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Abstract
Let a be a positive integer with a > 1, and let (x, y,n) be a positive integer solution of
the equation x2 + a2 = yn, gcd(x, y) = 1, n > 2. Using Baker’s method, we prove that, for
any positive number ε , if n is an odd integer with n > C(ε), where C(ε) is an effectively
computable constant depending only on ε , then n < (2 + ε)(loga)/ log y. Owing to
the obvious fact that every solution (x, y,n) of the equation satisfies n > 2(loga)/ log y,
the above upper bound is optimal.
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1 Introduction
Let Z, N be the sets of all integers and positive integers, respectively. Let D be a positive
integer. In , Lebesgue [] proved that if D = , then the equation

x + D = yn, x, y, n ∈N, gcd(x, y) = , n >  (.)

has no solutions (x, y, n), which solved a type important case of the famous Catalan’s con-
jecture. From then on, Nagell [–] dealt with the solution of (.) more systematically for
the case of D > . Therefore, equation (.) is called the Lebesgue-Nagell equation (see []).

In this paper, we shall discuss an upper bound for solutions of (.) when D > , that is,
D = a, where a is a positive integer with a > . So equation (.) can be expressed as

x + a = yn, x, y, n ∈N, gcd(x, y) = , n > . (.)

This is a type of Lebesgue-Nagell equation leading to more discussions (see []). Let (x, y, n)
be a solution of (.). In , Tengely [] proved that if y > , and n is an odd prime
with n > ,, then

n <
 log a

log ,
. (.)

Using Baker’s method, the following result is proved.
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Theorem For any positive number ε, if n is an odd number with n > C(ε), then

n <
( + ε) log a

log y
, (.)

where C(ε) is an effectively computable constant depending only on ε.

Owing to (.) every solution (x, y, n) of the equation satisfies a < yn, then we have

n >
(log a)

log y
. (.)

Hence comparing (.) and (.), we see that the upper bound we get in this paper is op-
timal.

2 Preliminaries
Lemma . For a positive odd integer n, every solution (X, Y , Z) of the equation

X + Y  = Zn, X, Y , Z ∈ N, gcd(X, Y ) =  (.)

can be expressed as

Z = f  + g, X + Y
√

– = λ(f + λg
√

–)n, f , g ∈N,

gcd(f , g) = , λ,λ ∈ {, –}. (.)

Proof See Section . of []. �

Let α be an algebraic number of degree d, c be a leading coefficient of the defined poly-
nomial of α, α(j) (j = , . . . , d) be the whole conjugate numbers of α. Then

h(α) =

d

(
log c +

d∑
j=

log max
{

,
∣∣α(j)∣∣}) (.)

is called the Weil height of α.

Lemma . For the positive integers b and b, assume

� = b logα – bπ
√

–, (.)

where logα is principal value of the logarithm of α. If |α| =  and α is not a unit root, then

log |�| ≥ –.AB, (.)

where

A = max

{
, .| logα| +




dh(α)
}

,

B = max

{
,

√
d


, . + .

(
d


)
+

d


(
b

.
+

b

A

)}
.
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Proof See Theorem  of []. �

3 Proof of theorem
Let (x, y, n) be a solution of equation (.) with n being odd and satisfying

n >
( + ε) log a

log y
. (.)

By (.), we see that equation (.) has the solution (X, Y , Z) = (x, a, y). So from Lemma .,
we get

y = f  + g, f , g ∈N, gcd(f , g) = , (.)

x + a
√

– = λ(f + λg
√

–)n, λ,λ ∈ {, –}. (.)

Assume

θ = f + g
√

–, θ̄ = f – g
√

–. (.)

From (.) and (.), we have

θ θ̄ = y, |θ | = |θ̄ | =
√

y. (.)

Let α = θ/θ̄ . From (.) and (.), we see that α satisfies |α| =  and

yα – 
(
f  – g)α + y = . (.)

Since gcd(x, y) =  by (.) and n > , we have gcd(x, a) =  and y is odd. And since
gcd(f , g) =  from (.), we see f is odd, g is even, so gcd(f  + g, f  – g) = gcd(f  + g,
(f  – g)) = . Hence y >  and we see that α is not a unit root. And since the discrimi-
nant of the polynomial yz – (f  – g)z + y ∈ Z[z] is equal to –f g, we see that α is a
quadratic algebraic number, α and α– are its whole conjugate numbers. Thus by (.), we
deduce that the Weil height of α is

h(α) =



log y. (.)

Since by (.) we have

x – a
√

– = λ(f – λg
√

–)n, (.)

from (.), (.), (.), and (.), we obtain

a =
∣∣∣∣θn – θ̄n


√

–

∣∣∣∣ =


∣∣θn – θ̄n∣∣ =



∣∣θ̄n∣∣∣∣∣∣

(
θ

θ̄

)n

– 
∣∣∣∣ =

yn/


∣∣αn – 

∣∣. (.)

According to the maximum modulus principle, for any complex number z, we are sure
that

∣∣ez – 
∣∣ ≥ 


(.)
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or

∣∣ez – 
∣∣ ≥ 

π
|z – kπ

√
–|, k ∈ Z. (.)

Assume α = ez . If (.) holds, then from (.), we can deduce that

a ≥ yn/


. (.)

Combining (.) and (.), we get

 > yεn/(+ε). (.)

However, since y ≥  by (.), we see that (.) does not hold when n > ( + ε)/ε. Hence,
we only need to discuss the case when (.) holds.

Owing to a+ε < yn by (.), if (.) holds, then from (.) and (.) we have

yn/(+ε) > a ≥ yn/

π
|n logα – kπ

√
–|, k ∈ N, k ≤ n. (.)

Let

� = n logα – kπ
√

–. (.)

By (.) and (.), we see

logπ – log |�| ≥ εn
( + ε)

log y. (.)

Since we have proved that α is not only a quadratic algebraic number but also a non-unit
root with |α| = , and the degree of α is , from Lemma ., by (.), we see that � satisfies
(.), where

A = max

{
, .| logα| +




log y
}

, (.)

B = max

{
, . + log

(
n

A
+

k
.

)}
. (.)

Since y ≥  and the principal value of the logarithm of α satisfies | logα| ≤ π , we deduce
by (.) that

A ≤ .π +



log y. (.)

By (.) and (.), we have k ≤ n and /(A) ≤ ., respectively, therefore if n > .×
, then by (.) we get

B < . + log(.n) < . + log n. (.)
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Hence from (.), (.), (.), and (.), we have

logπ + .
(

.π +



log y
)

(. + log n) >
εn

( + ε)
log y. (.)

Since y ≥ , we see by (.) that

( + ε)
ε

(
 + .(. + log n)) > n. (.)

From (.), we get n < C′(ε), where C′(ε) is an effectively computable constant depending
only on ε. Let

C(ε) = max

{
. × ,

( + ε)
ε

, C′(ε)
}

. (.)

We see by (.) that C(ε) is also an effectively computable constant depending only on ε,
and to sum up, we can deduce when n > C(ε), the solution (x, y, n) of equation (.) does not
satisfy (.), so (.) holds definitely. Therefore, we completed the proof of the theorem.
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