Bonnesen-style symmetric mixed inequalities

Pengfu Wang ${ }^{1,2}$, Miao Luo ${ }^{1,3}$ and Jiazu Zhou ${ }^{1 *}$

"Correspondence:
zhoujz@swu.edu.cn
${ }^{1}$ School of Mathematics and Statistics, Southwest University, Chongqing, 400715, People's Republic of China Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the symmetric mixed isoperimetric deficit $\Delta_{2}\left(K_{0}, K_{1}\right)$ of domains K_{0} and K_{1} in the Euclidean plane \mathbb{R}^{2}. Via the known kinematic formulae of Poincaré and Blaschke in integral geometry, we obtain some Bonnesen-style symmetric mixed inequalities. These new Bonnesen-style symmetric mixed inequalities are known as Bonnesen-style inequalities if one of the domains is a disc. Some inequalities obtained in this paper strengthen the known Bonnesen-style inequalities.

MSC: 52A10; 52A22
Keywords: isoperimetric inequality; symmetric mixed isoperimetric deficit; symmetric mixed isoperimetric inequality; Bonnesen-style symmetric mixed inequality

1 Introductions and preliminaries

A subset of points K in the Euclidean space \mathbb{R}^{n} is called convex if for all $x, y \in K$, the line segment $\lambda x+(1-\lambda) y(0 \leq \lambda \leq 1)$ joining x and y is contained in K. A domain is a set with nonempty interior, and a convex body is a compact convex domain. The Minkowski sum of convex sets K and L is defined by

$$
K+L=\{x+y: x \in K, y \in L\}
$$

and the scalar product of the convex set K with $\lambda \geq 0$ is defined by

$$
\lambda K=\{\lambda x: x \in K, \lambda \geq 0\}
$$

A homothety of the convex set K is of the form $x+\lambda K\left(x \in \mathbb{R}^{n}, \lambda>0\right)$.
Let S^{1} be the unit circle in \mathbb{R}^{2}, and $u \in S^{1}$. The support function $p_{K}(u): S^{1} \rightarrow \mathbb{R}$ of a convex domain $K \subseteq \mathbb{R}^{2}$ is defined by

$$
\begin{equation*}
p_{K}(u)=\max \left\{x \cdot u: x \in K, u \in S^{1}\right\} \tag{1.1}
\end{equation*}
$$

and uniquely determines the convex domain K. Let $K_{k}(k=0,1)$ be two convex domains of areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then

$$
\begin{equation*}
p_{K_{0}}(u) \leq p_{K_{1}}(u) \quad \text { if and only if } \quad K_{0} \subseteq K_{1} . \tag{1.2}
\end{equation*}
$$

By the Steiner formula (see [1]) the area of $s K_{0}+t K_{1}$ is

$$
\begin{equation*}
A_{s K_{0}+t K_{1}}=s^{2} A_{0}+2 s t A\left(K_{0}, K_{1}\right)+t^{2} A_{1}, \tag{1.3}
\end{equation*}
$$

where $A\left(K_{0}, K_{1}\right)$ is called the mixed area of K_{0} and K_{1}. The mixed area $A\left(K_{0}, K_{1}\right)$ satisfies (see [1])

$$
\begin{equation*}
A\left(K_{0}, K_{0}\right)=A_{0}, \tag{1.4}
\end{equation*}
$$

the symmetry

$$
\begin{equation*}
A\left(K_{0}, K_{1}\right)=A\left(K_{1}, K_{0}\right), \tag{1.5}
\end{equation*}
$$

the linearity

$$
\begin{equation*}
A\left(K_{0}, s K_{1}+t K_{2}\right)=s A\left(K_{0}, K_{1}\right)+t A\left(K_{0}, K_{2}\right), \tag{1.6}
\end{equation*}
$$

and the monotonicity

$$
\begin{equation*}
K_{1} \subseteq K_{2} \quad \Rightarrow \quad A\left(K_{0}, K_{1}\right) \leq A\left(K_{0}, K_{2}\right) . \tag{1.7}
\end{equation*}
$$

Let G_{2} be the group of plane rigid motions (see [2-4]), that is, translations and rotations. Let θ be rotation angle of K_{1} with respect to origin, and $g \in G_{2}$. Then we have (see [4])

$$
\begin{equation*}
\int_{0}^{2 \pi} A\left(K_{0}, g K_{1}\right) d \theta=\frac{1}{2} P_{0} P_{1} . \tag{1.8}
\end{equation*}
$$

The classical isoperimetric problem says that the disc encloses the maximum area among all plane domains of given perimeter. That is: Let Γ be a simple closed curve of perimeter P in the Euclidean plane \mathbb{R}^{2}, and A be the area of the domain K enclosed by Γ; then

$$
\begin{equation*}
P^{2}-4 \pi A \geq 0 \tag{1.9}
\end{equation*}
$$

where the equality holds if and only if Γ is a circle.
The classical isoperimetric problem can root back to Ancient Greece. However, a rigorous mathematical proof of the isoperimetric inequality was obtained during the 19th century (see [2,5-11]). We can find some simplified and beautiful proofs that lead to generalizations of the discrete case, higher dimensions, the surface of constant curvature, and applications to other branches of mathematics [1, 4, 12-34].
The isoperimetric inequality (1.9) indicates that the quantity

$$
\begin{equation*}
\Delta_{2}(K)=P^{2}-4 \pi A \tag{1.10}
\end{equation*}
$$

measures the deficit of domain K and a disc of radius $P / 2 \pi$, and it is called the isoperimetric deficit of K.

During the 1920s, Bonnesen proved a series of inequalities of the form

$$
\begin{equation*}
\Delta_{2}(K)=P^{2}-4 \pi A \geq B_{K}, \tag{1.11}
\end{equation*}
$$

where B_{K} is a nonnegative invariant of geometric significance and vanishes if and only if K is a disc. An inequality of the form (1.11) is called the Bonnesen-style inequality, and it is stronger than the classical isoperimetric inequality. The following Bonnesen-style inequalities are known.

Proposition 1.1 Let K be a plane domain of area A and bounded by a simple closed curve of perimeter P. Denote by R and r, respectively, the radius of the minimum circumscribed disc and radius of the maximum inscribed disc of K. Then we have

$$
\begin{align*}
& \pi t^{2}-P t+A \leq 0 ; \quad r \leq t \leq R, \\
& \frac{P-\sqrt{P^{2}-4 \pi A}}{2 \pi} \leq r \leq R \leq \frac{P+\sqrt{P^{2}-4 \pi A}}{2 \pi}, \tag{1.12}\\
& P^{2}-4 \pi A \geq \pi^{2}(R-r)^{2} .
\end{align*}
$$

Each equality sign holds when K is a disc.

Many Bonnesen-style inequalities have been found during the past, and mathematicians are still working on unknown Bonnesen-style inequalities of geometric significance. See [$1,3,4,12-16,19-29,32,33,35-46]$ for more references.
Let $K_{k}(k=0,1)$ be two domains of areas A_{k} and bounded by simple closed curves of perimeters P_{k} in \mathbb{R}^{2}. Let $d g$ denote the kinematic density of the group G_{2} of plane rigid motions [2-4]. Let K_{1} be convex, and $t K_{1}$ be a dilation of K_{1}. Let $n\left\{\partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right)\right\}$ denote the number of points of intersection $\partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right)$. Then we have the kinematic formula of Poincaré:

$$
\begin{equation*}
\int_{\left\{g \in G_{2}: \partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right) \neq \varnothing\right\}} n\left\{\partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right)\right\} d g=4 t P_{0} P_{1} . \tag{1.13}
\end{equation*}
$$

Let $\chi\left(K_{0} \cap t\left(g K_{1}\right)\right)$ be the Euler-Poincaré characteristic of the intersection $K_{0} \cap t\left(g K_{1}\right)$. Then we have the fundamental kinematic formula of Blaschke:

$$
\begin{equation*}
\int_{\left\{g \in G_{2}: K_{0} \cap t\left(g K_{1}\right) \neq \emptyset\right\}} \chi\left(K_{0} \cap t\left(g K_{1}\right)\right) d g=2 \pi\left(t^{2} A_{1}+A_{0}\right)+t P_{0} P_{1} . \tag{1.14}
\end{equation*}
$$

If μ denotes the set of all positions of K_{1} in which either $t\left(g K_{1}\right) \subset K_{0}$ or $t\left(g K_{1}\right) \supset K_{0}$, then the fundamental kinematic formula of Blaschke (1.14) can be rewritten as

$$
\begin{equation*}
\int_{\mu} d g+\int_{\left\{g \in G_{2}: \partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right) \neq \varnothing\right\}} \chi\left(K_{0} \cap t\left(g K_{1}\right)\right) d g=2 \pi\left(t^{2} A_{1}+A_{0}\right)+t P_{0} P_{1} \tag{1.15}
\end{equation*}
$$

When $\partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right) \neq \emptyset$, each component of $K_{0} \cap t\left(g K_{1}\right)$ is bounded by at least an arc of ∂K_{0} and an arc of $\partial\left(t\left(g K_{1}\right)\right)$. Therefore, $\chi\left(K_{0} \cap t\left(g K_{1}\right)\right) \leq n\left\{\partial K_{0} \cap \partial\left(t\left(g K_{1}\right)\right)\right\} / 2$. Then by the kinematic formulae of Poincaré (1.13) and Blaschke (1.15) we obtain

$$
\begin{equation*}
\int_{\mu} d g \geq 2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0} \tag{1.16}
\end{equation*}
$$

Inequality (1.16) immediately gives the following containment theorem [40, 47-49].

Containment theorem Let $K_{k}(k=0,1)$ be two domains of areas A_{k} with simple boundaries of perimeters P_{k} in \mathbb{R}^{2}. Let K_{1} be convex, and $t K_{1}$ be a dilation of K_{1}. A sufficient condition for $t K_{1}$ to contain, or to be contained in K_{0}, is

$$
\begin{equation*}
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0}>0 . \tag{1.17}
\end{equation*}
$$

Moreover, if $t^{2} A_{1} \geq A_{0}$, then $t K_{1}$ contains K_{0}.

Let $r_{01}^{g}=\max \left\{t: t\left(g K_{1}\right) \subseteq K_{0} ; g \in G_{2}\right\}$ and $R_{01}^{g}=\min \left\{t: t\left(g K_{1}\right) \supseteq K_{0} ; g \in G_{2}\right\}$ be the inradius of K_{0} with respect to K_{1} and the outradius of K_{0} with respect to K_{1}, respectively. It is obvious that $r_{01}^{g} \leq R_{01}^{g}$. Since both r_{01}^{g} and R_{01}^{g} are rigid invariant, we simply call them the relative inradius and the relative outradius and denote them r_{01} and R_{01}, respectively. Note that if K_{1} is the unit disc, then the relative inradius r_{01} and the relative outradius R_{01} become the inscribed radius r and the circumscribed radius R of K_{0}, respectively.

Note that for $t \in\left[r_{01}, R_{01}\right]$, neither $t K_{1}$ contains K_{0} nor is contained in K_{0}. Then by inequality (1.17) we have [40, 47-49]

$$
\begin{equation*}
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0} \leq 0, \quad t \in\left[r_{01}, R_{01}\right] . \tag{1.18}
\end{equation*}
$$

Inequality (1.18) guarantees that the equation $B_{K_{0}, K_{1}}(t)=2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0}=0$ has $\operatorname{root}(\mathrm{s})$. Therefore, the determinant of $B_{K_{0}, K_{1}}(t)=0$ is nonnegatitive. Then we have the following symmetric mixed isoperimetric inequality [40, 47-49]:

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 0 \tag{1.19}
\end{equation*}
$$

where the equality sign holds if and only if both K_{0} and K_{1} are discs.
When K_{1} is the unit disc, then symmetric mixed isoperimetric inequality (1.19) reduces to the isoperimetric inequality (1.9).

The quantity

$$
\begin{equation*}
\Delta_{2}\left(K_{0}, K_{1}\right)=P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \tag{1.20}
\end{equation*}
$$

is called the symmetric mixed isoperimetric deficit of K_{0} and K_{1}.
Motivated by the Bonnesen's works in the 1920s, we consider if there is a nonnegative invariant $B_{K_{0}, K_{1}}$ of geometric significance such that

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq B_{K_{0}, K_{1}} \tag{1.21}
\end{equation*}
$$

where $B_{K_{0}, K_{1}}$ vanishes if and only if both K_{0} and K_{1} are discs. We call such inequalities Bonnesen-style symmetric mixed inequalities (cf. [40, 47-49]).

The purpose of this paper is to find some new Bonnesen-style symmetric mixed isoperimetric inequalities that strengthen the known Bonnesen-style inequalities.

2 Bonnesen-style symmetric mixed inequality

For any two plane domains $K_{k}(k=0,1)$ of areas A_{k} with simple boundaries of perimeters P_{k}, the convex hulls K_{k}^{*} of K_{k} increase the areas A_{k}^{*} and decrease the perimeters P_{k}^{*}, that is,
$A_{k}^{*} \geq A_{k}$ and $P_{k}^{*} \leq P_{k}$, so that $P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq P_{0}^{* 2} P_{1}^{* 2}-16 \pi^{2} A_{0}^{*} A_{1}^{*}$, that is, $\Delta_{2}\left(K_{0}, K_{1}\right) \geq$ $\Delta_{2}\left(K_{0}^{*}, K_{1}^{*}\right)$. Therefore, the symmetric mixed isoperimetric inequality and Bonnesen-type symmetric mixed inequality are valid for all domains with simple boundaries in \mathbb{R}^{2} if these inequalities are valid for convex domains. Hence, from now on, we only consider convex domains when we estimate the lower bounds of the symmetric mixed isoperimetric deficit.

Lemma 2.1 Let $K_{k}(k=0,1)$ be two convex domains of areas A_{k} and perimeters P_{k} in the Euclidean plane \mathbb{R}^{2}. Then

$$
\begin{equation*}
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0} \leq 0, \quad t \in\left[r_{01}, R_{01}\right] . \tag{2.1}
\end{equation*}
$$

The inequality is strict whenever $r_{01}<t<R_{01}$. When $t=r_{01}$, equality holds if and only if K_{1} is a disc and K_{0} is the Minkowski sum of a disc and a line segment (which may be a point). When $t=R_{01}$, equality holds if and only if K_{0} is a disc and K_{1} is the Minkowski sum of a disc and a line segment (which may be a point).

Proof Let $p_{K_{0}}(u)$ and $p_{\left(g K_{1}\right)}(u)$ are the support functions of convex domains K_{0} and $g K_{1}$, respectively. We can always find $g \in G_{2}$ such that the function $p_{K_{0}}(u)-t p_{\left(g K_{1}\right)}(u)$ about u is nonnegative for $t \in\left[0, r_{01}\right]$. Let \widetilde{K}_{t} be given by

$$
\begin{equation*}
\widetilde{K}_{t}=\left\{x \in \mathbb{R}^{2}: x \cdot u \leq p_{K_{0}}(u)-t p_{\left(g K_{1}\right)}(u) ; u \in S^{1}, g \in G_{2}\right\}, \quad t \in\left[0, r_{01}\right] . \tag{2.2}
\end{equation*}
$$

From (2.2) we have that $\widetilde{K}_{0}=K_{0}$ and $\widetilde{K}_{r_{01}}$ is a line segment (which may be a point); see the proof of (6.5.11) in [1]. Therefore,

$$
\begin{equation*}
A\left(\widetilde{K}_{0}\right)=A_{0}, \quad A\left(\widetilde{K}_{r 01}\right)=0 \tag{2.3}
\end{equation*}
$$

From definitions (2.2) and (1.2) we immediately have

$$
\begin{equation*}
\widetilde{K}_{t}+t\left(g K_{1}\right) \subseteq K_{0} . \tag{2.4}
\end{equation*}
$$

However, relation (2.4), together with the monotonicity (1.7), linearity (1.6), the symmetry of mixed areas (1.5), and (1.4), gives

$$
\begin{equation*}
A\left(K_{0}, g K_{1}\right) \geq A\left(\widetilde{K}_{t}+t\left(g K_{1}\right), g K_{1}\right)=A\left(\widetilde{K}_{t}, g K_{1}\right)+t A\left(g K_{1}\right) \tag{2.5}
\end{equation*}
$$

and we have (see the proof of (2.17) in [50]) that

$$
\begin{equation*}
A_{0}-A\left(\widetilde{K}_{t}\right)=2 \int_{0}^{t} A\left(\widetilde{K}_{s}, g K_{1}\right) d s ; \quad t \in\left[0, r_{01}\right] . \tag{2.6}
\end{equation*}
$$

Now (2.6), (2.5), and (1.8) give

$$
\begin{align*}
\int_{0}^{2 \pi}\left(A_{0}-A\left(\widetilde{K}_{t}\right)\right) d \theta & =\int_{0}^{2 \pi} 2 \int_{0}^{t} A\left(\widetilde{K}_{s}, g K_{1}\right) d s d \theta \\
& \leq 2 \int_{0}^{2 \pi} \int_{0}^{t}\left(A\left(K_{0}, g K_{1}\right)-s A\left(g K_{1}\right)\right) d s d \theta \\
& =P_{0} P_{1} t-2 \pi A_{1} t^{2} \tag{2.7}
\end{align*}
$$

Thus,

$$
\begin{equation*}
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0} \leq \int_{0}^{2 \pi} A\left(\widetilde{K}_{t}\right) d \theta \tag{2.8}
\end{equation*}
$$

From (2.5) and (2.7) we see that equality holds in (2.8) if and only if, for all $s \in[0, t]$,

$$
\begin{align*}
\int_{0}^{2 \pi} A\left(\widetilde{K}_{s}, g K_{1}\right) d \theta & =\int_{0}^{2 \pi}\left(A\left(K_{0}, g K_{1}\right)-s A\left(g K_{1}\right)\right) d \theta \\
& =\frac{1}{2} P_{0} P_{1}-2 \pi s A_{1} \tag{2.9}
\end{align*}
$$

When $t=r_{01}$, by (2.3), (2.8), and (2.9) we have

$$
\begin{equation*}
2 \pi A_{1} r_{01}^{2}-P_{0} P_{1} r_{01}+2 \pi A_{0} \leq 0, \tag{2.10}
\end{equation*}
$$

where the equality holds if and only if

$$
\int_{0}^{2 \pi} A\left(\widetilde{K}_{r_{01}}, g K_{1}\right) d \theta=\frac{1}{2} P_{0} P_{1}-2 \pi r_{01} A_{1} .
$$

Therefore, we have

$$
2 \pi A_{1} r_{01}^{2}-2\left(\int_{0}^{2 \pi} A\left(\widetilde{K}_{r_{01}}, g K_{1}\right) d \theta+2 \pi r_{01} A_{1}\right) r_{01}+2 \pi A_{0}=0,
$$

that is,

$$
\begin{equation*}
r_{01} \int_{0}^{2 \pi} A\left(\widetilde{K}_{r_{01}}, g K_{1}\right) d \theta=-\pi A_{1} r_{01}^{2}+\pi A_{0} \tag{2.11}
\end{equation*}
$$

By (1.3), (2.3), and (2.11) we have

$$
\begin{align*}
\int_{0}^{2 \pi} A\left(\widetilde{K}_{r_{01}}+r_{01}\left(g K_{1}\right)\right) d \theta & =\int_{0}^{2 \pi}\left(A\left(\widetilde{K}_{r_{01}}\right)+2 r_{01} A\left(\widetilde{K}_{r_{01}}, g K_{1}\right)+A\left(g K_{1}\right) r_{01}^{2}\right) d \theta \\
& =2 \pi A_{0} \tag{2.12}
\end{align*}
$$

Since $\widetilde{K}_{r_{01}}+r_{01}\left(g K_{1}\right) \subseteq K_{0}$, we have $A\left(\widetilde{K}_{r_{01}}+r_{01}\left(g K_{1}\right)\right) \leq A_{0}$. Equality (2.12) forces us to conclude that $A\left(\widetilde{K}_{r_{01}}+r_{01}\left(g K_{1}\right)\right)=A_{0}$ for any $g \in G_{2}$, that is, $\widetilde{K}_{r_{01}}+r_{01}\left(g K_{1}\right)=K_{0}$ for any $g \in G_{2}$. Therefore, K_{1} must be a disc, and K_{0} is the Minkowski sum of a dilation of K_{1} (a disc) and a line segment $\widetilde{K}_{r_{01}}$ (which may be a point).

Let $r_{01}^{\prime}=\max \left\{t: t\left(g K_{0}\right) \subseteq K_{1} ; g \in G_{2}\right\}$ be the inradius of K_{1} with respect to K_{0}. Obviously, from the definition of r_{01}^{\prime} and R_{01} it follows that

$$
r_{01}^{\prime}=\frac{1}{R_{01}} .
$$

From inequality (2.10) we establish

$$
\begin{equation*}
2 \pi A_{0} r_{01}^{\prime 2}-P_{0} P_{1} r_{01}^{\prime}+2 \pi A_{1} \leq 0 \tag{2.13}
\end{equation*}
$$

with equality if and only if K_{0} is a disc and K_{1} is the Minkowski sum of a disc and a line segment (which may be a point), that is,

$$
\begin{equation*}
2 \pi A_{1} R_{01}^{2}-P_{0} P_{1} R_{01}+2 \pi A_{0} \leq 0 \tag{2.14}
\end{equation*}
$$

with equality if and only if K_{0} is a disc and K_{1} is the Minkowski sum of a disc and a line segment (which may be a point).
Finally, inequalities (2.10) and (2.14), together with the well-known properties of quadratic functions, show that

$$
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0}<0, \quad r_{01}<t<R_{01} .
$$

Remark 2.1 An analogue of inequality (2.1) can already be found in Bol's work. A complete proof of the analogous inequality (2.1) with equality conditions is given by Böröczky et al. [50] and Luo et al. [51].

When K_{1} is the unit disc, inequality (2.1) reduces to the following known Bonnesen inequality (see [4, 7, 20, 41]).

Corollary 2.1 Let K be a convex domain with length P and area A in \mathbb{R}^{2}. Denote by R and r, respectively, the radius of the minimum circumscribed disc and radius of the maximum inscribed disc of K. Then

$$
\begin{equation*}
\pi t^{2}-P t+A \leq 0, \quad t \in[r, R] . \tag{2.15}
\end{equation*}
$$

The inequality is strict whenever $r<t<R$. When $t=r$, equality holds if and only if K is the Minkowski sum of a disc and a line segment (which may be a point). When $t=R$, equality holds if and only if K is a disc.

Lemma 2.2 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then, for $r_{01} \leq t \leq R_{01}$, we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(R_{01}-t\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+t\right)-P_{0} P_{1}\right]^{2} \tag{2.16}
\end{equation*}
$$

The inequality is strict whenever $r_{01}<t<R_{01}$. When $t=r_{01}$, the equality holds if and only if both K_{0} and K_{1} are discs. When $t=R_{01}$, the equality holds if and only if K_{0} is a disc and K_{1} is the Minkowski sum of a disc and a line segment (which may be a point).

Proof By inequality (2.1),

$$
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0} \leq 0, \quad t \in\left[r_{01}, R_{01}\right],
$$

so that

$$
2 \pi A_{1} R_{01}^{2}-P_{0} P_{1} R_{01}+2 \pi A_{0} \leq 0
$$

that is,

$$
\begin{aligned}
& -8 \pi^{2} A_{0} A_{1} \geq 8 \pi^{2} A_{1}^{2} t^{2}-4 \pi A_{1} t P_{0} P_{1}, \\
& -8 \pi^{2} A_{0} A_{1} \geq 8 \pi^{2} A_{1}^{2} R_{01}^{2}-4 \pi A_{1} R_{01} P_{0} P_{1} .
\end{aligned}
$$

By adding the last inequalities side by side we have

$$
-16 \pi^{2} A_{0} A_{1} \geq 8 \pi^{2} A_{1}^{2} t^{2}+8 \pi^{2} A_{1}^{2} R_{01}^{2}-4 \pi A_{1} t P_{0} P_{1}-4 \pi A_{1} R_{01} P_{0} P_{1}
$$

that is,

$$
\begin{aligned}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq & P_{0}^{2} P_{1}^{2}+8 \pi^{2} A_{1}^{2} t^{2}+8 \pi^{2} A_{1}^{2} R_{01}^{2}-4 \pi A_{1} t P_{0} P_{1}-4 \pi A_{1} R_{01} P_{0} P_{1} \\
= & 4 \pi^{2} A_{1}^{2} t^{2}+4 \pi^{2} A_{1}^{2} R_{01}^{2}-8 \pi^{2} A_{1}^{2} t R_{01}+P_{0}^{2} P_{1}^{2}+4 \pi^{2} A_{1}^{2} t^{2} \\
& +4 \pi^{2} A_{1}^{2} R_{01}^{2}+8 \pi^{2} A_{1}^{2} t R_{01}-4 \pi A_{1} t P_{0} P_{1}-4 \pi A_{1} R_{01} P_{0} P_{1} \\
= & 4 \pi^{2} A_{1}^{2}\left(R_{01}-t\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+t\right)-P_{0} P_{1}\right]^{2} .
\end{aligned}
$$

When $t=r_{01}$, the equality holds in (2.16) if and only if the equalities hold in (2.1) when $t=r_{01}$ and $t=R_{01}$, that is, K_{0} and K_{1} are discs. When $t=R_{01}$, the equality holds in (2.16) if and only if the equalities hold in (2.1) when $t=R_{01}$, that is, K_{0} is a disc, and K_{1} is the Minkowski sum of a disc and a line segment (which may be a point). From the equality conditions in (2.1) we know that inequality (2.16) is strict whenever $r_{01}<t<R_{01}$.

Let

$$
f(t)=4 \pi^{2} A_{1}^{2}\left(R_{01}-t\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+t\right)-P_{0} P_{1}\right]^{2}, \quad t \in\left[r_{01}, R_{01}\right] .
$$

Then

$$
f^{\prime}(t)=16 \pi^{2} A_{1}^{2}\left(t-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)
$$

and

$$
f^{\prime \prime}(t)=16 \pi^{2} A_{1}^{2}>0
$$

Therefore, $f(t)$ is concave and reaches the minimum at $t=\frac{P_{0} P_{1}}{4 \pi A_{1}}$ and the maximum at $t=r_{01}$ or $t=R_{01}$. Then we obtain the following Bonnesen-style symmetric mixed inequality.

Corollary 2.2 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)-P_{0} P_{1}\right]^{2} \tag{2.17}
\end{equation*}
$$

where the equality holds if and only if both K_{0} and K_{1} are discs.

Proof When $t=\frac{P_{0} P_{1}}{4 \pi A_{1}}$ in (2.16), we immediately obtain (2.17). From the proof of Lemma 2.2 we see that the equality holds in (2.17) if and only if the equalities hold in (2.1) when $t=R_{01}$ and $t=\frac{P_{0} P_{1}}{4 \pi A_{1}}$, that is, R_{01} and $\frac{P_{0} P_{1}}{4 \pi A_{1}}$ are roots of the equation $B_{K_{0}, K_{1}}(t)=2 \pi A_{1} t^{2}-$ $P_{0} P_{1} t+2 \pi A_{0}=0$. It is obvious that $B_{K_{0}, K_{1}}(t)$ reaches the minimum at $t=\frac{P_{0} P_{1}}{4 \pi A_{1}}$, therefore, there is only one root $R_{01}=\frac{P_{0} P_{1}}{4 \pi A_{1}}$ for the equation $B_{K_{0}, K_{1}}(t)=0$, that is, the determinant $P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1}=0$. By the symmetric mixed isoperimetric inequality (1.19), K_{0} and K_{1} are discs.

Letting $t=r_{01}$ in inequality (2.16), we immediately obtain the following:
Theorem 2.1 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+r_{01}\right)-P_{0} P_{1}\right]^{2} \tag{2.18}
\end{equation*}
$$

where the equality holds if and only if both K_{0} and K_{1} are discs.

The following Kotlyar inequality (see [17, 40, 47-49]) is an immediate consequence of Theorem 2.1.

Corollary 2.3 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)^{2} \tag{2.19}
\end{equation*}
$$

where the equality holds if and only if both K_{0} and K_{1} are discs.
When $t=R_{01}$ in inequality (2.16), we immediately have the following:

Theorem 2.2 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 16 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2} \tag{2.20}
\end{equation*}
$$

where the equality holds if and only if K_{0} is a disc and K_{1} is the Minkowski sum of a disc and a line segment (which may be a point).

We also have the following:
Lemma 2.3 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(t-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(t+r_{01}\right)-P_{0} P_{1}\right]^{2}, \quad t \in\left[r_{01}, R_{01}\right] . \tag{2.21}
\end{equation*}
$$

The inequality is strict whenever $r_{01}<t<R_{01}$. When $t=r_{01}$, the equality holds if and only if K_{1} is a disc and K_{0} is the Minkowski sum of a disc and a line segment (which may be a point). When $t=R_{01}$, the equality holds if and only if both K_{0} and K_{1} are discs.

Proof By inequality (2.1),

$$
2 \pi A_{1} t^{2}-P_{0} P_{1} t+2 \pi A_{0} \leq 0, \quad t \in\left[r_{01}, R_{01}\right],
$$

and thus

$$
2 \pi A_{1} r_{01}^{2}-P_{0} P_{1} r_{01}+2 \pi A_{0} \leq 0
$$

so that

$$
\begin{aligned}
& -8 \pi^{2} A_{0} A_{1} \geq 8 \pi^{2} A_{1}^{2} t^{2}-4 \pi A_{1} t P_{0} P_{1} \\
& -8 \pi^{2} A_{0} A_{1} \geq 8 \pi^{2} A_{1}^{2} r_{01}^{2}-4 \pi A_{1} r_{01} P_{0} P_{1}
\end{aligned}
$$

By adding the last inequalities side by side we have

$$
-16 \pi^{2} A_{0} A_{1} \geq 8 \pi^{2} A_{1}^{2} t^{2}+8 \pi^{2} A_{1}^{2} r_{01}^{2}-4 \pi A_{1} t P_{0} P_{1}-4 \pi A_{1} r_{01} P_{0} P_{1}
$$

Then,

$$
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(t-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(t+r_{01}\right)-P_{0} P_{1}\right]^{2}
$$

Similarly, following the equality conditions in Lemma 2.2, we have the equality conditions for (2.21).

The function

$$
g(t)=4 \pi^{2} A_{1}^{2}\left(t-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(t+r_{01}\right)-P_{0} P_{1}\right]^{2}, \quad t \in\left[r_{01}, R_{01}\right],
$$

is concave and reaches the minimum at $t=\frac{P_{0} P_{1}}{4 \pi A_{1}}$. Then we immediately obtain the following Bonnesen-style symmetric mixed inequality.

Corollary 2.4 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 4 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}+r_{01}\right)-P_{0} P_{1}\right]^{2} \tag{2.22}
\end{equation*}
$$

where the equality holds if and only if K_{0} and K_{1} are discs.

Letting $t=R_{01}$ in inequality (2.21), we obtain Theorem 2.1.
When $t=r_{01}$ in inequality (2.21), we have the following Bonnesen-style symmetric mixed inequality.

Theorem 2.3 Let $K_{k}(k=0,1)$ be two convex domains with areas A_{k} and perimeters P_{k} in \mathbb{R}^{2}. Then we have

$$
\begin{equation*}
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 16 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2} \tag{2.23}
\end{equation*}
$$

where the equality holds if and only if K_{1} is a disc and K_{0} is the Minkowski sum of a disc and a line segment (which may be a point).

The lower bound of symmetric mixed isoperimetric deficit in inequality (2.18) or (2.20) is the maximum of the function $f(t)$. The lower bound of symmetric mixed isoperimetric deficit in inequality (2.18) or (2.23) is the maximum of the function $g(t)$. Which one is the best lower bound of symmetric mixed isoperimetric deficit in inequalities (2.18), (2.20), and (2.23)?

Since

$$
\begin{aligned}
& 16 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2} \\
&-\left\{4 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+r_{01}\right)-P_{0} P_{1}\right]^{2}\right\} \\
&= 8 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)\left(R_{01}+r_{01}-\frac{P_{0} P_{1}}{2 \pi A_{1}}\right), \\
& 16 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2} \\
&-\left\{4 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+r_{01}\right)-P_{0} P_{1}\right]^{2}\right\} \\
&=-8 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)\left(R_{01}+r_{01}-\frac{P_{0} P_{1}}{2 \pi A_{1}}\right),
\end{aligned}
$$

and

$$
\begin{gathered}
16 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2}-16 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2} \\
=16 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)\left(R_{01}+r_{01}-\frac{P_{0} P_{1}}{2 \pi A_{1}}\right)
\end{gathered}
$$

when $R_{01}+r_{01}-\frac{P_{0} P_{1}}{2 \pi A_{1}} \geq 0$, these lower bounds in inequalities (2.18), (2.20), and (2.23) satisfy

$$
\begin{aligned}
16 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2} & \geq 4 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+r_{01}\right)-P_{0} P_{1}\right]^{2} \\
& \geq 16 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2}
\end{aligned}
$$

Therefore, the lower bound $16 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2}$ in inequality (2.20) is the best among (2.18), (2.20), and (2.23), that is, inequality (2.20) is the strongest Bonnesen-style symmetric mixed inequality among inequalities (2.18), (2.20), and (2.23).
When $R_{01}+r_{01}-\frac{P_{0} P_{1}}{2 \pi A_{1}} \leq 0$, the lower bounds in inequalities (2.18), (2.20), and (2.23) satisfy

$$
\begin{aligned}
16 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2} & \geq 4 \pi^{2} A_{1}^{2}\left(R_{01}-r_{01}\right)^{2}+\left[2 \pi A_{1}\left(R_{01}+r_{01}\right)-P_{0} P_{1}\right]^{2} \\
& \geq 16 \pi^{2} A_{1}^{2}\left(R_{01}-\frac{P_{0} P_{1}}{4 \pi A_{1}}\right)^{2}
\end{aligned}
$$

The Bonnesen-style symmetric mixed inequality (2.23), that is,

$$
P_{0}^{2} P_{1}^{2}-16 \pi^{2} A_{0} A_{1} \geq 16 \pi^{2} A_{1}^{2}\left(\frac{P_{0} P_{1}}{4 \pi A_{1}}-r_{01}\right)^{2}
$$

is the best one among inequalities (2.18), (2.20), and (2.23).
When K_{1} is the unit disc, these Bonnesen-style symmetric mixed inequalities immediately lead to the following known Bonnesen-style inequalities of Burago, Grinberg, Hsiung, Hadwiger, Osserman, Zhou, and Ren (see [9, 12, 16, 20, 21, 41, 44]).

Corollary 2.5 Let K be a convex domain with area A and perimeter P in \mathbb{R}^{2}. Denote by R and r, respectively, the radius of the minimum circumscribed disc and radius of the maximum inscribed disc of K. Then

$$
\begin{aligned}
& P^{2}-4 \pi A \geq(P-2 \pi r)^{2}, \\
& P^{2}-4 \pi A \geq(2 \pi R-P)^{2}, \\
& P^{2}-4 \pi A \geq \pi^{2}(R-r)^{2}+[\pi(R+r)-P]^{2}, \\
& P^{2}-4 \pi A \geq \pi^{2}\left(R-\frac{P}{2 \pi}\right)^{2}+\left[\pi\left(R+\frac{P}{2 \pi}\right)-P\right]^{2}, \\
& P^{2}-4 \pi A \geq \pi^{2}\left(\frac{P}{2 \pi}-r\right)^{2}+\left[\pi\left(\frac{P}{2 \pi}+r\right)-P\right]^{2} .
\end{aligned}
$$

The equality in the first inequality holds if and only if K is the Minkowski sum of a disc and a line segment (which may be a point). The equalities of the other inequalities hold if and only if K is a disc.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

 Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 40067, People's Republic of China. ${ }^{3}$ School of Mathematics and Computer Science, Guizhou Normal University, Guiyang, Guizhou 550001, People's Republic of China.

Acknowledgements

The corresponding author is supported in part by the NSFC (No. 11271302) and the PhD Program of Higher Education Research Fund (No. 2012182110020). The first author and the second author are supported in part by NSFC
(No. 11401486).
Received: 3 January 2016 Accepted: 12 August 2016 Published online: 02 September 2016

References

1. Schneider, R: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)
2. Blaschké, W: Vorlesungen über Intergral Geometrie, 3rd edn. Deutsch. Verlag Wiss., Berlin (1955)
3. Hadwiger, H: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)
4. Santaló, LA: Integral Geometry and Geometric Probability. Addison-Wesley, Reading (1976)
5. Banchoff, T, Pohl, W: A generalization of the isoperimetric inequality. J. Differ. Geom. 6, 175-213 (1971)
6. Bokowski, J, Heil, E: Integral representation of quermassintegrals and Bonnesen-style inequalities. Arch. Math. 4, 79-89 (1986)
7. Bonnesen, T: Les problèmes des isopérimètres et des isépiphanes. Gauthier-Villars, Paris (1929)
8. Bottema, O: Eine obere Grenze für das isoperimetrische Defizit ebener Kurven. Ned. Akad. Wet. Proc. 66, 442-446 (1933)
9. Burago, YD, Zalgaller, VA: Geometric Inequalities. Springer, Berlin (1988)
10. Diskant, V: A generalization of Bonnesen's inequalities. Sov. Math. Dokl. 14, 1728-1731 (1973)
11. Enomoto, K: A generalization of the isoperimetric inequality on S^{2} and flat tori in S^{3}. Proc. Am. Math. Soc. 120, 553-558 (1994)
12. Grinberg, E, Li, S, Zhang, G, Zhou, J: Integral Geometry and Convexity. Proceedings of the International Conference. World Scientific, Wuhan (2006)
13. Gysin, L: The isoperimetric inequality for nonsimple closed curves. Proc. Am. Math. Soc. 118, 197-203 (1993)
14. Hadwiger, H: Die isoperimetrische Ungleichung in Raum. Elem. Math. 3, 25-38 (1948)
15. Howard, R: The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces. Proc. Am. Math. Soc. 126, 2779-2787 (1998)
16. Hsiung, CC: Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary. Ann. Math. 73, 213-220 (1961)
17. Kotlyar, BD: On a geometric inequality. Ukr. Geom. Sb. 30, 49-52 (1987)
18. Ku, H, Ku, M, Zhang, X: Isoperimetric inequalities on surfaces of constant curvature. Can. J. Math. 49, 1162-1187 (1997)
19. Li, M, Zhou, J: An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature. Sci. China Math. 53, 1941-1946 (2010)
20. Osserman, R: The isoperimetric inequality. Bull. Am. Math. Soc. 84, 1182-1238 (1978)
21. Osserman, R: Bonnesen-style isoperimetric inequality. Am. Math. Mon. 86, 1-29 (1979)
22. Pleijel, A: On konvexa kurvor. Nord. Math. Tidskr. 3, 57-64 (1955)
23. Polya, G, Szegö, G: Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Studies. Princeton University Press, Princeton (1951)
24. Stone, A: On the isoperimetric inequality on a minimal surface. Calc. Var. Partial Differ. Equ. 17, 369-391 (2003)
25. Tang, D: Discrete Wirtinger and isoperimetric type inequalities. Bull. Aust. Math. Soc. 43, 467-474 (1991)
26. Teufel, E: A generalization of the isoperimetric inequality in the hyperbolic plane. Arch. Math. 57, 508-513 (1991)
27. Teufel, E: Isoperimetric inequalities for closed curves in spaces of constant curvature. Results Math. 22, 622-630 (1992)
28. Wei, S, Zhu, M: Sharp isoperimetric inequalities and sphere theorems. Pac. J. Math. 220, 183-195 (2005)
29. Weiner, J: A generalization of the isoperimetric inequality on the 2-sphere. Indiana Univ. Math. J. 24, 243-248 (1974)
30. Weiner, J: Isoperimetric inequalities for immersed closed spherical curves. Proc. Am. Math. Soc. 120, 501-506 (1994)
31. Yau, ST: Isoperimetric constants and the first eigenvalue of a compact manifold. Ann. Sci. Éc. Norm. Supér. 8, 487-507 (1975)
32. Zhang, X-M: Bonnesen-style inequalities and pseudo-perimeters for polygons. J. Geom. 60, 188-201 (1997)
33. Zhang, X-M: Schur-convex functions and isoperimetric inequalities. Proc. Am. Math. Soc. 126, 461-470 (1998)
34. Zhang, G, Zhou, J: Containment measures in integral geometry. In: Integral Geometry and Convexity, pp. 153-168. World Scientific, Singapore (2006)
35. Gao, X: A note on the reverse isoperimetric inequality. Results Math. 59, 83-90 (2011)
36. Gao, X: A new reverse isoperimetric inequality and its stability. Math. Inequal. Appl. 15, 733-743 (2012)
37. Pan, S, Tang, X, Wang, X: A refined reverse isoperimetric inequality in the plane. Math. Inequal. Appl. 13, 329-338 (2010)
38. Pan, S, Zhang, H: A reverse isoperimetric inequality for closed strictly convex plane curves. Beitr. Algebra Geom. 48, 303-308 (2007)
39. Xia, Y, Xu, W, Zhou, J, Zhu, B: Reverse Bonnesen style inequalities in a surface X_{ϵ}^{2} of constant curvature. Sci. China Math. 56, 1145-1154 (2013)
40. Zeng, C, Zhou, J, Yue, S: The symmetric mixed isoperimetric inequality of two planar convex domains. Acta Math. Sin. 55, 355-362 (2012)
41. Zhou, J: Plan Bonnesen-type inequalities. Acta Math. Sin. 50, 1397-1402 (2007)
42. Zhou, J, Du, Y, Cheng, F: Some Bonnesen-style inequalities for higher dimensions. Acta Math. Sin. 28, 2561-2568 (2012)
43. Zhou, J, Ma, L, Xu, W: On the isoperimetric deficit upper limit. Bull. Korean Math. Soc. 50, 175-184 (2013)
44. Zhou, J, Ren, D: Geometric inequalities - from integral geometry point of view. Acta Math. Sci. 30, 1322-1339 (2010)
45. Zhou, J, Xia, Y, Zeng, C: Some new Bonnesen-style inequalities. J. Korean Math. Soc. 48, 421-430 (2011)
46. Zhou, J, Zhou, C, Ma, F: Isoperimetric deficit upper limit of a planar convex set. Rend. Circ. Mat. Palermo (2) Suppl. 81, 363-367 (2009)
47. Wang, P, Xu, W, Zhou, J, Zhu, B: On Bonnesen-style symmetric mixed inequality of two planar convex domains. Sci. China Math. 45, 245-254 (2015)
48. Xu, W, Zhou, J, Zhu, B: Bonnesen-style symmetric mixed isoperimetric inequality. In: Real and Complex Submanifolds. Springer Proceedings in Mathematics and Statistics, vol. 106, pp. 97-107 (2014)
49. Xu, W, Zhou, J, Zhu, B: On containment measure and the mixed isoperimetric inequality. J. Inequal. Appl. 2013, 540 (2013)
50. Böröczky, K, Lutwak, E, Yang, D, Zhang, G: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974-1997 (2012)
51. Luo, M, Xu, W, Zhou, J: Translative containment measure and symmetric mixed isohomothetic inequalities. Sci. China Math. 58, 2593-2610 (2015)
