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Abstract
In this paper, we present some new Volterra-Fredholm-type discrete fractional sum
inequalities. These inequalities can be used as handy and powerful tools in the study
of certain fractional sum-difference equations. Some applications are also presented
to illustrate the usefulness of our results.
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1 Introduction
It is well known that Gronwall-Bellman-type inequalities and their various generalizations
have historically great importance in the qualitative analysis of differential equations, dif-
ference equations, and fractional differential equations. During the past few years, there
are a lot of mathematical results about the generalized Gronwall-Bellman-type inequali-
ties and their applications (see, e.g., [–] and the references therein).

Recently, there has been an increase in study in the theory of discrete fractional calculus,
and many interesting researches have been devoted to many topics of the fractional dif-
ference equations (see, e.g., [–] and the references therein). However, compared with
integer-order equations and fractional differential equations, Gronwall-Bellman-type in-
equalities for discrete fractional calculus receive less attention (see, e.g., [–] and the
references therein).

In this paper, we employ the Riemann-Liouville definition of the fractional difference ini-
tiated by Miller and Ross [, ], and developed by Atici and Eloe [–, ] to establish
some Volterra-Fredholm-type discrete fractional sum inequalities, which are generaliza-
tions of Gronwall-Bellman forms. These inequalities can be used as handy and powerful
tools in the analysis of certain classes of Volterra-Fredholm-type fractional sum-difference
equations.

The paper is organized as follows. Some important definitions and results on discrete
fractional calculus are collected in Section . Some new nonlinear Volterra-Fredholm-
type discrete fractional sum inequalities are presented in Section . In the last section,
as an application of the inequalities obtained, the boundedness and uniqueness of the
solutions of certain Volterra-Fredholm fractional sum-difference equation are established.
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2 Preliminaries
Throughout this paper, we denote Nt = {t, t + , t + , . . .}, It = [t, T] ∩ Nt , where t ∈ Nt , and
T ∈ Nt is a constant. Let R+ = [,∞), and

∑n
s=k f (s) =  for k > n. Denote by Ci(M, N) the

class of all i times continuously differentiable functions defined from a set M into a set N
for i = , , . . . . As usual, let z be a real-valued function on Nt , and the difference operator
� on z be defined as �z(n) = z(n + ) – z(n), n ∈ Nt .

Next, we list some important definitions and results on discrete fractional calculus.

Definition . ([]) Let a be any real number, α be any positive real number, and σ (s) =
s + . The α-th fractional sum (α-sum) of f is defined by

�–α
a f (t) =


�(α)

t–α∑

s=a

(
t – σ (s)

)(α–)f (s).

Here f is defined for s = a (mod ), and �–α
a f is defined for t = a + α (mod ); in particular,

�–α
a maps functions defined on Na to functions defined on Na+α . We recall that the falling

factorial is defined as t(α) = �(t+)
�(t–α+) .

Definition . ([]) The μ-th fractional difference is defined as

�μu(t) = �m–νu(t) = �m(
�–νu(t)

)
,

where μ >  and m –  < μ < m, where m denotes a positive integer, and –ν = μ – m.

Lemma . (Pachpatte [], p.) Let u(t) and b(t) be nonnegative functions defined for
t ∈ N, and c be a nonnegative constant. Let g(u) be a nondecreasing continuous function
defined on R+ with g(u) >  for u > . If

u(t) ≤ c +
t–∑

s=

b(s)g
(
u(s)

)

for t ∈ N, then, for  ≤ t ≤ t, t, t ∈ N,

u(t) ≤ G–

[

G(c) +
t–∑

s=

b(s)

]

,

where G(r) =
∫ r

r


g(s) ds, r > , r >  is arbitrary, G– is the inverse of G, and t ∈ N is chosen
so that G(c) +

∑t–
s= b(s) ∈ Dom(G–) for all t ∈ N such that  ≤ t ≤ t.

For other important properties on the discrete fractional calculus, we refer the reader
to [, , ].

3 Main results
Theorem . Assume that  < α ≤  is a constant, u : Nα– → R+, f , g : N → R+ are
functions, k ≥  is a constant, and p > q >  are constants. Suppose that u satisfies

up(n) ≤ k + �–α


[
f (n)uq(n + α – )

]

+


�(α)

T–α∑

s=

(T – s – )(α–)g(s)up(s + α – ), n ∈ Iα–. (.)
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If

λ = 
q

p–q

T–α∑

s=

G(s, T) < , (.)

then

u(n) ≤
[

A
p–q

p (T) +
p – q

p

n∑

s=α

f (s – α)

] 
p–q

, n ∈ Iα–, (.)

where

A(T) =


 – λ

{

k + 
q

p–q

T–α∑

s=

G(s, T)

[
p – q

p

s+α–∑

τ=α

f (τ – α)

] p
p–q

}

, (.)

G(s, n) =


�(α)
(n – s – )(α–)g(s). (.)

Proof Let k > . From (.) and (.) we have

up(n) ≤ k +


�(α)

n–α∑

s=

(n – s – )(α–)f (s)uq(s + α – )

+


�(α)

T–α∑

s=

(T – s – )(α–)g(s)up(s + α – )

= k +
n–α∑

s=

F(s, n)uq(s + α – )

+
T–α∑

s=

G(s, T)up(s + α – ), n ∈ Iα–, (.)

where

F(s, n) =


�(α)
(n – s – )(α–)f (s).

Define

z(n) = k +
n–α∑

s=

F(s, n)uq(s + α – )

+
T–α∑

s=

G(s, T)up(s + α – ), n ∈ Iα–. (.)

Then z(n) ≥  is nondecreasing,

z(α – ) = k +
T–α∑

s=

G(s, T)up(s + α – ), (.)
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and

up(n) ≤ z(n), n ∈ Iα–. (.)

By the definitions of F(s, n) and t(α) we can easily get that F(s, n) is decreasing in n for each
s ∈ N. So from a straightforward computation, for n ∈ Iα , we obtain that

z(n) – z(n – ) = F(n – α, n)uq(n – )

+
n–α–∑

s=

[
F(s, n) – F(s, n – )

]
uq(s + α – )

≤ F(n – α, n)uq(n – )

≤ F(n – α, n)z
q
p (n – )

= f (n – α)z
q
p (n – ). (.)

Using the monotonicity of z, we deduce

z
q
p (n – ) ≥ z

q
p (α – ) =

(

k +
T–α∑

s=

G(s, T)up(s + α – )

) q
p

> , n ∈ Iα . (.)

So from (.) and (.) we have

z(n) – z(n – )

z
q
p (n – )

≤ f (n – α), n ∈ Iα ,

that is,

�z(n – )

z
q
p (n – )

≤ f (n – α), n ∈ Iα . (.)

On the other hand, by the mean value theorem we obtain

�

(
p

p – q
z

p–q
p (n – )

)

=
p

p – q
z

p–q
p (n) –

p
p – q

z
p–q

p (n – )

= ξ
– q

p �z(n – ) =
�z(n – )

ξ
q
p

≤ �z(n – )

z
q
p (n – )

, ξ ∈ [
z(n – ), z(n)

]
. (.)

So from (.) and (.) we obtain

�

(
p

p – q
z

p–q
p (n – )

)

≤ f (n – α), n ∈ Iα . (.)

Setting n = s in inequality (.) and summing with respect to s from α to n – , we get

n–∑

s=α

�

(
p

p – q
z

p–q
p (s – )

)

≤
n–∑

s=α

f (s – α),



Liu and Meng Journal of Inequalities and Applications  (2016) 2016:213 Page 5 of 16

that is,

z
p–q

p (n – ) ≤ z
p–q

p (α – ) +
p – q

p

n–∑

s=α

f (s – α), n ∈ Iα . (.)

Then from inequality (.) we conclude that

z(n – ) ≤
[

z
p–q

p (α – ) +
p – q

p

n–∑

s=α

f (s – α)

] p
p–q

, n ∈ Iα ,

that is,

z(n) ≤
[

z
p–q

p (α – ) +
p – q

p

n∑

s=α

f (s – α)

] p
p–q

, n ∈ Iα–. (.)

By (.), (.), and (.) we get

z(α – ) ≤ k +
T–α∑

s=

G(s, T)

[

z
p–q

p (α – ) +
p – q

p

s+α–∑

τ=α

f (τ – α)

] p
p–q

.

Therefore, using the inequality (a + b)μ ≤ μ–(aμ + bμ), μ ≥ , we have

z(α – ) ≤ k +
T–α∑

s=

G(s, T)
q

p–q

{

z(α – ) +

[
p – q

p

s+α–∑

τ=α

f (τ – α)

] p
p–q

}

. (.)

Hence, in view of (.), we obtain

z(α – ) ≤ 
 – λ

{

k + 
q

p–q

T–α∑

s=

G(s, T)

[
p – q

p

s+α–∑

τ=α

f (τ – α)

] p
p–q

}

= A(T), (.)

where A(T) is defined as in (.). From (.) and (.) we get

z(n) ≤
[

A
p–q

p (T) +
p – q

p

n∑

s=α

f (s – α)

] p
p–q

, n ∈ Iα–. (.)

Using (.) and (.), we obtain

u(n) ≤
[

A
p–q

p (T) +
p – q

p

n∑

s=α

f (s – α)

] 
p–q

, n ∈ Iα–. (.)

If k = , then we carry out the above procedure with ε >  instead of k and subsequently
let ε → . This completes the proof. �

Theorem . Assume that  < α ≤  is a constant, u : Nα– → R+, g, h : N → R+ are
functions, k ≥  is a constant, ϕ ∈ C(R+, R+) is an increasing function with ϕ(∞) = ∞
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on R+, and ψi : R+ → R+ is a nondecreasing continuous function with ψi(u) >  for u >
, i = , . Suppose that there is a nondecreasing continuous function ψ : R+ → R+ such
that both ψ and ψ are less than or equal to ψ , (r) =

∫ r
r


ψ(ϕ–(s)) ds, r ≥ r > , with

limr→∞ (r) = ∞, and �(t) = (t – k) – (t) is increasing for t ≥ k. If u satisfies

ϕ
(
u(n)

) ≤ k + �–α


[
g(n)ψ

(
u(n + α – )

)]

+


�(α)

T–α∑

s=

(T – s – )(α–)h(s)ψ
(
u(s + α – )

)
, n ∈ Iα–, (.)

then

u(n) ≤ ϕ–

{

–

[



(

�–

( T∑

s=α

f (s – α)

))

+
n∑

s=α

f (s – α)

]}

, n ∈ Iα–, (.)

where f : N → R+ is a function such that both g and h are less than or equal to f , and ϕ–,
–, �– are the inverse functions of ϕ,  , �, respectively.

Proof Let k > . From the assumptions on g , h, ψi (i = , ) and (.) we have

ϕ
(
u(n)

) ≤ k +


�(α)

n–α∑

s=

(n – s – )(α–)f (s)ψ
(
u(s + α – )

)

+


�(α)

T–α∑

s=

(T – s – )(α–)f (s)ψ
(
u(s + α – )

)

= k +
n–α∑

s=

F(s, n)ψ
(
u(s + α – )

)

+
T–α∑

s=

F(s, T)ψ
(
u(s + α – )

)
, n ∈ Iα–, (.)

where

F(s, n) =


�(α)
(n – s – )(α–)f (s).

Define

z(n) = k +
n–α∑

s=

F(s, n)ψ
(
u(s + α – )

)

+
T–α∑

s=

F(s, T)ψ
(
u(s + α – )

)
, n ∈ Iα–. (.)

Then z(n) ≥  is nondecreasing,

z(α – ) = k +
T–α∑

s=

F(s, T)ψ
(
u(s + α – )

)
, (.)
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and

u(n) ≤ ϕ–(z(n)
)
, n ∈ Iα–. (.)

By the definitions of F(s, n) and t(α), we can easily get that F(s, n) is decreasing in n for each
s ∈ N. So from (.) and a straightforward computation, for n ∈ Iα , we obtain that

z(n) – z(n – ) = F(n – α, n)ψ
(
u(n – )

)

+
n–α–∑

s=

[
F(s, n) – F(s, n – )

]
ψ

(
u(s + α – )

)

≤ F(n – α, n)ψ
(
u(n – )

)

≤ F(n – α, n)ψ
(
ϕ–(z(n – )

))

= f (n – α)ψ
(
ϕ–(z(n – )

))
. (.)

Using the monotonicity of ϕ– and z, we deduce

ϕ–(z(n–)
)

> ϕ–(z(α –)
)

= ϕ–

(

k +
T–α∑

s=

F(s, T)ψ
(
u(s+α –)

)
)

> , n ∈ Iα . (.)

So from (.) and (.) we have

z(n) – z(n – )
ψ(ϕ–(z(n – )))

≤ f (n – α), n ∈ Iα ,

that is,

�z(n – )
ψ(ϕ–(z(n – )))

≤ f (n – α), n ∈ Iα . (.)

On the other hand, by the mean value theorem and the monotonicity of ϕ– and ψ we
obtain

�
(
z(n – )

)
= 

(
z(n)

)
– 

(
z(n – )

)

=  ′(ξ )�z(n – ) =
�z(n – )
ψ(ϕ–(ξ ))

≤ �z(n – )
ψ(ϕ–(z(n – )))

, ξ ∈ [
z(n – ), z(n)

]
. (.)

So from (.) and (.) we obtain

�
(
z(n – )

) ≤ f (n – α), n ∈ Iα . (.)

Setting n = s in inequality (.) and summing with respect to s from α to n – , we get

n–∑

s=α

�
(
z(s – )

) ≤
n–∑

s=α

f (s – α),
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that is,


(
z(n – )

) ≤ 
(
z(α – )

)
+

n–∑

s=α

f (s – α), n ∈ Iα . (.)

Then from inequality (.) we conclude that

z(n – ) ≤ –

[


(
z(α – )

)
+

n–∑

s=α

f (s – α)

]

, n ∈ Iα ,

that is,

z(n) ≤ –

[


(
z(α – )

)
+

n∑

s=α

f (s – α)

]

, n ∈ Iα–. (.)

By (.) we get that

z(α – ) – k = k + 
T–α∑

s=

F(s, T)ψ
(
u(s + α – )

)
= z(T), (.)

and then from (.) and (.) we have

z(α – ) – k = z(T) ≤ –

[


(
z(α – )

)
+

T∑

s=α

f (s – α)

]

,

that is,


(
z(α – ) – k

)
– 

(
z(α – )

) ≤
T∑

s=α

f (s – α). (.)

Since �(t) = (t – k) – (t) is increasing for t ≥ k, and � has an inverse function �–,
from (.) we get

z(α – ) ≤ �–

( T∑

s=α

f (s – α)

)

. (.)

Substituting (.) into (.), we have

z(n) ≤ –

[



(

�–

( T∑

s=α

f (s – α)

))

+
n∑

s=α

f (s – α)

]

, n ∈ Iα–. (.)

Combining (.) with (.), we obtain the desired inequality (.). If k = , then we
carry out the above procedure with ε >  instead of k and subsequently let ε → . This
completes the proof. �

For the particular case ϕ(u) = u and ψ(u) = ψ(u) = u, Theorem . gives the following
discrete fractional sum inequality.
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Corollary . Let α, u, and k be defined as in Theorem ., and f : N → R+ be a function.
If u satisfies

u(n) ≤ k + �–α


[
f (n)u(n + α – )

]

+


�(α)

T–α∑

s=

(T – s – )(α–)f (s)u(s + α – ), n ∈ Iα–,

and

λ = exp

( T∑

s=α

f (s – α)

)

< ,

then

u(n) ≤ k
 – λ

exp

( n∑

s=α

f (s – α)

)

, n ∈ Iα–. (.)

Proof From the definitions of  and �, letting ψ(u) = u, we obtain

(r) =
∫ r

r


s

ds = ln
r
r

, r ≥ r > ,

�(t) = (t – k) – (t) = ln
t – k

t
, t ≥ k,

and hence –(r) = r exp(r) and �–(t) = k
–exp(t) . From inequality (.) we obtain in-

equality (.). �

Theorem . Assume that  < α ≤  is a constant, u : Nα– → R+, g, h : N → R+ are
functions, k ≥  is a constant, ϕ ∈ C(R+, R+) with ϕ() = , ϕ(∞) = ∞, and ϕ′(u) > 
for u > , the derivative ϕ′ is increasing on R+, and ψi : R+ → R+ are nondecreasing con-
tinuous functions with ψi(u) >  for u > , i = , . Suppose that there is a nondecreasing
continuous function ψ : R+ → R+ such that both ψ and ψ are less than or equal to ψ ,
G(r) =

∫ r
r


ψ(s) ds, r ≥ r > , with limr→∞ G(r) = ∞, and �(t) = G(ϕ–(t – k)) – G(ϕ–(t))

is increasing for t ≥ k. If u satisfies

ϕ
(
u(n)

) ≤ k + �–α


[
g(n)ϕ′(u(n + α – )

)
ψ

(
u(n + α – )

)]

+


�(α)

T–α∑

s=

(T – s – )(α–)h(s)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)
,

n ∈ Iα–, (.)

then

u(n) ≤ G–

{

G

[

ϕ–

(

�–

( T∑

s=α

f (s – α)

))]

+
n∑

s=α

f (s – α)

}

, n ∈ Iα–, (.)

where f : N → R+ is a function such that both g and h are less than or equal to f , and ϕ–,
G–, and �– are inverse functions of ϕ, G, and �, respectively.
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Proof Let k > . From the assumptions on g , h, ψi (i = , ) and (.) we have

ϕ
(
u(n)

) ≤ k +


�(α)

n–α∑

s=

(n – s – )(α–)f (s)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)

+


�(α)

T–α∑

s=

(T – s – )(α–)f (s)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)

= k +
n–α∑

s=

F(s, n)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)

+
T–α∑

s=

F(s, T)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)
, n ∈ Iα–, (.)

where

F(s, n) =


�(α)
(n – s – )(α–)f (s).

Define

z(n) = k +
n–α∑

s=

F(s, n)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)

+
T–α∑

s=

F(s, T)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)
, n ∈ Iα–. (.)

Then z(n) ≥  is nondecreasing,

z(α – ) = k +
T–α∑

s=

F(s, T)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)
, (.)

and

u(n) ≤ ϕ–(z(n)
)
, n ∈ Iα–. (.)

By the definition of F(s, n) and t(α), we can easily get that F(s, n) is decreasing in n for each
s ∈ N. So from (.) and a straightforward computation, for n ∈ Iα , we obtain that

z(n) – z(n – )

= F(n – α, n)ϕ′(u(n – )
)
ψ

(
u(n – )

)

+
n–α–∑

s=

[
F(s, n) – F(s, n – )

]
ϕ′(u(s + α – )

)
ψ

(
u(s + α – )

)

≤ F(n – α, n)ϕ′(u(n – )
)
ψ

(
u(n – )

)

≤ F(n – α, n)ϕ′(ϕ–(z(n – )
))

ψ
(
ϕ–(z(n – )

))

= f (n – α)ϕ′(ϕ–(z(n – )
))

ψ
(
ϕ–(z(n – )

))
. (.)
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Using the monotonicity of ϕ′, ϕ–, and z, we deduce

ϕ′(ϕ–(z(n – )
)) ≥ ϕ′(ϕ–(z(α – )

))

= ϕ′
(

ϕ–

(

k +
T–α∑

s=

F(s, T)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)
))

> , n ∈ Iα . (.)

So from (.) and (.) we have

z(n) – z(n – )
ϕ′[ϕ–(z(n – ))]

≤ f (n – α)ψ
(
ϕ–(z(n – )

))
, n ∈ Iα ,

that is,

�z(n – )
ϕ′[ϕ–(z(n – ))]

≤ f (n – α)ψ
(
ϕ–(z(n – )

))
, n ∈ Iα . (.)

On the other hand, by the mean value theorem and the monotonicity of ϕ′ and ϕ– we
have, for n ∈ Iα ,

�ϕ–(z(n – )
)

= ϕ–(z(n)
)

– ϕ–(z(n – )
)

=


ϕ′(ϕ–(ξ ))
�z(n – )

≤ �z(n – )
ϕ′[ϕ–(z(n – ))]

, ξ ∈ [
z(n – ), z(n)

]
. (.)

So from (.) and (.) we obtain

�ϕ–(z(n – )
) ≤ f (n – α)ψ

(
ϕ–(z(n – )

))
. (.)

Setting n = s in inequality (.) and summing with respect to s from α to n – , we get

ϕ–(z(n – )
) ≤ ϕ–(z(α – )

)
+

n–∑

s=α

f (s – α)ψ
(
ϕ–(z(s – )

))
.

Now by applying Lemma . to the function ϕ–(z(n – )) we have

ϕ–(z(n – )
) ≤ G–

(

G
(
ϕ–(z(α – )

))
+

n–∑

s=α

f (s – α)

)

, n ∈ Iα ,

that is,

ϕ–(z(n)
) ≤ G–

(

G
(
ϕ–(z(α – )

))
+

n∑

s=α

f (s – α)

)

, n ∈ Iα–, (.)

where G(r) =
∫ r

r


ψ(s) ds. By (.) we get

z(α – ) – k = k + 
T–α∑

s=

F(s, T)ϕ′(u(s + α – )
)
ψ

(
u(s + α – )

)
= z(T), (.)
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and then from (.) and (.) we have

ϕ–(z(α – ) – k
)

= ϕ–(z(T)
)

≤ G–

(

G
(
ϕ–(z(α – )

))
+

T∑

s=α

f (s – α)

)

,

that is,

G
(
ϕ–(z(α – ) – k

))
– G

(
ϕ–(z(α – )

)) ≤
T∑

s=α

f (s – α). (.)

Since �(t) = G(ϕ–(t – k)) – G(ϕ–(t)) is increasing for t ≥ k and � has an inverse function
�–, from (.) we get

z(α – ) ≤ �–

( T∑

s=α

f (s – α)

)

. (.)

Substituting (.) into (.) we have

ϕ–(z(n)
) ≤ G–

{

G

[

ϕ–

(

�–

( T∑

s=α

f (s – α)

))]

+
n∑

s=α

f (s – α)

}

, n ∈ Iα–. (.)

Combining (.) with (.), we obtain the desired inequality (.). If k = , then we
carry out the above procedure with ε >  instead of k and subsequently let ε → . This
completes the proof. �

For the particular case ϕ(u) = up (p ≥  is a constant), Theorem . gives the following
discrete fractional sum inequality.

Corollary . Let α, u, k, g , h, f , ψ, ψ, ψ , and G be defined as in Theorem ., and p ≥ 
be a constant. If u satisfies

up(n) ≤ k + �–α


[
pg(n)up–(n + α – )ψ

(
u(n + α – )

)]

+
p

�(α)

T–α∑

s=

(T – s – )(α–)h(s)up–(s + α – )ψ
(
u(s + α – )

)
,

n ∈ Iα–,

and �(t) = G((t – k)

p ) – G(t


p ) is increasing for t ≥ k, then

u(n) ≤ G–

{

G

[(

�–

( T∑

s=α

f (s – α)

)) 
p
]

+
n∑

s=α

f (s – α)

}

, n ∈ Iα–,

where G– and �– are inverse functions of G and �, respectively.
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4 Applications
In this section, we apply our results to study the boundedness and uniqueness of the so-
lutions of Volterra-Fredholm fractional sum-difference equations of the form

up(n) = k + �–α


[
F
(
n, u(n + α – )

)]

+


�(α)

T–α∑

s=

(T – s – )(α–)G
(
s, u(s + α – )

)
, n ∈ Iα–, (.)

where  < α <  and p >  are constants, u is an unknown function defined on Nα–, and
F , G : N × R → R are functions.

The following theorem gives the bound on the solution of Eq. (.).

Theorem . For Eq. (.), assume that there exist functions f , g : N → R+ and a constant
q satisfying p > q >  such that

∣
∣F(n, u)

∣
∣ ≤ f (n)|u|q,

∣
∣G(n, u)

∣
∣ ≤ g(n)|u|p for any n ∈ N, u ∈ R, (.)

and

λ = 
q

p–q

T–α∑

s=


�(α)

(T – s – )(α–)g(s) < .

If u is any solution of Eq. (.), then

u(n) ≤
[

A
p–q

p (T) +
p – q

p

n∑

s=α

f (s – α)

] 
p–q

, n ∈ Iα–, (.)

where A(T) is as in Theorem ..

Proof From (.) and (.) we get

∣
∣u(n)

∣
∣p ≤ |k| +


�(α)

n–α∑

s=

(n – s – )(α–)∣∣F
(
s, u(s + α – )

)∣
∣

+


�(α)

T–α∑

s=

(T – s – )(α–)∣∣G
(
s, u(s + α – )

)∣
∣

≤ |k| +


�(α)

n–α∑

s=

(n – s – )(α–)f (s)
∣
∣u(s + α – )

∣
∣q

+


�(α)

T–α∑

s=

(T – s – )(α–)g(s)
∣
∣u(s + α – )

∣
∣p. (.)

Now, a suitable application of the inequality given in Theorem . to (.) yields the desired
result. This completes the proof. �
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Secondly, we consider the Volterra-Fredholm fractional sum-difference equations of the
form

u(n) = k + �–α


[
F
(
n, u(n + α – )

)]

+


�(α)

T–α∑

s=

(T – s – )(α–)F
(
s, u(s + α – )

)
, n ∈ Iα–. (.)

The next result deals with the uniqueness of solutions of Eq. (.).

Theorem . For Eq. (.), assume that there exists a function f : N → R+ satisfying
exp(

∑T
s=α f (s – α)) <  and

∣
∣F(n, u) – F(n, v)

∣
∣ ≤ f (n)|u – v| for any n ∈ N, u, v ∈ R. (.)

Then Eq. (.) has at most one solution.

Proof Suppose that Eq. (.) has two solutions u(n) and u(n). Then we have

u(n) = k +


�(α)

n–α∑

s=

(n – s – )(α–)F
(
s, u(s + α – )

)

+


�(α)

T–α∑

s=

(T – s – )(α–)F
(
s, u(s + α – )

)
,

u(n) = k +


�(α)

n–α∑

s=

(n – s – )(α–)F
(
s, u(s + α – )

)

+


�(α)

T–α∑

s=

(T – s – )(α–)F
(
s, u(s + α – )

)
.

Furthermore,

u(n) – u(n)

=


�(α)

n–α∑

s=

(n – s – )(α–)[F
(
s, u(s + α – )

)
– F

(
s, u(s + α – )

)]

+


�(α)

T–α∑

s=

(T – s – )(α–)[F
(
s, u(s + α – )

)
– F

(
s, u(s + α – )

)]
.

From (.) we have

∣
∣u(n) – u(n)

∣
∣

≤ 
�(α)

n–α∑

s=

(n – s – )(α–)f (s)
∣
∣u(s + α – ) – u(s + α – )

∣
∣

+


�(α)

T–α∑

s=

(T – s – )(α–)f (s)
∣
∣u(s + α – ) – u(s + α – )

∣
∣
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= �–α


[
f (n)

∣
∣u(n + α – ) – u(n + α – )

∣
∣
]

+


�(α)

T–α∑

s=

(T – s – )(α–)f (s)
∣
∣u(s + α – ) – u(s + α – )

∣
∣. (.)

With respect to the function |u(n) – u(n)|, by a suitable application of Corollary . to
(.) we can deduce that |u(n) – u(n)| ≤ , which implies u(n) ≡ u(n). The proof is
complete. �
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