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Abstract
In this paper, our aim is to address the existence and uniqueness of solutions for a
class of integral equations in IFMT-space. Therefore, we introduce the concept of
IFMT-spaces and prove a common fixed point theorem in a complete IFMT-space;
next we study an application.
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1 Introduction and preliminaries
First of all, we would like to introduce the concept of IFMT-space, which is a non-trivial
generalization of IFM-space introduced by Park [] and Saadati and Park [] and Saadati
et al. []; also we use results from [–].

We say the pair (L∗,≤L∗ ) is a complete lattice whenever L∗ is a non-empty set and we
have the operation ≤L∗ defined by

L∗ =
{

(a, b) : (a, b) ∈ [, ] × [, ] and a + b ≤ 
}

,

(a, b) ≤L∗ (c, d) ⇐⇒ a ≤ c, and b ≥ d, for each (a, b), (c, d) ∈ L∗.

Definition . ([]) An IF set Fα,β in a universe U is an object Fα,β = {(αF (u),βF (u))|u ∈
U}, in which, for all u ∈ U , αF (u) ∈ [, ], and βF (u) ∈ [, ] are said the membership
degree and the non-membership degree, respectively, of u in Fα,β , and furthermore they
satisfy αF (u) + βF (u) ≤ .

We consider L∗ = (, ) and L∗ = (, ) as its units.

Definition . ([]) The mapping T : L∗ × L∗ −→ L∗ satisfying the following conditions:
(∀a ∈ L∗) (T (a, L∗ ) = a),
(∀(a, b) ∈ L∗ × L∗) (T (a, b) = T (b, a)),
(∀(a, b, c) ∈ L∗ × L∗ × L∗) (T (a,T (b, c)) = T (T (a, b), c)),
(∀(a, a′, b, b′) ∈ L∗ × L∗ × L∗ × L∗) (a ≤L∗ a′ and b ≤L∗ b′ �⇒ T (a, b) ≤L∗ T (a′, b′)).

is said to be a triangular norm (t-norm) on L∗.
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T is said to be a continuous t-norm if the triple (L∗,≤L∗ ,T ) is an Abelian topological
monoid with unit L∗ .

Definition . ([]) T on L∗ is called continuous t-representable if and only if there
exist a continuous t-norm ∗ and a continuous t-conorm � on [, ] such that, for all
a = (a, a), b = (b, b) ∈ L∗,

T (a, b) = (a ∗ b, a � b).

For example, T (a, b) = (ab, min(a + b, )) for all a = (a, a) and b = (b, b) in L∗ is a
continuous t-representable.

Definition . The decreasing mapping N : L∗ −→ L∗ satisfying N (L∗ ) = L∗ and
N (L∗ ) = L∗ is said a negator on L∗. We say N is an involutive negator if N (N (a)) = a, for
all a ∈ L∗. The decreasing mapping N : [, ] −→ [, ] satisfying N() =  and N() =  is
said to be a negator on [, ]. The standard negator on [, ] is defined, for all a ∈ [, ], by
Ns(a) =  – a, denoted by Ns. We show (Ns(a), a) = Ns(a).

Definition . If for given α ∈ (, ) there is β ∈ (, ) such that

T m(
Ns(β), . . . ,Ns(β)

)
>L∗ Ns(α), m ∈ N,

then T is a H-type t-norm.

A typical example of such t-norms is

∧(a, b) =
(
Min(a, b), Max(a, b)

)
,

for every a = (a, a) and b = (b, b) in L∗.

Definition . The tuble (X,MM,N ,T ) is said to be an IFMT-space if X is an (non-empty)
set, T is a continuous t-representable, and MM,N is a mapping X × [, +∞) → L∗ (in
which M, N are fuzzy sets from X × [, +∞) to [, ] such that M(x, y, t) + N(x, y, t) ≤ 
for all x, y ∈ X and t > ) satisfying the following conditions for every x, y, z ∈ X and t, s > :

(a) MM,N (x, y, t) >L L∗ ;
(b) MM,N (x, y, t) = MM,N (y, x, t) = L∗ iff x = y;
(c) MM,N (x, y, t) = MM,N (y, x, t) for each x, y ∈ X ;
(d) MM,N (x, y, K(t + s)) ≥L∗ T (MM,N (x, z, t),MM,N (z, y, s)) for some constant K ≥ ;
(e) MM,N (x, y, ·) : [,∞) −→ L∗ is continuous.

Also MM,N is said an IFMT. Note that for an IFMT-space

MM,N (x, y, t) =
(
M(x, y, t), N(x, y, t)

)
.

(X,MM,N ,T ) is called a Menger IFMT-space if

lim
t→∞MM,N (x, y, t) = lim

t→∞MM,N (y, x, t) = L∗ .



Saadati Journal of Inequalities and Applications  (2016) 2016:205 Page 3 of 8

Remark . The space of all real functions α(x), x ∈ [, ] such that
∫ 

 |α(x)|q dx < ∞,
denoted by Lq ( < q < ), is a metric type space. Consider

d(α,β) =
(∫ 



∣∣α(x) – β(x)
∣∣q dx

) 
q

,

for each α,β ∈ Lq. Then d is a metric type space with K = 

q .

Example . We consider the set of Lebesgue measurable functions on [, ] such that
∫ 

 |α(x)|q dx < ∞, where q >  is a real number denoted by M. Consider

MM,N (x, y, t) =

⎧
⎪⎨

⎪⎩

L∗ if t ≤ ,

( t

t+(
∫ 

 |α(x)–β(x)|q dx)

q

, (
∫ 

 |α(x)–β(x)|q dx)

q

t+(
∫ 

 |α(x)–β(x)|q dx)

q

) if t > .

So from Remark ., we have (M,MM,N ,∧) is IFMT-space with K = 

q .

Definition . Let (X,MM,N ,T ) be a Menger IFMT-space.
() A sequence {xn}n in X is said to be convergent to x in X if, for every ε >  and λ ∈ ,

there exists a positive integer N such that MM,N (xn, x, ε) >  – λ whenever n ≥ N .
() A sequence {xn}n in X is called a Cauchy sequence if, for every ε >  and λL∗ – {L∗},

there exists a positive integer N such that MM,N (xn, xm, ε) >L N (λ) whenever
n, m ≥ N .

() A Menger IFMT-space (X,MM,N ,T ) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X .

Remark . Khamsi and Kreinovich [] proved, if (X,MM,N ,T ) is a IFMT-space and
{un} and {vn} are sequences such that un → u and vn → v, then

lim
n→∞MM,N (un, vn, t) = MM,N (u, v, t).

Remark . Let for each σ ∈ L∗ – {L∗ , L∗} there exists a ς ∈ L∗ – {L∗ , L∗} (which does
not depend on n) with

T n–(N (ς ), . . . ,N (ς )
)

>L N (σ ) for each n ∈ {, , . . .}. ()

Lemma . ([]) Let (X,MM,N ,T ) be a Menger IFMT-space. If we define Eς ,MM,N :
X −→R

+ ∪ {} by

Eς ,MM,N (x, y) = inf
{

t >  : MM,N (x, y, t) >L N (ς )
}

for each ς ∈ L∗ – {L∗ , L∗} and x, y ∈ X, then we have the following:
() For any σ ∈ L∗ – {L∗ , L∗}, there exists a ς ∈ L∗ – {L∗ , L∗} such that

Eμ,MM,N (x, xk) ≤ KEς ,MM,N (x, x)+KEς ,MM,N (x, x)+ · · ·+Kn–Eς ,MM,N (xk–, xk)

for any x, . . . , xk ∈ X .
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() For each sequence {xn} in X , we have MM,N (xn, x, t) −→ L∗ if and only if
Eς ,MM,N (xn, x) → . Also the sequence {xn} is Cauchy w.r.t. MM,N if and only if it is
Cauchy with Eς ,MM,N .

2 Common fixed point theorems
In this section we study some common fixed point theorems in Menger IFMT-spaces,
ones can find similar results in others spaces at [–].

Definition . Let f and g be mappings from a Menger IFMT-space (X,MM,N ,T ) into
itself. The mappings f and g are called weakly commuting if

MM,N (fgx, gfx, t) ≥L MM,N (fx, gx, t)

for each x in X and t > .

Now we assume that � is the set of all functions

φ : [,∞) −→ [,∞)

which satisfy limn→∞ φn(t) =  for t >  and are onto and strictly increasing. Also, we
denote by φn(t) the nth iterative function of φ(t).

Remark . Note that φ ∈ � implies that φ(t) < t for t > . Consider t >  with t ≤ φ(t).
Since φ is a nondecreasing function we get t ≤ φn(t) for every n ∈ {, , . . .}, which is a
contradiction. Also φ() = .

Lemma . ([]) If a Menger IFMT-space (X,MM,N ,T ) obeys the condition

MM,N (x, y, t) = C, for all t > ,

then we get C = L∗ and x = y.

Theorem . Consider the complete Menger IFMT-space (X,MM,N ,T ). Assume that f
and g are weakly commuting self-mappings of X such that:

(a) f (X) ⊆ g(X);
(b) f or g is continuous;
(c) MM,N (fx, fy,φ(t)) ≥L MM,N (gx, gy, t) in which φ ∈ �.
(i) Now let () hold and let there exist a x ∈ X with

EMM,N (gx, fx) = sup
{

Eγ ,MM,N (gx, fx) : γ ∈ L∗ – {L∗ , L∗ }} < ∞,

therefore f and g have a common fixed point which is unique.

Proof (i) Select x ∈ X with EMM,N (gx, fx) < ∞. Select x ∈ X with fx = gx. Now se-
lect xn+ such that fxn = gxn+. Now MM,N (fxn, fxn+,φn+(t)) ≥L MM,N (gxn, gxn+,φn(t)) =
MM,N (fxn–, fxn,φn(t)) ≥L · · · ≥MM,N (gx, gx, t).
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We have for each λ ∈ L∗ – {L∗ , L∗} (see Lemma . of [])

Eλ,MM,N (fxn, fxn+) = inf
{
φn+(t) >  : MM,N

(
fxn, fxn+,φn+(t)

)
>L N (λ)

}

≤ inf
{
φn+(t) >  : MM,N (gx, fx, t) >L N (λ)

}

≤ φn+(inf
{

t >  : MM,N (gx, fx, t) >L N (λ)
})

= φn+(Eλ,MM,N (gx, fx)
)

≤ φn+(EMM,N (gx, fx)
)
.

Thus Eλ,MM,N (fxn, fxn+) ≤ φn+(EMM,N (gx, fx)) for each λ ∈ L∗ – {L∗ , L∗} and so

EMM,N (fxn, fxn+) ≤ φn+(EMM,N (gx, fx)
)
.

Let ε > . Select n ∈ {, , . . .}; therefore EMM,N (fxn, fxn+) < ε–φ(ε)
K . For λ ∈ L∗ – {L∗ , L∗}

there exists a μ ∈ L∗ – {L∗ , L∗} with

Eλ,MM,N (fxn, fxn+) ≤ KEμ,MM,N (fxn, fxn+) + KEμ,MM,N (fxn+, fxn+)

≤ KEμ,MM,N (fxn, fxn+) + φ
(
KEμ,MM,N (fxn, fxn+)

)

≤ KEMM,N (fxn, fxn+) + φ
(
KEMM,N (fxn, fxn+)

)

≤ K
ε – φ(ε)

K
+ φ

(
K

ε – φ(ε)
K

)

≤ ε.

We can continue this process for every λ ∈ L∗ – {L∗ , L∗}; then

EMM,N (fxn, fxn+) ≤ ε.

For λ ∈ L∗ – {L∗ , L∗} there exists a μ ∈ L∗ – {L∗ , L∗} with

Eλ,MM,N (fxn, xn+) ≤ KEμ,MM,N (fxn, fxn+) + KEμ,MM,N (fxn+, fxn+)

≤ KEμ,MM,N (fxn, fxn+) + φ
(
KEμ,MM,N (fxn, fxn+)

)

≤ KEMM,N (fxn, fxn+) + φ
(
KEMM,N (fxn, fxn+)

)

≤ ε – φ(ε) + φ(ε) = ε,

from MM,N (fxn+, fxn+,φ(t)) ≥L MM,N (gxn+, gxn+, t) = MM,N (fxn, fxn+, t) we have
Eλ,MM,N (fxn+, fxn+) ≤ φ(Eμ,MM,N (fxn, fxn+)), which implies that

EMM,N (fxn, fxn+) ≤ ε.

By using induction

EMM,N (fxn, fxn+k) ≤ ε for k ∈ {, , . . .},
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and we conclude that {fxn}n is a Cauchy sequence and by the completeness of X, {fxn}n

converges to a point named z in X. Also {gxn}n converges to z. Now we assume that the
mapping f is continuous. Then limn ffxn = fz and limn fgxn = fz. Also, since f and g are
weakly commuting,

MM,N (fgxn, gfxn, t) ≥L MM,N (fxn, gxn, t).

Take n → ∞ in the above inequality and we get limn gfxn = fz, by the continuity of M.
Now, we show that z = fz. Assume that z �= fz. From (c) for each t >  we have

MM,N
(
fxn, ffxn,φk+(t)

) ≥L MM,N
(
gxn, gfxn,φk(t)

)
, k ∈N.

Suppose that n → ∞ in the above inequality; we get

MM,N
(
z, fz,φk+(t)

) ≥L MM,N
(
z, fz,φk(t)

)
.

Furthermore we have

MM,N
(
z, fz,φk(t)

) ≥L MM,N
(
z, fz,φk–(t)

)

and

MM,N
(
z, fz,φ(t)

) ≥L MM,N (z, fz, t).

Also

MM,N
(
z, fz,φk+(t)

) ≥L MM,N (z, fz, t).

Next, we have (see Remark .)

MM,N
(
z, fz,φk+(t)

) ≤L MM,N (z, fz, t).

Then MM,N (z, fz, t) = C and from Lemma ., we conclude that z = fz. By assumption we
have f (X) ⊆ g(X); then there exists a z in X such that z = fz = gz. Now,

MM,N (ffxn, fz, t) ≥L MM,N
(
gfxn, gz,φ–(t)

)
.

Take n → ∞; we get

MM,N (fz, fz, t) ≥L MM,N
(
fz, gz,φ–(t)

)
= L∗ ,

then fz = fz, i.e., z = fz = fz = gz. Also for each t >  we get

MM,N (fz, gz, t) = MM,N (fgz, gfz, t) ≥L MM,N (fz, gz, t) = ε(t)

since f and g are weakly commuting, from which we can conclude that fz = gz. This implies
that z is a common fixed point of f and g .
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Now we prove the uniqueness. Assume that z′ �= z is another common fixed point of f
and g . Now, for each t >  and n ∈N, we have

MM,N
(
z, z′,φn+(t)

)
= MM,N

(
fz, fz′,φn+(t)

) ≥L Fgz,gz′
(
φn(t)

)
= Fz,z′

(
φn(t)

)
.

Also of course we have

MM,N
(
z, z′,φn(t)

) ≥L MM,N
(
z, z′,φn–(t)

)

and

MM,N
(
z, z′,φn(t)

) ≥L MM,N
(
z, z′, t

)
.

As a result

MM,N
(
z, z′,φn+(t)

) ≥L MM,N
(
z, z′, t

)
.

On the other hand we have

MM,N
(
z, z′, t

) ≤L MM,N
(
z, z′,φn+(t)

)
.

Then MM,N (z, z′, t) = C, see Lemma ., implies that z = z′, which is contradiction. Then
z is the unique common fixed point of f and g . �

3 The existence and uniqueness of solutions for a class of integral equations
Assume that X = C([, ], (–∞, .)) and

MM,N (x, y, t) =

{
 if t ≤ ,
(inf�∈[,]

t
t+(x(�)–y(�)) , sup�∈[,]

(x(�)–y(�))

t+(x(�)–y(�)) ) if t > ,

for x, y ∈ X, then (M,MM,N ,∧) is a complete IFTM-space with K = .
We consider the mapping T : X → X by

T
(
x(�)

)
=  +

∫ �



(
x(u) – u)e–u du.

Put g(x) = T(x) and f (x) = T(x). Since fg = gf , f and g are (weakly) commuting. Now, for
x, y ∈ X and t > ,

MM,N (fx, fy, t)

= MM,N
(
T

(
Tx(�)

)
, T

(
Ty(�)

)
, t

)

=
(

inf
�∈[,]

t
t + | ∫ �

 (Tx(u) – Ty(u))e–u du| , sup
�∈[,]

| ∫ �

 (Tx(u) – Ty(u))e–u du|
t + | ∫ �

 (Tx(u) – Ty(u))e–u du|
)

≥
(

t
t + 

e | ∫ 
 (Tx(u) – Ty(u)) du| ,


e | ∫ 

 (Tx(u) – Ty(u)) du|
t + 

e | ∫ 
 (Tx(u) – Ty(u)) du|

)

= MM,N (gx, gy, t),
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then

MM,N (fx, fy,
(

t
e

)
≥L MM,N (gx, gy, t).

Thus all conditions of Theorem . are satisfied for φ(t) = t
e and so f and g have a unique

common fixed point, which is the unique solution of the integral equations

x(�) =  +
∫ �



(
x(u) – u)e–u du

and

x(�) = ( – �)e–� +
∫ �



∫ u



(
x(v) – v)e–(u+v) dv du.
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