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Abstract
In this work, in addition to the bounds for triple gamma function, bounds for the
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1 Introduction
The multiple gamma functions denoted by �n have applications in many areas of math-
ematics. For example, �n are useful in computation of certain series in analytic number
theory [, ]. The multiple gamma functions were first studied by Barnes [–]. The func-
tions denoted by �n are defined [, ] as:

�n(z) =
(
Gn(z)

)(–)n–
, n ∈N,

where Gm(z + ) = egm(z) (m ∈N),

gm(z) = –zPm() +
m–∑

l=

ql(z)
l!

(
g(l)

m–() – P(l)
m ()

)
+ Pm(z),

Pm(z) =
∑

r∈Nm–
 ×N

[

m

(
z

M(r)

)m

–


m – 

(
z

M(r)

)m–

+ · · ·

+ (–)m– z
M(r)

+ (–)m log

(
 +

z
M(r)

)]
,

with M(r) = r + r + · · · + rm if r = (r, r, . . . , rm) ∈N
m–
 ×N.

Here the polynomials qm(z) are defined as

qm(z) :=

{∑N–
k= km (z = N ; N ∈N \ {}),

Bm+(z)–Bm+
m+ (z ∈ C),

where Bm(z) are Bernoulli polynomials of degree m in z.
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Note that these polynomials qm(z) and Bm(z) also obey the relation

q′
m(z) =

B′
m+(z)
m + 

= Bm(z) and qm() = .

Vignéras [] characterized multiple gamma function with the following properties while
introducing the notation Gn(z):

(i) Gn(z) = Gn(z+)
Gn–(z) for z ∈C,

(ii) dn+

dxn+ log Gn(x + ) ≥  for x ≥ ,
(iii) Gn() = ,
(iv) G(z) = z.

It can be noted that the above conditions are the refinement of the Bohr-Morellup theorem
and the multiple gamma function �n of order n satisfies the following relations:

(i) �n(z) = �n+(z)
�n+(z+) for z ∈C,

(ii) �n() = ,
(iii) �(z) = �(z).
The double gamma function G(z) = 

�(z) is the well-known Barnes G-function.
Problems for finding sharp bounds for gamma functions have always attracted re-

searchers [–] since the th century. Recent research interest [, , , –] are in
the bounds and asymptotic expansions for multiple gamma functions and their ratios. For
an integral representation and asymptotic expansion of these functions we refer to [, ,
, ] and the references therein.

In , Batir [] obtained the bounds for the gamma function and extended these
results in [, ] for the double gamma function. Recently, Chen [] generalized the
results of Batir [].

Choi and Srivastava [] found the following inequality for the triple gamma function
for  ≤ x ≤ :

exp

(
c,x + c,x –

(



+
π


+

γ



)
x

)

< �( + x) < exp

(
c,x + c,x + c,x +

π


x

)
, ()

where

c, =



–



log(π ) – log A; c, =



+



log(π ) +
γ


;

c, = –



–
γ


,

and A is defined as []

log A =



– ζ ′(–), ()

known as the Glaisher-Kinkelin constant.
Here ζ is the well-known Riemann Zeta function. In Section , we generalize the results

of Batir [] for the triple gamma functions.
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In , Shabani [] considered the ratio of gamma functions to find the following
double inequality as a generalization of the independent results of Alsina and Tomás []
and Sándor []:

�(α + β)p

�(α + β)q ≥ �(α + βx)p

�(β + αx)q ≥ �(α)p

�(β)q ()

for x ∈ [, ], α ≥ β >  and p, q >  such that βp ≥ αq >  with �(β + αx) > , where
�(x) = d

dx log�(x). The double inequalities similar to () for the ratios of triple gamma
function are obtained in Section .

Since these types of inequalities can be obtained for the ratios of the double gamma func-
tion using a similar procedure, a sample result on the ratio of the double gamma function
is also mentioned in Section .

2 Bounds for triple gamma function
The Weierstrass canonical products for G(x) and G(x) are given, respectively, by [],
equations (.) and (.),


�(x + )

= (π )
x
 e– 

 [(+γ )x+x]
∞∏

k=

((
 +

x
k

)k

e–x+ x
k

)
()

and

�(x + ) = exp

[
–

x



(
γ +

π


+




)
+

x



(
γ + log(π ) +




)

+ x
(




–
log(π )


– log A

)]
()

×
∞∏

k=

((
 +

x
k

)– 
 k(k+)

exp

[
x


(k + ) –
x



(
 +


k

)
+

x

k

(
 +


k

)])
, ()

where γ is the Euler constant and A is the Glaisher-Kinkelin constant as defined in ().

Theorem  The Barnes G-function G(x + ) = G(x + ) = 
�(x+) is logarithmically convex

for all x ≥ .

Proof Let

g(x) = log G(x + ) =
x

(
log π –  – ( + γ )x

)
+

∞∑

l=

[
l log

(
 +

x
l

)
– x +

x

l

]
.

Then, for x ≥ , a simple computation gives

g ′′(x) = –( + γ ) +
∞∑

l=

(
–

l
(x + l) +


l

)

≥ –( + γ ) +
∞∑

l=

(
–

l
( + l) +


l

)
,
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which, by using partial fraction and the usual summation, leads to

g ′′(x) ≥ –( + γ ) +
∞∑

l=


l = –( + γ ) +

π


� . . . . ,

which proves the theorem. �

Theorem  For all x ≥ ,

(
(π ) x+



A

)x–

e– 
 (x–)(x+x–) · (G(x + )

) x–


< �(x + ) <
(

(π ) x+


A

)x–

e– 
 (x–)(x+x–) ·

(
G(x + )
G( x+

 )

) x–


. ()

Proof Let h : [α,β] → R be a convex function. Then by the Hadamard inequality [] we
have

h
(

α + β



)
≤ 

β – α

∫ β

α

h(t) dt ≤ h(α) + h(β)


. ()

Note that by Theorem , G(x + ) is logarithmically convex for all x ≥ . Therefore taking
h(t) = log G(t + ), we get

log G
(

 +
x + 



)
<


x – 

∫ x


log G(t + ) dt <




log G(x + )

⇒
∫ 


log G(t + ) dt + (x – ) log G

(
x + 



)

<
∫ x


log G(t + ) dt <

∫ 


log G(t + ) dt +

x – 


log G(x + ).

Now from [], equation (.), we obtain

∫ x


log G(t + ) dt = (/ –  log A)x +




log π –
x


+ (x – ) log G(x + )

–  log�(x + ). ()

Hence we have

–(/ –  log A)x –
x


log π +

x


– (x – ) log G(x + ) + /

+ / log π –  log A + (x – ) log G
(

x + 


)

< – log�(x + )

< –(/ –  log A)x –
x


log π – (x – ) log G(x + )

+
x


+ / + / log π –  log A +

x – 


log G(x + )
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⇒  log A
(
x – 

)
–

(x – )


log π +
(

x


–

x


+




)
+ (x – ) log

( G( x+
 )

G(x + )

)

< – log�(x + )

<  log A(x – ) –



log π
(
x – 

)
+

(
x


–

x


+




)

+
x – 


log G(x + ),

which can easily be reduced to (). �

Theorem  For x ≥ ,

L(x) < �( + x) < U (x), ()

where

L(x) = A–x(G(x + )
) x–

 exp

(



(
x + x + γ x)

–
x



(
� ′(q(x)

)
+



(
q(x) – 

)
� ′′(q(x)

)))
;

U (x) = A–x(G(x + )
) x–

 exp

(



(
x + x + γ x)

–
x



(
� ′(p(x)

)
+



(
p(x) – 

)
� ′′(p(x)

)))

with

p(x) =  +
x


,

q(x) =
(


x log(x + ) –


x +


x

)–/

,

and A being the Glaisher-Kinkelin constant defined as in ().

Proof With the help of a Taylor series, Batir and Cancan [], equation (.), proved that

log G(x + ) =
x

(
log π –  – (γ + )x

)
+

x



∞∑

m=

m + 
(m +  + λ(m + )) ,

where λ(m) is given by

λ(m) =
(


x log

(
 +

x
m

)
–


mx +


mx

)–/

– m

and, for all m ≥  and x ≥ , λ(m) is strictly increasing with

λ() =
(


x log(x + ) –


x +


x

)–/

–  = q(x) – ,

λ(∞) = lim
m→∞λ(m) =

x


= p(x) – .
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Hence,

∫ x


log G(t + ) dt =

x


log π –



(
x/ + (γ + )x/

)

+
x



∞∑

m=

(


(m +  + λ(m + )) –
λ(m + )

(k +  + λ(k + ))

)
. ()

Since for all m ≥  and x ≥ , λ(m) is strictly increasing. Therefore,

x


log π –

(x + ( + γ )x)


+
x



(
� ′(λ() + 

)
+



λ()� ′′(λ() + 

))

<
∫ x


log G(t + ) dt

<
x


log π –

(x + ( + γ )x)


+
x



(
� ′(λ(∞) + 

)
+



λ(∞)� ′′(λ(∞) + 

))
.

Using () we have

–(/ –  log A)x –
x


log π +

x


– (x – ) log G(x + ) +

x


log π

–



(
x + ( + γ )x) +

x



(
� ′(p(x)

)
+



(
p(x) – 

)
� ′′(p(x)

)
)

< – log�( + x)

< –
(




–  log A
)

x –
x


log π +

x


– (x – ) log G(x + ) +

x


log π

–



(
x + ( + γ )x) +

x



(
� ′(q(x)

)
+



(
q(x) – 

)
� ′′(q(x)

))
,

which implies

x log A –



(
x + x + γ x) – (x – ) log G(x + )

+
x



(
� ′(p(x)

)
+



(
p(x) – 

)
� ′′(p(x)

))

< – log�(x + )

< x log A –



(
x + x + γ x) – (x – ) log G(x + )

+
x



(
� ′(q(x)

)
+



(
q(x) – 

)
� ′′(q(x)

)
)

.

Reversing the above inequality by changing the sign and keeping the logarithmic compo-
nents together in each part of the inequality give the required result. �

For the purpose of graphical illustration given below, we denote �( + x) as y(x) and L,
L respectively as the lower bounds of Theorem  and Theorem  and U, U, respectively,
as the upper bounds of Theorem  and Theorem .
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Figure 1 Comparison of upper bounds between
(7) and (10).

Figure 2 Comparison of lower bounds between
(7) and (10).

Figure 3 Comparison of upper bounds between
(1) and (10).

Remark  From the graphical illustrations we observe that:
(i) Although Theorem  is valid only for x ≥ , the upper bound in Theorem  is better

than the upper bound in Theorem  for x ≥ . However, the lower bound given in
Theorem  is better than the lower bound of Theorem . Figure  and Figure 
support the claim.

(ii) It can be noted that the upper bound U in Theorem  is sharper than the upper
bound U in (). Figure  supports the claim.

These observations lead to the problem of improving the lower bound for �, in compar-
ison with (), so that it can supplement Theorem . This can be obtained by establishing
the logarithmic convexity of G(x + ) for x ≥ , which requires a different approach. Oth-
erwise, an improved bound for () can also suffice the requirement.

3 Inequalities for the ratio of triple gamma functions
Similar to the di-gamma function �(x) = �′(x)

�(x) , let �(x) := �′
(x)

�(x) and �(x) := �′
(x)

�(x) , x > ,
denote the di-double gamma and di-triple gamma function, respectively.
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In this section, some inequalities for the ratio of the double gamma functions and the
triple gamma functions are obtained with the help of the series representation of di-double
gamma and di-triple gamma function. For this purpose, techniques given in [] will be
utilized.

First we establish some new inequalities for �(x) and �(x). Taking the logarithmic
derivative of the double gamma function and triple gamma function, respectively, the fol-
lowing result is immediate.

Lemma  For all x >  one has the series representation
(i)

�(x) =



( – log π ) + ( + γ )(x – ) – (x – )
∞∑

k=


(k + )(k + x)

. ()

(ii)

�(x) = –
(x – )



(
γ +

π


+




)
+

(x – )


(
γ + log(π ) +




)

+
(




–
log(π )


– log A

)
+

(x – )



∞∑

k=

k + 
(k + )(k + x)

. ()

Lemma  Let α and β be two positive real numbers such that α ≥ β , then:
(i) for all x ∈ [, ],

�(α + βx) ≤ �(β + αx),

�(α + βx) ≥ �(β + αx),

(ii) for all x ≥ ,

�(α + βx) ≥ �(β + αx),

�(α + βx) ≤ �(β + αx).

Proof It is enough to prove for �, as the result for � will follow in a similar fashion.
Let x > , y ≥ , and x ≥ y, then

�(x) – �(y)

= –
(

γ +
π


+




)(
x – y



)[
 – (x + y)

]
+

(x – y)


(
γ + log(π ) +




)

+



∞∑

k=

k + 
(k + )

[
(x – )

k + x
–

(y – )

k + y

]

= –
(

γ +
π


+




)(
x – y



)
[
 – (x + y)

]
+

(x – y)


(
γ + log(π ) +




)

+



∞∑

k=

k + 
(k + )

[ A(x, y, k)
(k + x)(k + y)

]
≥ ,
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where

A(x, y, k) = k
[(

x – y) – 
(
x – y) + (x – y)

]
+

[
xy

(
x – y) – xy(x – y) – (x – y)

]
.

So �(x) ≥ �(y).
Since α + βx > , β + αx > , it can be verified that, for x ∈ [, ], α ≥ β > , we obtain

α + βx ≥ β + αx, which implies �(α + βx) ≥ �(β + αx).
Again, x ≥  ⇒ α + βx ≤ β + αx for α ≥ β > .
Therefore, �(α + βx) ≤ �(β + αx). �

Alternative proof of Lemma  Clearly, x ∈ [, ], α,β >  ⇒ α + βx > , β + αx > . Then
by (), we obtain

�(α + βx) – �(β + αx)

= –
(

γ +
π


+




)
(α – β)

[
(α + β) – (α + β)x + x – 

]
+

(α – β)


( – x)

×
(

γ + log(π ) +



)
+




∞∑

k=

k + 
(k + )

[
(α + βx – )

k + α + βx
–

(β + αx – )

k + β + αx

]

= –
(

γ +
π


+




)
(α – β)

[
(α + β) – (α + β)x + x – 

]
+

(α – β)


( – x)

×
(

γ + log(π ) +



)
+




∞∑

k=

k + 
(k + )

A(α,β , k, x)
(k + α + βx)(k + β + αx)

≥ ,

where

A(α,β , k, x)

= –x(α – β)αβ + x[αβ(α – β) –
(
α – β) – k

(
α – β)]

+ x[
(
α – β) – αβ(α – β) + 

(
α – β) + k

(
α – β) – kαβ(α – β)

]

+ x
[(

α – β) – 
(
α – β) + 

(
α – β) – (α – β) + αβ(α – β)

+ kαβ(α – β) – k(α – β)
]

+
[
(α – β) – αβ(α – β) + αβ

(
α – β)

+ k(α – β) – k
(
α – β) + k

(
α – β)]. �

Lemma  Let α, β , p, and q be positive real numbers. Further suppose that βp – αq and
�(α + βx) have the same sign. If for  ≤ x ≤ , α ≥ β , and for x ≥ , α ≤ β . Then

βp�(α + βx) – αq�(β + αx) ≥ .

Proof We only prove the case where x ∈ [, ], α ≥ β , βp – αq ≥ , and �(β + αx) > .
Then by part (i) of Lemma , it is clear that �(α + βx) is also positive. Since βp ≥ αq,

using Lemma , we have

βp�(α + βx) ≥ αq�(α + βx) ≥ αq�(β + αx),

which establishes the result. �
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Theorem  Define g : [,∞) → (,∞) by

g(x) =
�(α + βx)p

�(β + αx)q ,

where α ≥ β > , p > , q >  such that βp ≥ αq >  and �(β + αx) > , then the following
are true:

(i) g(x) is increasing on  ≤ x ≤  and
(ii)

�(α)p

�(β)q ≤ �(α + βx)p

�(β + αx)q ≤ �(α + β)p

�(α + β)q ,  ≤ x ≤ .

Proof Let h(x) = log g(x). Then

h(x) = p log�(α + βx) – q log�(β + αx)

⇒ h′(x) = βp
�′

(α + βx)
�(α + βx)

– αq
�′

(β + αx)
�(β + αx)

= βp�(α + βx) – αq�(β + αx).

By part (i) of Lemma , we get h′(x) ≥ , which implies h(x) is increasing on  ≤ x ≤ .
This indicates that g(x) is increasing on  ≤ x ≤ .

So for x ∈ [, ] we have g() ≤ g(x) ≤ g() or

�(α)p

�(β)q ≤ �(α + βx)p

�(β + αx)q ≤ �(α + β)p

�(α + β)q . �

The following theorem is immediate. We omit the proof.

Theorem  Define f : [,∞) → (,∞) by

f (x) =
�(α + βx)p

�(β + αx)q ,

where α,β , p, q > . Further suppose that β – α, βp – αq, and �(β + αx) have the same
sign. Then for all x ≥ , f is an increasing function.

Along similar lines, with the help of Lemma , the inequalities for the ratio of the dou-
ble gamma function can be obtained. For the sake of brevity we provide only one result
without proof.

Theorem  Define f : [,∞) → (,∞) by

f (x) =
�(α + βx)p

�(β + αx)q ,

where α ≥ β > , p > , q >  such that βp ≥ αq >  and �(β + αx) < . Then the following
are true:

(i) f (x) is decreasing on  ≤ x ≤  and
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(ii)

�(α)p

�(β)q ≥ �(α + βx)p

�(β + αx)q ≥ �(α + β)p

�(α + β)q ,  ≤ x ≤ .

Remark  Unlike Theorem , information about the monotonicity of f (x) in Theorem 
for x >  is not explicitly clear. However, further analysis of the monotonicity of f (x) in
both Theorem  and Theorem  is expected to provide interesting consequences.
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