t(t + )
dt.

The two last integrals can be computed in an elementary way. After all computation and
reduction, we obtain

U ()(a, b) =
b – a

arctan(b/a) – π/ + b–a

(b+a)

and

V ()(a, b) =
(b – a)

ln b – ln a +  arctan(b/a) – π/
,

which, after simple manipulations, can be reduced to the desired forms, thus completing
the proof. �

In fact, V () also exists, since ind(V ) ≥ . In a similar way to the previous one, an ele-
mentary computation leads to, for a, b > , a �= b,

(
V ()(a, b)

)– =


(b – a)

∫ b/a



(t + )

t(t + ) dt.

The latter integral is computable explicitly, by decomposing its related rational function.
We could then write V () in terms of the previous familiar means. We omit all details as
regards the latter point.

We left to the reader the routine task for finding the integral expression of V (q), for
 ≤ q ≤ , and then deduce some writings of the means V (), V () and V () in terms of
the previous familiar means.

The index of V is not simple to find exactly. One reason of this difficulty is that
Lemma . does not give here any information as regards the upper bound of q. We then
should solve the question directly, if possible, by using the definition of index. Since the
inequality (FV (z))q ≤  ≤ u(z) holds for all z ≥  and every q ≥ , we must determine the
largest q ≥  such that, for each s ≤ q, the inequality l(z) ≤ (FV (z))s holds for all z ≥ . By
Lemma ., it is then sufficient to determine the largest q ≥  such that l(z) ≤ (FV (z))q for
all z ≥ . Such q = ind(V ) is given by

ind(V ) = inf
z>

 ln(z +
√

z – )
ln(z) – ln(z + )

≈ . . . . .

We now put the following as an open question.

Problem  Find the exact value of ind(V ).
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In [], the author introduced the following means:

R(a, b) =
b – a

sinh i(ln(b/a))
, R(a, a) = a, with sinh i(x) :=

∫ x



sinh(t)
t

dt,

R(a, b) =
b – a

tanh i(ln(b/a))
, R(a, a) = a, with tanh i(x) :=

∫ x



tanh(t)
t

dt.

As pointed out in [], such means are σ -regular and satisfy R–σ
 = L and R–σ

 = GL/A. The
following result is not hard to establish (we omit its proof here with the aim of making this
paper not too lengthy).

Proposition . With z = A/G, the following hold:

FR (z) =
√

z – 
ln(z +

√
z – )

, FR () = ,

FR (z) =
√

z – 
z ln(z +

√
z – )

, FR () = .

Consequently, we have R = T � R.

The expressions of FR (z) and FR (z) are relatively complicated and involve the transcen-
dent logarithm function, while those of Fm(z), for

m ∈ {A, H , G, L, P, T , M, U , V },

are simple and involve only algebraic functions. This can be in fact studied from a general
point of view, which we leave to a future paper.

We end this section by stating the following open question.

Problem  Evaluate ind(R) and ind(R).
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