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Abstract
Let ψn = (–1)n–1 ψ (n) (n = 0, 1, 2, . . .), where ψ (n) denotes the psi and polygamma
functions. We prove that for n ≥ 0 and two different real numbers a and b, the
function

x �→ ψ–1
n

(∫ b
a ψn(x + t)dt

b – a

)
– x

is strictly increasing from (–min(a,b),∞) onto (min(a,b), (a + b)/2), which generalizes a
well-known result. As an application, the complete monotonicity for a ratio of gamma
functions is improved.

1 Introduction
The classical Euler’s gamma and psi (or called digamma) functions are defined for x >  by

�(x) =
∫ ∞


e–ttx– dt, ψ(x) =

�′(x)
�(x)

,

respectively. Furthermore, the derivatives ψ ′,ψ ′′, . . . ,ψ (i) for i = , , . . . , are called poly-
gamma functions.

For convenience, we denote ψn(x) = (–)n–ψ (n)(x). It is well known that ψn(x) is strictly
complete monotonic on (,∞); namely, (–)n–ψ (n)(x) >  for x >  and n ∈ N. Note that
for the following integral and series representations (see [], Sections ., .):

ψ(x) = –ψ(x) = γ +
∫ ∞



e–xt – e–t

 – e–t dt = γ +

x

–
∞∑

k=

x
k(x + k)

, (.)

ψn(x) = (–)n–ψ (n)(x) =
∫ ∞



tn

 – e–t e–xt dt = n!
∞∑

k=


(x + k)n+ , (.)

it is easy to see that ψn(+) = ∞ for n ≥ , ψn(∞) =  for n ≥ , and ψ(∞) = –∞. More-
over, ψ ′

n = –ψ(n+)(x) < .
Let f : I →R be strictly monotone and a, b ∈ I . Then the so-called integral f -mean of a

and b is defined in [] by
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If (a, b) = f –
(∫ b

a f (x) dx
b – a

)
if a �= b, and If (a, a) = a.

For f = ψ , Elezović and Pečarić [], Theorem , proved an interesting result as follows.

Theorem EP For x, a, b > , the digamma function ψ has the following properties:
(i) Iψ ′ (a, b) ≤ Iψ (a, b); namely,

(
ψ ′)–

(∫ b
a ψ ′(x) dx

b – a

)
≤ ψ–

(∫ b
a ψ(x) dx

b – a

)
.

(ii) x �→ Iψ (x + a, x + b) – x is increasing concave, and

lim
x→∞

[
Iψ (x + a, x + b) – x

]
=

a + b


.

Remark . It should be noted that, for a, b ∈ I , if A(a, b) is a mean of a and b, then for
x + a, x + b ∈ I the function x �→ A(x + a, x + b) – x is still a mean of a and b, which is due
to the following relations:

min(a, b) = min(x + a, x + b) – x ≤ A(x + a, x + b) – x

≤ max(x + a, x + b) – x = max(a, b).

Further, Batir [], Theorem ., gave a nice double inequality for Iψn (a, b) as follows.

Theorem B Let a and b be distinct positive real numbers and n be a positive integer. Then
we have

(–)nψ (n+)
(

a + b


)
< (–)n ψ (n)(a) – ψ (n)(b)

a – b
< (–)nψ (n+)(S–(n+)(a, b)

)
,

or, equivalently,

S–(n+)(a, b) < Iψn+ (a, b) = ψ–
n+

(∫ b
a ψn+(t) dt

b – a

)
<

a + b


,

where

Sp(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

( ap–bp

p(a–b) )/(p–), if p �= , ,
a–b

ln a–ln b , if p = ,
e–( aa

bb )/(a–b), if p = ,

(.)

is the generalized logarithmic mean of a and b.

An improvement of Theorem B was given in [], Theorem , and [], Theorem , by Qi
as follows.

Theorem Q For real numbers a, b >  with a �= b and an integer n ≥ , the inequality

(–)nψ (n)(Sp(a, b)
)

< (–)n
∫ b

a ψ (n)(t) dt
b – a

≤ (–)nψ (n)(Sq(a, b)
)
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or

Sp(a, b) < Iψn (a, b) = ψ–
n

(∫ b
a ψn(t) dt

b – a

)
≤ Sq(a, b)

holds if p ≤ –n and q ≥ –n + , where Sp(a, b) is given in (.).

Motivated by the results just mentioned, the main aim of this paper is to continue the
study of some further properties of the mean Iψn (a, b) and Iψn (x + a, x + b) – x. More pre-
cisely, we have the following.

Theorem . For a, b >  with a �= b, the sequence {Iψn (a, b)}n≥ is strictly decreasing, and

lim
n→∞ Iψn (a, b) = min(a, b).

Theorem . Let a and b be distinct real numbers, and n ≥  be an integer. If ψ–
n is strictly

decreasing with respected to x, then the function x �→ Aψn (x) with

Aψn (x) = Iψn (x + a, x + b) – x = ψ–
n

(∫ b
a ψn(x + t) dt

b – a

)
– x (.)

is strictly increasing from (– min(a, b),∞) onto (min(a, b), (a + b)/).

As a direct consequence, noting that ψ–
n is strictly decreasing, by Theorem . we have

the following.

Corollary . Let a and b be distinct real numbers and n ≥  be an integer. Then for
x > – min(a, b) we have

ψn

(
x +

a + b


)
<

∫ b
a ψn(x + t) dt

b – a
< ψn

(
x + min(a, b)

)
,

where min(a, b) and (a + b)/ are the best constants. In particular, note that ψ = –ψ , the
double inequality

ψ
(
x + min(a, b)

)
<

∫ b
a ψ(x + t) dt

b – a
< ψ

(
x +

a + b


)

or

expψ
(
x + min(a, b)

)
<

[
�(x + b)
�(x + a)

]/(b–a)

< expψ

(
x +

a + b


)
(.)

holds for x > – min(a, b) with the best constants min(a, b) and (a + b)/.

Suppose that a, b >  with a �= b in Theorem .. Utilizing the strictly increasing property
of x �→ Aψn (x) on (,∞), we have Aψn () < Aψn (x) < Aψn (∞); namely,

Iψn (a, b) = ψ–
n

(∫ b
a ψn(t) dt

b – a

)
< ψ–

n

(∫ b
a ψn(x + t) dt

b – a

)
– x <

a + b


.

Therefore, we conclude the following.
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Corollary . Let a, b >  with a �= b and n ≥  be an integer. Then for x >  we have

ψn

(
x +

a + b


)
<

∫ b
a ψn(x + t) dt

b – a
< ψn

(
x + Iψn (a, b)

)
,

where Iψn (a, b) and (a + b)/ are the best constants. Particularly, noting that ψ = –ψ , the
double inequality

ψ
(
x + Iψ (a, b)

)
<

∫ b
a ψ(x + t) dt

b – a
< ψ

(
x +

a + b


)

or

expψ
(
x + Iψ (a, b)

)
<

[
�(x + b)
�(x + a)

]/(b–a)

< expψ

(
x +

a + b


)
(.)

holds for x >  with the best constants Iψ (a, b) and (a + b)/.

We would think it worth noticing that the double inequality (.) was first proved in []
by Elezović et al.

Remark . The second Kershaw double inequality [] states that

exp
[
( – s)ψ(x +

√
s)

]
<

�(x + )
�(x + s)

< exp

[
( – s)ψ

(
x +

s + 


)]
(.)

for s ∈ (, ) and x ≥ . Some of the refinements, extensions, and generalizations of the
double inequality (.) can be found in Qi’s review paper [] and the references therein.
It seems that our double inequality (.) may be the best second Kershaw type inequality,
since the ranges of a and b in (.) are arbitrary real numbers, and the lower and upper
bounds are sharp.

As an application of Theorem ., we use it to prove a necessary and sufficient condition
for the functions x �→ Fa,b,c(x) defined by (.) and x �→ /Fa,b,c(x) to be logarithmically
monotonic on (–ρ,∞) with ρ = min(a, b, c), which improves a well-known result.

2 Proofs of main results
This section we devote to the proof of our main results. First of all, let us give the following
assertion, which is an improvement of Theorem  in [].

Lemma . Let f ∈ C()(I). If f is strictly monotone, then the mean function

Af (x) = If (a + x, b + x) – x = f –
(∫ b

a f (x + t) dt
b – a

)
– x (.)

is strictly increasing (decreasing) according to f ′′/f ′ being strictly increasing (decreasing).
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Proof By the Jensen inequality we have

f ′
(

f –
(∫ b

a f (x + t) dt
b – a

))
< (>)

∫ b
a f ′(x + t) dt

b – a
(.)

if f ′ ◦ f – is strictly convex (concave).
Differentiation yields

df ′(f –(x))
dx

= f ′′(f –(x)
)d(f –(x))

dx
=

f ′′(f –(x))
f ′(f –(x))

=
f ′′(u)
f ′(u)

,

where u = f –(x). This shows that f ′ ◦ f – is strictly convex if and only if both f and f ′′/f ′ are
either increasing or decreasing, and concave if and only if one of f and f ′′/f ′ is increasing,
while the other is decreasing.

Case : Both f and f ′′/f ′ are increasing. Then f ′ >  and f ′ ◦ f – is convex, and it follows
from (.) that

dAf (x)
dx

=
∫ b

a f ′(x + t) dt
b – a

/
f ′

(
f –

(∫ b
a f (x + t) dt

b – a

))
–  > .

Case : f is decreasing and f ′′/f ′ is increasing. Then f ′ <  and f ′ ◦ f – is concave and by
(.) we also have dAf (t)/dt > .

Case : Both f and f ′′/f ′ are decreasing. Then f ′ <  and f ′ ◦ f – is convex. Similarly, we
have dAf (t)/dt < .

Case : f is increasing and f ′′/f ′ is decreasing. Then f ′ >  and f ′ ◦ f – is concave. Obvi-
ously, we see that dAf (t)/dt < .

To sum up, if f ′′/f ′ is increasing (decreasing), then so is Af , which completes the proof.
�

The following lemma is useful for our main proof, which is a generalization of Lemma .
in [] and Lemma  in [].

Lemma . Let A : (,∞) × (,∞) → (,∞) be a differentiable one-order homogeneous
mean. Then, for all x + t, y + t ∈ (,∞), we have

lim
t→∞

(
A(x + t, y + t) – t

)
= px + ( – p)y, (.)

where p = Ax(, ) ∈ [, ]. In particular, if A(x, y) is symmetric with respect to x and y, then

lim
t→∞

(
A(x + t, y + t) – t

)
=

x + y


. (.)

Proof Using homogeneity of A(x, y) and the L’Hospital rule yield

lim
t→∞

(
A(x + t, y + t) – t

)
= lim

t→∞
A(t–x + , t–y + ) – 

t–

t–=u= lim
u→

A(ux + , uy + ) – 
u

= lim
u→

∂A(ux + , uy + )
∂u

= xAx(, ) + yAy(, ).
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In addition, it follows from [] that

Ax(x, x), Ay(x, x) ∈ [, ] and Ax(x, x) + Ay(x, x) = . (.)

Putting the above together, we get (.).
In particular, if A is symmetric, that is, A(x, y) = A(y, x), then we clearly see that Ax(x, y) =

Ay(y, x), and so Ax(x, x) = Ay(x, x). It follows from (.) that Ax(x, x) = Ay(x, x) = /, and
then (.) holds. The proof is complete. �

Lemma . Let ψn = (–)n–ψ (n) for n ∈N. Then all the following statements are true, and
mutually equivalent.

(i) the sequence {ψn+/ψn}n∈N is strictly increasing;
(ii) the function x �→ ψn+(x)/ψn(x) is strictly decreasing on (,∞);

(iii) the function x �→ ψn(x) is log-convex on (,∞).

Proof (i) It suffices to prove ψn+/ψn+ > ψn+/ψn for n ∈N, which is equivalent to ψn+ψn –
ψ

n+ > . By virtue of the integral representation given in (.), we get

ψn+ψn – ψ
n+ =

∫ ∞



tn+

 – e–t e–xt dt
∫ ∞



tn

 – e–t e–xt dt –
(∫ ∞



tn+

 – e–t e–xt dt
)

=



∫ ∞



∫ ∞



tnsn(t – s)

( – e–t)( – e–s)
e–x(t+s) dt ds > ,

which proves assertion (i).
(ii) Note that ψ ′

n = –ψn+, we have

(
ψn+

ψn

)′
=

ψ ′
n+ψn – ψn+ψ

′
n

ψ
n

=
–ψn+ψn + ψ

n+
ψ

n
< ,

which implies that the second assertion is true.
(iii) Differentiation gives

(lnψn)′ =
ψ ′

n
ψn

= –
ψn+

ψn
, (lnψn)′′ = –

(
ψn+

ψn

)′
> ,

which completes the proof. �

Now we are in a position to prove our main results.

Proof of Theorem . We first prove that the sequence {Iψn (a, b)}n≥ is strictly decreasing,
which means that for n ≥  the inequality

ψ–
n

(∫ b
a ψn(x) dx

b – a

)
> ψ–

n+

(∫ b
a ψn+(x) dx

b – a

)
(.)

holds for a, b >  with a �= b. By the Jensen inequality, it suffices to check that ψn+ ◦ ψ–
n is

convex on (,∞). In fact, by Lemma . we have

d
dx

ψn+
(
ψ–

n (x)
)

=
ψ ′

n+(ψ–
n (x))

ψ ′
n(ψ–

n (x))
=

ψn+(ψ–
n (x))

ψn+(ψ–
n (x))

,



Yang and Zheng Journal of Inequalities and Applications  (2016) 2016:216 Page 7 of 10

d

dx ψn+
(
ψ–

n (x)
)

=
(

ψn+(u)
ψn+(u)

)′ 
ψ ′

n(u)
= –

(
ψn+(u)
ψn+(u)

)′ 
ψn+(u)

> ,

where u = ψ–
n (x). This means that ψn+ ◦ ψ–

n is convex, which proves inequality (.).
Taking p = –n and q = –n +  in Theorem Q gives

S–n(a, b) < ψ–
n

(∫ b
a ψn(t) dt

b – a

)
< S–n+(a, b). (.)

Considering that limp→–∞ Sp(a, b) = min(a, b) in [], then we get

lim
n→∞ψ–

n

(∫ b
a ψn(t) dt

b – a

)
= min(a, b),

which completes the proof. �

Proof of Theorem . To prove x �→ Aψn (x) is strictly increasing on (– min(a, b),∞), by
Lemma . it suffices to check that ψ ′′

n /ψ ′
n is strictly increasing on (,∞). In fact, since

ψ ′
n = –ψn+ we see that ψ ′′

n /ψ ′
n = –ψn+/ψn+ is strictly increasing on (,∞) by the second

assertion of Lemma .. Thus, the increasing property of Aψn follows.
As mentioned in the introduction, we see that ψn(+) = ∞ for n ≥ , and so ψ–

n (∞) = .
Note that the symmetry of a and b, without loss of generality we may assume that b > a.
Then we have

lim
x→–a+

∫ b
a ψn(x + t) dt

b – a
= lim

x→–a+

(–)n–(ψ (n–)(x + b) – ψ (n–)(x + a))
b – a

= ∞,

which implies

lim
x→–a+

Aψn (x) = lim
x→–a+

ψ–
n

(∫ b
a ψn(x + t) dt

b – a

)
– lim

x→–a+
x

= ψ–
n

(
lim

x→–a+

∫ b
a ψn(x + t) dt

b – a

)
+ a = ψ–

n (∞) + a = a.

To obtain limx→∞ Aψn (x) = (a + b)/, we use (.) to derive that

S–n(x + b, x + a) – x < ψ–
n

(∫ b
a ψn(x + t) dt

b – a

)
– x < S–n+(x + b, x + a) – x.

Note that the generalized logarithmic mean Sp(x, y) is homogeneous and symmetric, it
follows from Lemma . that

lim
x→∞

(
Sp(x + b, x + a) – x

)
=

a + b


.

Therefore, we conclude that limx→∞ Aψn (x) = (a + b)/, which completes the proof. �
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3 An application
A function f is said to be completely monotonic on an interval I if f has derivatives of
all orders on I and (–)n(f (x))(n) ≥  for x ∈ I and n ≥  (see []). A positive function
f is called logarithmically completely monotonic on an interval I if f has derivatives of
all orders on I and its logarithm ln f satisfies (–)n(ln f (x))(n) ≥  for all n ∈ N on I (see
[]). For convenience, we denote the sets of the completely monotonic functions and the
logarithmically completely monotonic functions on I by C[I] and L[I], respectively. Qi in
[], Theorem , [], Theorem , investigated the logarithmically complete monotonicity
of the functions

x �→ Fa,b,c(x) =

{
( �(x+b)
�(x+a) )/(a–b)eψ(x+c), if a �= b,

eψ(x+c)–ψ(x+a), if a = b,
(.)

and x �→ /Fa,b,c(x). Furthermore, he concluded the following result.

Theorem Q Let a, b, and c be real numbers and ρ = min(a, b, c). If θ (t) is an implicit
function defined by

et – t = eθ (t) – θ (t)

on (–∞,∞), then θ (t) is decreasing and tθ (t) <  for θ (t) �= t. Moreover:
() Fa,b,c(x) ∈L[(–ρ,∞)] if

(a, b, c) ∈ {c ≥ a, c ≥ b} ∪ {
c ≥ a,  ≥ c – b ≥ θ (c – a)

}

∪ {
c ≤ a, c – b ≥ θ (c – a)

}\{a = b = c}.

() /Fa,b,c(x) ∈L[(–ρ,∞)] if

(a, b, c) ∈ {c ≤ a, c ≤ b} ∪ {
c ≥ a, c – b ≤ θ (c – a)

}

∪ {
c ≤ a,  ≤ c – b ≤ θ (c – a)

}\{a = b = c}.

Later, Qi and Guo in [], Theorem , [], Theorem , proved another result con-
cerning the logarithmically complete monotonicity of the functions x �→ Fa,b,c(x) and
x �→ /Fa,b,c(x) for x > – min(a, b, c), where c = c(a, b) is a constant depending on a and b.
More precisely, they showed the following.

Theorem QG Let a and b be two real numbers with a �= b and c(a, b) be a constant de-
pending on a and b.

() If c(a, b) ≤ min(a, b), then /Fa,b,c(x) ∈L[(–c(a, b),∞)].
() Fa,b,c(x) ∈L[(– min(a, b),∞)] if and only if c(a, b) ≥ (a + b)/.

We would like to remark that the result in Theorem Q is rather interesting but some-
what complicated. Theorem QG shows that c is a constant depending on a and b, and
c(a, b) ≤ min(a, b) is only sufficient for /Fa,b,c(x) ∈ L[(–c(a, b),∞)]. Here, we apply The-
orem . to deduce that c is a constant independent of a and b, and c ≤ min(a, b) is also
necessary for /Fa,b,c(x) ∈L[(–c(a, b),∞)]. This improved result can be restated as follows.
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Theorem . Let a, b, and c be real numbers, and ρ = min(a, b, c). Then /Fa,b,c(x) ∈
L[(–ρ,∞)] if and only if c ≤ min(a, b), while Fa,b,c(x) ∈ L[(–ρ,∞)] if and only if c ≥
(a + b)/.

Proof For a �= b, we have

ln Fa,b,c(x) = ψ(x + c) –
ln�(x + b) – ln�(x + a)

b – a
= ψ(x + c) –

∫ b
a ψ(x + t) dt

b – a

and

(–)n(ln Fa,b,c(x)
)(n) = (–)nψ (n)(x + c) –

(–)n ∫ b
a ψ (n)(x + t) dt

b – a

=
∫ b

a ψn(x + t) dt
b – a

– ψn(x + c)

=
(b – a)– ∫ b

a ψn(x + t) dt – ψn(x + c)

ψ–
n ((b – a)–

∫ b
a ψn(x + t) dt) – (x + c)

(
Aψn (x) – c

)
,

where ψn = (–)n–ψ (n) and Aψn (x) is defined by (.).
Since ψ ′

n = –ψ (n+) < , (ψ–
n )′ < , which means that ψ–

n is strictly decreasing on (,∞).
This yields

(b – a)– ∫ b
a ψn(x + t) dt – ψn(x + c)

ψ–
n ((b – a)–

∫ b
a ψn(x + t) dt) – ψ–

n (ψn(x + c))
< 

for x ∈ (–ρ,∞). Therefore, we have

sgn
(
(–)n(ln Fa,b,c(x)

)(n)) = sgn
(
c – Aψn (x)

)
.

Theorem . tells that x �→ Aψn (x) = Iψn (x + a, x + b) – x is strictly increasing from
(– min(a, b),∞) onto (min(a, b), (a + b)/), which implies that

sgn
(
c – Aψn (x)

) ≤  ⇐⇒ c ≤ inf Aψn (x) = min(a, b)

and

sgn
(
c – Aψn (x)

) ≥  ⇐⇒ c ≥ sup Aψn (x) =
a + b


.

It is obvious that these are also true for a = b. This completes the proof. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed to each part of this work equally, and they all read and approved the final manuscript.

Author details
1Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, China. 2Power Supply Service Center, ZPEPC
Electric Power Research Institute, Hangzhou, Zhejiang 310009, China.



Yang and Zheng Journal of Inequalities and Applications  (2016) 2016:216 Page 10 of 10

Funding
This paper is partially supported by the National Natural Science Foundation of China with grant No. 11371050.

Received: 12 July 2016 Accepted: 26 August 2016

References
1. Abramowitz, M, Stegun, IA (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical

Tables, 10th printing edn. National Bureau of Standards Applied Mathematics Series, vol. 55. Dover, New York (1972)
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