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Abstract
We quantify the Prokhorov theorem by establishing an explicit formula for the
Hausdorff measure of noncompactness (HMNC) for the parameterized Prokhorov
metric on the set of Borel probability measures on a Polish space. Furthermore, we
quantify the Arzelà-Ascoli theorem by obtaining upper and lower estimates for the
HMNC for the uniform norm on the space of continuous maps of a compact interval
into Euclidean N-space, using Jung’s theorem on the Chebyshev radius. Finally, we
combine the obtained results to quantify the stochastic Arzelà-Ascoli theorem by
providing upper and lower estimates for the HMNC for the parameterized Prokhorov
metric on the set of multivariate continuous stochastic processes.
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1 Introduction and statement of the main results
For the basic probabilistic concepts and results, we refer the reader to any standard work
on probability theory such as [].

Let S be a Polish space, that is, a separable completely metrizable topological space, and
P(S) the collection of Borel probability measures on S, equipped with the weak topology
τw, that is, the weakest topology for which each map

P(S) →R : P �→
∫

f dP

with bounded and continuous f : S → R is continuous. The space P(S) is known to be
Polish.

We call a collection � ⊂ P(S) uniformly tight iff for each ε > , there exists a compact
set K ⊂ S such that P(S \ K) < ε for all P ∈ �.

The following celebrated result interrelates the τw-relative compactness with uniform
tightness.

Theorem . (Prokhorov) A collection � ⊂ P(S) is τw-relatively compact if and only if it
is uniformly tight.
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Fix N ∈ N and let C be the space of continuous maps x of the compact interval [, ]
into Euclidean N-space R

N equipped with the uniform topology τ∞, that is, the topology
derived from the uniform norm

‖x‖∞ = sup
t∈[,]

∣∣x(t)
∣∣,

where | · | stands for the Euclidean norm. The space C is also known to be Polish.
Recall that a set X ⊂ C is said to be uniformly bounded iff there exists a constant M > 

such that |x(t)| ≤ M for all x ∈X and t ∈ [, ], and uniformly equicontinuous iff for each
ε > , there exists δ >  such that |x(s) – x(t)| < ε for all x ∈X and s, t ∈ [, ] with |s – t| < δ.

In this setting, the following theorem is a classical result [].

Theorem . (Arzelà-Ascoli) A collection X ⊂ C is τ∞-relatively compact if and only if it
is uniformly bounded and uniformly equicontinuous.

Let � = (�,F ,P) be a fixed probability space. Throughout, a continuous stochastic pro-
cess (c.s.p.) is a Borel-measurable map of � into C , and we consider on the set of c.s.p.s
the weak topology τw, that is, the topology with open sets {ξ c.s.p. | Pξ ∈ G}, where Pξ is
the probability distribution of ξ , and G is a τw-open set in P(C).

A collection � of c.s.p.s is said to be stochastically uniformly bounded iff for each ε > ,
there exists M >  such that P(‖ξ‖∞ > M) < ε for all ξ ∈ �, and stochastically uniformly
equicontinuous iff for all ε, ε′ > , there exists δ >  such that P(sup|s–t|<δ |ξ (s) – ξ (t)| ≥ ε) <
ε′ for all ξ ∈ �, the supremum taken over all s, t ∈ [, ] for which |s – t| < δ.

It is not hard to see that combining Theorem . and Theorem . yields the follow-
ing stochastic version of Theorem ., which plays a crucial role in the development of
functional central limit theory.

Theorem . (Stochastic Arzelà-Ascoli) A collection � of c.s.p.s is τw-relatively compact
if and only if it is stochastically uniformly bounded and stochastically uniformly equicon-
tinuous.

In a complete metric space (X, d), the Hausdorff measure of noncompactness of a set
A ⊂ X [, ] is given by

μH,d(A) = inf
F

sup
x∈A

inf
y∈F

d(x, y),

the first infimum running through all finite sets F ⊂ X. It is well known that A is d-bounded
if and only if μH,d(A) < ∞, and d-relatively compact if and only if μH,d(A) = .

Fix a complete metric d metrizing the topology of the Polish space S. The Prokhorov
distance with parameter λ ∈ R

+
 between probability measures P, Q ∈ P(S) [] is defined

as the infimum of all numbers α ∈ R
+
 such that

P(A) ≤ Q
(
A(λα)) + α

for all Borel sets A ⊂ S, where

A(ε) =
{

x ∈ S
∣∣ inf

a∈A
d(a, x) ≤ ε

}
.
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This distance is denoted by ρλ(P, Q). It defines a complete metric on P(S) and induces the
weak topology τw. It is also known that ρλ ≤ ρλ if λ ≥ λ and that

sup
λ∈R+



ρλ(P, Q) = sup
A

∣∣P(A) – Q(A)
∣∣,

the supremum being taken over all Borel sets A ⊂ S.
For a collection � ⊂P(S), we define the measure of nonuniform tightness as

μut(�) = sup
ε>

inf
Y

sup
P∈�

P
(

S
∖ ⋃

y∈Y

B(y, ε)
)

,

where the infimum runs through all finite sets Y ⊂ S, and

B(y, ε) =
{

x ∈ S | d(y, x) < ε
}

.

It is clear that μut(�) =  if � is uniformly tight. The converse holds as well. Indeed, sup-
pose that μut(�) =  and fix ε > . Then, for each n ∈ N, choose a finite set Yn ⊂ S such
that

P
(

S
∖ ⋃

y∈Yn

B(y, /n)
)

< ε/n

for all P ∈ �. Put

K =
⋂

n∈N

⋃
y∈Yn

B�(y, /n)

with B�(y, /n) the closure of B(y, /n). Then K is a compact set such that P(S \ K) < ε for
all P ∈ �. We conclude that � is uniformly tight. The measure μut is slightly weaker than
the weak measure of tightness studied in [].

By the previous considerations we know that a set � ⊂ P(S) is τw-relatively compact
if and only if μH,ρλ

(�) =  for each λ ∈ R
+
, and uniformly tight if and only if μut(�) = .

Therefore, Theorem ., our first main result, which provides a quantitative relation be-
tween the numbers μH,ρλ

(�) and μut(�), is a strict generalization of Theorem .. The
proof is given in Section .

Theorem . (Quantitative Prokhorov) For a collection � ⊂P(S),

sup
λ∈R+



μH,ρλ
(�) = μut(�).

From now on, we consider on the space C the uniform metric derived from the uniform
norm, and for a set X ⊂ C , we let μH,∞(X ) stand for the Hausdorff measure of noncom-
pactness; more precisely,

μH,∞(X ) = inf
F

sup
x∈X

inf
y∈F

‖x – y‖∞,
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the infimum taken over all finite sets F ⊂ C . Clearly, X is τ∞-relatively compact if and
only if μH,∞(X ) = .

The measure of nonuniform equicontinuity of X ⊂ C is defined by

μuec(X ) = inf
δ>

sup
x∈X

sup
|s–t|<δ

∣∣x(s) – x(t)
∣∣,

the second supremum running through all s, t ∈ [, ] with |s – t| < δ. We readily see that
X is uniformly equicontinuous if and only if μuec(X ) = . In [], it was shown that μuec is
a measure of noncompactness on the space C (Theorem .).

Theorem ., our second main result, entails that the measures μH,∞ and μuec are Lip-
schitz equivalent on the collection of uniformly bounded subsets of C , and thus it strictly
generalizes Theorem .. The proof, which hinges upon a classical result of Jung on the
Chebyshev radius, is given in Section .

Theorem . (Quantitative Arzelà-Ascoli) For X ⊂ C ,



μuec(X ) ≤ μH,∞(X ).

Suppose, in addition, that X is uniformly bounded. Then

μH,∞(X ) ≤
(

N
N + 

)/

μuec(X ).

In particular, if N = , then

μH,∞(X ) =


μuec(X ),

and, regardless of N ,

μH,∞(X ) ≤
√




μuec(X ).

We transport the parameterized Prokhorov metric from P(C) to the collection of c.s.p.s
via their probability distributions. Thus, for c.s.p.s ξ and η,

ρλ(ξ ,η) = ρλ(Pξ ,Pη).

Note that a set of c.s.p.s � is τω-relatively compact if and only if μH,ρλ
(�) =  for all λ ∈R

+
.

For a set of c.s.p.s �, the measure of nonstochastic uniform boundedness is given by

μsub(�) = inf
M∈R+


sup
ξ∈�

P
(‖ξ‖∞ > M

)
,

and the measure of nonstochastic uniform equicontinuity by

μsuec(�) = sup
ε>

inf
δ>

sup
ξ∈�

P

(
sup

|s–t|<δ

∣∣ξ (s) – ξ (t)
∣∣ ≥ ε

)
,
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where the third supremum is taken over all s, t ∈ [, ] with |s– t| < δ. It is easily seen that �

is stochastically uniformly bounded if and only if μsub(�) = , and stochastically uniformly
equicontinuous if and only if μsuec(�) = . The measure μsuec was studied in [].

In Section , we prove that combining Theorem . and Theorem . leads to Theo-
rem ., our third main result, which gives upper and lower bounds for supλ∈R+


μH,ρλ

in
terms of μsub and μsuec. Theorem . strictly generalizes Theorem ..

Theorem . (Quantitative stochastic Arzelà-Ascoli) Let � be a collection of c.s.p.s. Then

max
{
μsub(�),μsuec(�)

} ≤ sup
λ∈R+



μH,ρλ
(�) ≤ μsub(�) + μsuec(�).

In particular, if � is stochastically uniformly bounded, then

sup
λ∈R+



μH,ρλ
(�) = μsuec(�),

and, if � is stochastically uniformly equicontinuous, then

sup
λ∈R+



μH,ρλ
(�) = μsub(�).

2 Proof of Theorem 1.4
For a collection � ⊂P(S), put

p� = sup
λ∈R+



μH,ρλ
(�)

and

t� = μut(�).

We first show that

p� ≤ t�

with an argument that essentially refines the first part of the proof of Theorem . in [].
Fix λ ∈R

+
, ε > , and choose pairwise disjoint Borel sets

A, . . . , An ⊂ S

with diameters less than λε such that

∀P ∈ �: P

(
S

∖ n⋃
i=

Ai

)
≤ t� + ε/.

Then, for each i ∈ {, . . . , n}, pick xi ∈ Ai, and, assuming without loss of generality that
S \ ⋃n

i= Ai is nonempty, xn+ ∈ S \ ⋃n
i= Ai. Finally, fix m ∈N such that

n/m ≤ ε/,
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and let � be a finite collection of Borel probability measures on S of the form

Q =
n+∑
i=

(ki/m)δxi ,

where the ki range in {, . . . , m} so that

n+∑
i=

ki = m,

and δxi stands for the Dirac probability measure putting all its mass on xi.
We now claim that

∀P ∈ �,∃Q ∈ �: ρλ(P, Q) ≤ t� + ε,

which finishes the proof of the desired inequality.
To prove the claim, take P ∈ � and construct

Q =
n+∑
i=

(ki/m)δxi

in � such that

P(Ai) ≤ ki/m + /m

for all i ∈ {, . . . , n}. For a Borel set A ⊂ S, let I stand for the set of those i ∈ {, . . . , n} for
which Ai ∩ A is nonempty. Then we derive from the calculation

P(A) ≤ P
(⋃

i∈I

Ai

)
+ P

(
S

∖ n⋃
i=

Ai

)

≤
∑
i∈I

P(Ai) + t� + ε/

≤
∑
i∈I

(ki/m + /m) + t� + ε/

≤ Q
(⋃

i∈I

Ai

)
+ n/m + t� + ε/

≤ Q
(
A(λ(t�+ε))) + t� + ε

that

ρλ(P, Q) ≤ t� + ε,

establishing the claim.
We now show that

t� ≤ p� .
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Fix ε, ε′ > . Choose λ ∈R
+
 such that

λ
(
p� + ε′/

) ≤ ε/

and take a finite collection � ⊂ P(S) such that, for each P ∈ �, there exists Q ∈ � for
which

ρλ(P, Q) ≤ μH,ρλ
(�) + ε′/ ≤ p� + ε′/.

The collection � being finite, we can pick a finite set Y ⊂ S such that

∀Q ∈ �: Q
(

S
∖ ⋃

y∈Y

B(y, ε/)
)

≤ ε′/.

We claim that

∀P ∈ �: P
(

S
∖ ⋃

y∈Y

B(y, ε)
)

≤ p� + ε′,

proving the desired inequality.
To establish the claim, take P ∈ �, and let Q be a probability measure in � such that

ρλ(P, Q) ≤ p� + ε′/.

Then

P
(

S
∖ ⋃

y∈Y

B(y, ε)
)

≤ Q
((

S
∖ ⋃

y∈Y

B(y, ε)
)(λ(p�+ε′/)))

+ p� + ε′/

≤ Q
((

S
∖ ⋃

y∈Y

B(y, ε)
)(ε/))

+ p� + ε′/

≤ Q
(

S
∖ ⋃

y∈Y

B(y, ε/)
)

+ p� + ε′/

≤ p� + ε′,

which finishes the proof of the claim.

3 Proof of Theorem 1.5
Before writing down the proof of Theorem ., we give the required preparation.

For a bounded set A ⊂R
N , its diameter is given by

diam(A) = sup
x,y∈A

|x – y|,
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and the Chebyshev radius by

r(A) = inf
x∈RN

sup
y∈A

|x – y|.

It is well known that, for each bounded set A ⊂ R
N , there exists a unique xA ∈ R

N such
that

sup
y∈A

|xA – y| = r(A).

The point xA is called the Chebyshev center of A. A good exposition of the previous notions
in a general normed vector space can be found in [], Section .

Theorem . provides a relation between the diameter and the Chebyshev radius of a
bounded set in R

N . A beautiful proof can be found in []. For extensions of the result, we
refer to [–], and [].

Theorem . (Jung) Let A ⊂R
N be a bounded set. Then




diam(A) ≤ r(A) ≤
(

N
N + 

)/

diam(A).

We need two additional simple lemmas on linear interpolation.
For c ∈R

N and r ∈R
+
, we denote by B�(c, r) the closed ball with center c and radius r.

Lemma . Consider c, c ∈R
N and r ∈ R

+
, and assume that

B�(c, r) ∩ B�(c, r) �= ∅.

Let L be the RN -valued map on the compact interval [α,β] defined by

L(t) =
β – t
β – α

c +
t – α

β – α
c.

Then, for all t ∈ [α,β] and y ∈ B�(c, r) ∩ B�(c, r),

∣∣L(t) – y
∣∣ ≤ r.

Proof The calculation

∣∣L(t) – y
∣∣ =

∣∣∣∣ β – t
β – α

(c – y) +
t – α

β – α
(c – y)

∣∣∣∣
≤ β – t

β – α
|c – y| +

t – α

β – α
|c – y|

≤ β – t
β – α

r +
t – α

β – α
r

= r

proves the lemma. �
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Lemma . Consider c, c, y, y ∈R
N and ε > , and suppose that

|c – y| ≤ ε

and

|c – y| ≤ ε.

Let L and M be the RN -valued maps on the compact interval [α,β] defined by

L(t) =
β – t
β – α

c +
t – α

β – α
c

and

M(t) =
β – t
β – α

y +
t – α

β – α
y.

Then

‖L – M‖∞ ≤ ε.

Proof It is analogous to the proof of Lemma .. �

Proof of Theorem . We first prove that



μuec(X ) ≤ μH,∞(X ).

Let α >  be such that μH,∞(X ) < α. Then there exists a finite set F ⊂ C such that, for
all x ∈ X , there exists y ∈ F for which ‖y – x‖∞ ≤ α. Take ε > . Since F is uniformly
equicontinuous, there exists δ >  such that

∀y ∈F ,∀s, t ∈ [, ]: |s – t| < δ ⇒ ∣∣y(s) – y(t)
∣∣ ≤ ε. ()

Now, for x ∈X , choose y ∈F such that

‖y – x‖∞ ≤ α. ()

Then, for s, t ∈ [, ] with |s – t| < δ, we have, by () and (),

∣∣x(s) – x(t)
∣∣ ≤ ∣∣x(s) – y(s)

∣∣ +
∣∣y(s) – y(t)

∣∣ +
∣∣y(t) – x(t)

∣∣ ≤ α + ε,

which, by the arbitrariness of ε, reveals that μuec(X ) ≤ α, and thus, by the arbitrariness
of α, we have the inequality



μuec(X ) ≤ μH,∞(X ).
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Next, assume that X ⊂ C is uniformly bounded. We show that

μH,∞(X ) ≤
(

N
N + 

)/

μuec(X ).

Fix ε > . Then, X being uniformly bounded, we can take a constant M >  such that

∀x ∈X ,∀t ∈ [, ]:
∣∣x(t)

∣∣ ≤ M. ()

Pick a finite set Y ⊂R
N for which

∀z ∈ B�(, M),∃y ∈ Y : |y – z| ≤ ε. ()

Now let

 < α ≤ M ()

be such that μuec(X ) < α, that is, there exists δ >  such that

∀x ∈X ,∀s, t ∈ [, ]: |s – t| < δ ⇒ ∣∣x(s) – x(t)
∣∣ ≤ α. ()

Then choose points

 = t < t < · · · < tn < tn+ = ,

put

I = [, t[,

Ik = ]tk–, tk+[ if k ∈ {, . . . , n – },
In = ]tn–, ],

and assume that we have made this choice such that

∀k ∈ {, . . . , n}: diam(Ik) < δ. ()

Furthermore, for each (y, . . . , yn+) ∈ Y n+, let L(y,...,yn+) be the RN -valued map on [, ]
defined by

L(y,...,yn+)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t–t
t–t

y + t–t
t–t

y if t ∈ [t, t],
. . . ,
tk+–t

tk+–tk
yk + t–tk

tk+–tk
yk+ if t ∈ [tk , tk+],

. . . ,
tn+–t

tn+–tn
yn + t–tn

tn+–tn
yn+ if t ∈ [tn, tn+],

and put

F =
{

L(y,...,yn+) | (y, . . . , yn+) ∈ Y n+}.
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Then F is a finite subset of C . Now fix x ∈ X and let cx,k stand for the Chebyshev center
of x(Ik) for each k ∈ {, . . . , n}. It follows from () and () that diam f (Ik) ≤ α, and thus, by
Theorem .,

∀k ∈ {, . . . , n}: sup
t∈Ik

∣∣cx,k – x(t)
∣∣ ≤

(
N

N + 

)/

α. ()

Let x̃ be the R
N -valued map on [, ] defined by

x̃(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cx, if t ∈ [t, t],
t–t
t–t

cx, + t–t
t–t

cx, if t ∈ [t, t],
cx, if t ∈ [t, t[,
t–t

t–t
cx, + t–t

t–t
cx, if t ∈ [t, t],

. . . ,
tk –t

tk–tk–
cx,k– + t–tk–

tk–tk–
cx,k if t ∈ [tk–, tk],

cx,k if t ∈ [tk , tk+],
tk+–t

tk+–tk+
cx,k + t–tk+

tk+–tk+
cx,k+ if t ∈ [tk+, tk+],

. . . ,
tn––t

tn––tn–
cx,n– + t–tn–

tn––tn–
cx,n– if t ∈ [tn–, tn–],

cx,n– if t ∈ [tn–, tn–],
tn–t

tn–tn–
cx,n– + t–tn–

tn–tn–
cx,n if t ∈ [tn–, tn],

cx,n if t ∈ [tn, tn+].

Then () and Lemma . yield that

‖x̃ – x‖∞ ≤
(

N
N + 

)/

α. ()

Also, it easily follows from (), (), and () that ‖x̃‖∞ ≤ M, and thus () allows us to
choose (y, . . . , yn+) ∈ Y n+ such that

∀k ∈ {, . . . , n + }: ∣∣yk – x̃(tk)
∣∣ ≤ ε. ()

Combining () and Lemma . reveals that

‖L(y,...,yn+) – x̃‖∞ ≤ ε. ()

Thus, we have found L(y,...,yn+) in F for which, by () and (),

‖L(y,...,yn+) – x‖∞ ≤
(

N
N + 

)/

α + ε,

which, by the arbitrariness of ε, entails that μH,∞(F ) ≤ ( N
N+ )/α, and thus, by the arbi-

trariness of α, the inequality

μH,∞(X ) ≤
(

N
N + 

)/

μuec(X )

is established. �



Berckmoes Journal of Inequalities and Applications  (2016) 2016:215 Page 12 of 15

4 Proof of Theorem 1.6
We transport the measure of nonuniform tightness from P(C) to the collection of c.s.p.s
via their probability distributions. Thus, for a set � of c.s.p.s,

μut(�) = sup
ε>

inf
F

sup
ξ∈�

P

(
ξ /∈

⋃
y∈F

B∞(y, ε)
)

,

where the infimum is taken over all finite sets F ⊂ C , and

B∞(y, ε) =
{

x ∈ C | ‖y – x‖∞ < ε
}

.

Before giving the proof of Theorem ., we state three lemmas, which are easily seen to
follow from the definitions.

Lemma . Let � be a collection of c.s.p.s, and α ∈ R
+
. Then the following assertions are

equivalent.
() μut(�) < α.
() For each ε > , there exists a uniformly bounded set X ⊂ C such that

(a) μH,∞(X ) < ε,
(b) ∀ξ ∈ �: P(ξ /∈X ) < α.

Lemma . Let � be a collection of c.s.p.s, and α ∈ R
+
. Then the following assertions are

equivalent.
() μsub(�) < α.
() There exists a uniformly bounded set X ⊂ C such that

∀ξ ∈ �: P(ξ /∈X ) < α.

Lemma . Let � be a collection of c.s.p.s, and α ∈ R
+
. Then the following assertions are

equivalent.
() μsuec(�) < α.
() For each ε > , there exists a set X ⊂ C such that

(a) μuec(X ) < ε,
(b) ∀ξ ∈ �: P(ξ /∈X ) < α.

Proof of Theorem . Let � be a collection of c.s.p.s. By Theorem .,

sup
λ∈R+



μH,λ(�) = μut(�),

whence it suffices to show that

max
{
μsub(�),μsuec(�)

} ≤ μut(�) ≤ μsub(�) + μsuec(�).

We first establish that

μut(�) ≤ μsub(�) + μsuec(�).
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Fix ε >  and α,β ∈R
+
 such that

μsub(�) < α

and

μsuec(�) < β .

By Lemma . there exists a uniformly bounded set Y ⊂ C such that

∀ξ ∈ �: P(ξ /∈ Y) < α,

and by Lemma . there exists a set Z ⊂ C such that

μuec(Z) <
(

N
N + 

)–/

ε ()

and

∀ξ ∈ �: P(ξ /∈Z) < β .

Put

X = Y ∩Z .

Then X is uniformly bounded. Also, by Theorem . and (),

μH,∞(X ) ≤
(

N
N + 

)/

μuec(X ) ≤
(

N
N + 

)/

μuec(Z) < ε,

and, for ξ ∈ �,

P(ξ /∈X ) ≤ P(ξ /∈ Y) + P(ξ /∈Z) < α + β .

We conclude from Lemma . that

μut(�) < α + β ,

from which the desired inequality follows.
Next, we prove that

max
{
μsub(�),μsuec(�)

} ≤ μut(�).

Fix ε >  and α ∈R
+
 such that

μut(�) < α.
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By Lemma . there exists a uniformly bounded set X ⊂ C such that

μH,∞(X ) < ε/ ()

and

∀ξ ∈ �: P(ξ /∈X ) < α.

We conclude from Lemma . that

μsub(�) < α.

Moreover, by Theorem . and (),

μuec(X ) ≤ μH,∞(X ) < ε,

and Lemma . allows us to infer that

μsuec(�) < α,

which finishes the proof of the desired inequality. �

5 Conclusions
In this work, we have quantified the Prokhorov theorem by establishing an explicit formula
for the Hausdorff measure of noncompactness (HMNC) for the parameterized Prokhorov
metric on the set of Borel probability measures on a Polish space (Theorem .). Further-
more, we have quantified the Arzelà-Ascoli theorem by obtaining upper and lower esti-
mates for the HMNC for the uniform norm on the space of continuous maps of a com-
pact interval into Euclidean N-space, using the Jung theorem on the Chebyshev radius
(Theorem .). Finally, we have combined the obtained results to quantify the stochastic
Arzelà-Ascoli theorem by providing upper and lower estimates for the HMNC for the pa-
rameterized Prokhorov metric on the set of multivariate continuous stochastic processes
(Theorem .). This work fits nicely in the research initiated in [], the aim of which is to
systematically study quantitative measures, such as the HMNC, in the realm of probability
theory.
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