
Wang et al. Journal of Inequalities and Applications  (2016) 2016:208 
DOI 10.1186/s13660-016-1146-5

R E S E A R C H Open Access

Bonnesen-style symmetric mixed
inequalities
Pengfu Wang1,2, Miao Luo1,3 and Jiazu Zhou1*

*Correspondence:
zhoujz@swu.edu.cn
1School of Mathematics and
Statistics, Southwest University,
Chongqing, 400715, People’s
Republic of China
Full list of author information is
available at the end of the article

Abstract
In this paper, we investigate the symmetric mixed isoperimetric deficit�2(K0,K1) of
domains K0 and K1 in the Euclidean plane R2. Via the known kinematic formulae of
Poincaré and Blaschke in integral geometry, we obtain some Bonnesen-style
symmetric mixed inequalities. These new Bonnesen-style symmetric mixed
inequalities are known as Bonnesen-style inequalities if one of the domains is a disc.
Some inequalities obtained in this paper strengthen the known Bonnesen-style
inequalities.
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1 Introductions and preliminaries
A subset of points K in the Euclidean space R

n is called convex if for all x, y ∈ K , the line
segment λx + ( – λ)y ( ≤ λ ≤ ) joining x and y is contained in K . A domain is a set with
nonempty interior, and a convex body is a compact convex domain. The Minkowski sum
of convex sets K and L is defined by

K + L = {x + y : x ∈ K , y ∈ L},

and the scalar product of the convex set K with λ ≥  is defined by

λK = {λx : x ∈ K ,λ ≥ }.

A homothety of the convex set K is of the form x + λK (x ∈R
n, λ > ).

Let S be the unit circle in R
, and u ∈ S. The support function pK (u) : S → R of a

convex domain K ⊆R
 is defined by

pK (u) = max
{

x · u : x ∈ K , u ∈ S} (.)

and uniquely determines the convex domain K . Let Kk (k = , ) be two convex domains
of areas Ak and perimeters Pk in R

. Then

pK (u) ≤ pK (u) if and only if K ⊆ K. (.)
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By the Steiner formula (see []) the area of sK + tK is

AsK+tK = sA + stA(K, K) + tA, (.)

where A(K, K) is called the mixed area of K and K. The mixed area A(K, K) satisfies
(see [])

A(K, K) = A, (.)

the symmetry

A(K, K) = A(K, K), (.)

the linearity

A(K, sK + tK) = sA(K, K) + tA(K, K), (.)

and the monotonicity

K ⊆ K ⇒ A(K, K) ≤ A(K, K). (.)

Let G be the group of plane rigid motions (see [–]), that is, translations and rotations.
Let θ be rotation angle of K with respect to origin, and g ∈ G. Then we have (see [])

∫ π


A(K, gK) dθ =




PP. (.)

The classical isoperimetric problem says that the disc encloses the maximum area
among all plane domains of given perimeter. That is: Let � be a simple closed curve of
perimeter P in the Euclidean plane R

, and A be the area of the domain K enclosed by �;
then

P – πA ≥ , (.)

where the equality holds if and only if � is a circle.
The classical isoperimetric problem can root back to Ancient Greece. However, a rig-

orous mathematical proof of the isoperimetric inequality was obtained during the th
century (see [, –]). We can find some simplified and beautiful proofs that lead to gen-
eralizations of the discrete case, higher dimensions, the surface of constant curvature, and
applications to other branches of mathematics [, , –].

The isoperimetric inequality (.) indicates that the quantity

�(K) = P – πA (.)

measures the deficit of domain K and a disc of radius P/π , and it is called the isoperi-
metric deficit of K .
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During the s, Bonnesen proved a series of inequalities of the form

�(K) = P – πA ≥ BK , (.)

where BK is a nonnegative invariant of geometric significance and vanishes if and only if
K is a disc. An inequality of the form (.) is called the Bonnesen-style inequality, and it
is stronger than the classical isoperimetric inequality. The following Bonnesen-style in-
equalities are known.

Proposition . Let K be a plane domain of area A and bounded by a simple closed curve
of perimeter P. Denote by R and r, respectively, the radius of the minimum circumscribed
disc and radius of the maximum inscribed disc of K . Then we have

π t – Pt + A ≤ ; r ≤ t ≤ R,

P –
√

P – πA
π

≤ r ≤ R ≤ P +
√

P – πA
π

, (.)

P – πA ≥ π(R – r).

Each equality sign holds when K is a disc.

Many Bonnesen-style inequalities have been found during the past, and mathematicians
are still working on unknown Bonnesen-style inequalities of geometric significance. See
[, , , –, –, , , –] for more references.

Let Kk (k = , ) be two domains of areas Ak and bounded by simple closed curves of
perimeters Pk in R

. Let dg denote the kinematic density of the group G of plane rigid
motions [–]. Let K be convex, and tK be a dilation of K. Let n{∂K ∩ ∂(t(gK))} denote
the number of points of intersection ∂K ∩ ∂(t(gK)). Then we have the kinematic formula
of Poincaré:

∫

{g∈G:∂K∩∂(t(gK)) 
=∅}
n
{
∂K ∩ ∂

(
t(gK)

)}
dg = tPP. (.)

Let χ (K ∩ t(gK)) be the Euler-Poincaré characteristic of the intersection K ∩ t(gK).
Then we have the fundamental kinematic formula of Blaschke:

∫

{g∈G:K∩t(gK) 
=∅}
χ

(
K ∩ t(gK)

)
dg = π

(
tA + A

)
+ tPP. (.)

If μ denotes the set of all positions of K in which either t(gK) ⊂ K or t(gK) ⊃ K, then
the fundamental kinematic formula of Blaschke (.) can be rewritten as

∫

μ

dg +
∫

{g∈G:∂K∩∂(t(gK)) 
=∅}
χ

(
K ∩ t(gK)

)
dg = π

(
tA + A

)
+ tPP. (.)

When ∂K ∩ ∂(t(gK)) 
= ∅, each component of K ∩ t(gK) is bounded by at least an arc
of ∂K and an arc of ∂(t(gK)). Therefore, χ (K ∩ t(gK)) ≤ n{∂K ∩ ∂(t(gK))}/. Then by
the kinematic formulae of Poincaré (.) and Blaschke (.) we obtain

∫

μ

dg ≥ πAt – PPt + πA. (.)

Inequality (.) immediately gives the following containment theorem [, –].
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Containment theorem Let Kk (k = , ) be two domains of areas Ak with simple bound-
aries of perimeters Pk in R

. Let K be convex, and tK be a dilation of K. A sufficient
condition for tK to contain, or to be contained in K, is

πAt – PPt + πA > . (.)

Moreover, if tA ≥ A, then tK contains K.

Let rg
 = max{t : t(gK) ⊆ K; g ∈ G} and Rg

 = min{t : t(gK) ⊇ K; g ∈ G} be the inra-
dius of K with respect to K and the outradius of K with respect to K, respectively. It
is obvious that rg

 ≤ Rg
. Since both rg

 and Rg
 are rigid invariant, we simply call them

the relative inradius and the relative outradius and denote them r and R, respectively.
Note that if K is the unit disc, then the relative inradius r and the relative outradius R

become the inscribed radius r and the circumscribed radius R of K, respectively.
Note that for t ∈ [r, R], neither tK contains K nor is contained in K. Then by in-

equality (.) we have [, –]

πAt – PPt + πA ≤ , t ∈ [r, R]. (.)

Inequality (.) guarantees that the equation BK,K (t) = πAt – PPt + πA =  has
root(s). Therefore, the determinant of BK,K (t) =  is nonnegatitive. Then we have the
following symmetric mixed isoperimetric inequality [, –]:

P
P

 – πAA ≥ , (.)

where the equality sign holds if and only if both K and K are discs.
When K is the unit disc, then symmetric mixed isoperimetric inequality (.) reduces

to the isoperimetric inequality (.).
The quantity

�(K, K) = P
P

 – πAA (.)

is called the symmetric mixed isoperimetric deficit of K and K.
Motivated by the Bonnesen’s works in the s, we consider if there is a nonnegative

invariant BK,K of geometric significance such that

P
P

 – πAA ≥ BK,K , (.)

where BK,K vanishes if and only if both K and K are discs. We call such inequalities
Bonnesen-style symmetric mixed inequalities (cf. [, –]).

The purpose of this paper is to find some new Bonnesen-style symmetric mixed isoperi-
metric inequalities that strengthen the known Bonnesen-style inequalities.

2 Bonnesen-style symmetric mixed inequality
For any two plane domains Kk (k = , ) of areas Ak with simple boundaries of perimeters
Pk , the convex hulls K∗

k of Kk increase the areas A∗
k and decrease the perimeters P∗

k , that is,
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A∗
k ≥ Ak and P∗

k ≤ Pk , so that P
P

 – πAA ≥ P∗


P∗


 – πA∗
A∗

 , that is, �(K, K) ≥
�(K∗

 , K∗
 ). Therefore, the symmetric mixed isoperimetric inequality and Bonnesen-type

symmetric mixed inequality are valid for all domains with simple boundaries in R
 if these

inequalities are valid for convex domains. Hence, from now on, we only consider convex
domains when we estimate the lower bounds of the symmetric mixed isoperimetric deficit.

Lemma . Let Kk (k = , ) be two convex domains of areas Ak and perimeters Pk in the
Euclidean plane R. Then

πAt – PPt + πA ≤ , t ∈ [r, R]. (.)

The inequality is strict whenever r < t < R. When t = r, equality holds if and only if K

is a disc and K is the Minkowski sum of a disc and a line segment (which may be a point).
When t = R, equality holds if and only if K is a disc and K is the Minkowski sum of a
disc and a line segment (which may be a point).

Proof Let pK (u) and p(gK)(u) are the support functions of convex domains K and gK,
respectively. We can always find g ∈ G such that the function pK (u) – tp(gK)(u) about u
is nonnegative for t ∈ [, r]. Let K̃t be given by

K̃t =
{

x ∈R
 : x · u ≤ pK (u) – tp(gK)(u); u ∈ S, g ∈ G

}
, t ∈ [, r]. (.)

From (.) we have that K̃ = K and K̃r is a line segment (which may be a point); see the
proof of (..) in []. Therefore,

A(K̃) = A, A(K̃r ) = . (.)

From definitions (.) and (.) we immediately have

K̃t + t(gK) ⊆ K. (.)

However, relation (.), together with the monotonicity (.), linearity (.), the symmetry
of mixed areas (.), and (.), gives

A(K, gK) ≥ A
(
K̃t + t(gK), gK

)
= A(K̃t , gK) + tA(gK), (.)

and we have (see the proof of (.) in []) that

A – A(K̃t) = 
∫ t


A(K̃s, gK) ds; t ∈ [, r]. (.)

Now (.), (.), and (.) give

∫ π



(
A – A(K̃t)

)
dθ =

∫ π



∫ t


A(K̃s, gK) ds dθ

≤ 
∫ π



∫ t



(
A(K, gK) – sA(gK)

)
ds dθ

= PPt – πAt. (.)
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Thus,

πAt – PPt + πA ≤
∫ π


A(K̃t) dθ . (.)

From (.) and (.) we see that equality holds in (.) if and only if, for all s ∈ [, t],

∫ π


A(K̃s, gK) dθ =

∫ π



(
A(K, gK) – sA(gK)

)
dθ

=



PP – πsA. (.)

When t = r, by (.), (.), and (.) we have

πAr
 – PPr + πA ≤ , (.)

where the equality holds if and only if

∫ π


A(K̃r , gK) dθ =




PP – πrA.

Therefore, we have

πAr
 – 

(∫ π


A(K̃r , gK) dθ + πrA

)
r + πA = ,

that is,

r

∫ π


A(K̃r , gK) dθ = –πAr

 + πA. (.)

By (.), (.), and (.) we have

∫ π


A

(
K̃r + r(gK)

)
dθ =

∫ π



(
A(K̃r ) + rA(K̃r , gK) + A(gK)r


)

dθ

= πA. (.)

Since K̃r + r(gK) ⊆ K, we have A(K̃r + r(gK)) ≤ A. Equality (.) forces us to
conclude that A(K̃r + r(gK)) = A for any g ∈ G, that is, K̃r + r(gK) = K for any
g ∈ G. Therefore, K must be a disc, and K is the Minkowski sum of a dilation of K

(a disc) and a line segment K̃r (which may be a point).
Let r′

 = max{t : t(gK) ⊆ K; g ∈ G} be the inradius of K with respect to K. Obviously,
from the definition of r′

 and R it follows that

r′
 =


R

.

From inequality (.) we establish

πAr′
 – PPr′

 + πA ≤  (.)
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with equality if and only if K is a disc and K is the Minkowski sum of a disc and a line
segment (which may be a point), that is,

πAR
 – PPR + πA ≤ , (.)

with equality if and only if K is a disc and K is the Minkowski sum of a disc and a line
segment (which may be a point).

Finally, inequalities (.) and (.), together with the well-known properties of
quadratic functions, show that

πAt – PPt + πA < , r < t < R. �

Remark . An analogue of inequality (.) can already be found in Bol’s work. A com-
plete proof of the analogous inequality (.) with equality conditions is given by Böröczky
et al. [] and Luo et al. [].

When K is the unit disc, inequality (.) reduces to the following known Bonnesen
inequality (see [, , , ]).

Corollary . Let K be a convex domain with length P and area A in R
. Denote by R and

r, respectively, the radius of the minimum circumscribed disc and radius of the maximum
inscribed disc of K . Then

π t – Pt + A ≤ , t ∈ [r, R]. (.)

The inequality is strict whenever r < t < R. When t = r, equality holds if and only if K is the
Minkowski sum of a disc and a line segment (which may be a point). When t = R, equality
holds if and only if K is a disc.

Lemma . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk inR
.

Then, for r ≤ t ≤ R, we have

P
P

 – πAA ≥ πA
 (R – t) +

[
πA(R + t) – PP

]. (.)

The inequality is strict whenever r < t < R. When t = r, the equality holds if and only
if both K and K are discs. When t = R, the equality holds if and only if K is a disc and
K is the Minkowski sum of a disc and a line segment (which may be a point).

Proof By inequality (.),

πAt – PPt + πA ≤ , t ∈ [r, R],

so that

πAR
 – PPR + πA ≤ ,
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that is,

–πAA ≥ πA
 t – πAtPP,

–πAA ≥ πA
 R

 – πARPP.

By adding the last inequalities side by side we have

–πAA ≥ πA
 t + πA

 R
 – πAtPP – πARPP,

that is,

P
P

 – πAA ≥ P
P

 + πA
 t + πA

 R
 – πAtPP – πARPP

= πA
 t + πA

 R
 – πA

 tR + P
P

 + πA
 t

+ πA
 R

 + πA
 tR – πAtPP – πARPP

= πA
 (R – t) +

[
πA(R + t) – PP

].

When t = r, the equality holds in (.) if and only if the equalities hold in (.) when
t = r and t = R, that is, K and K are discs. When t = R, the equality holds in (.)
if and only if the equalities hold in (.) when t = R, that is, K is a disc, and K is the
Minkowski sum of a disc and a line segment (which may be a point). From the equality
conditions in (.) we know that inequality (.) is strict whenever r < t < R. �

Let

f (t) = πA
 (R – t) +

[
πA(R + t) – PP

], t ∈ [r, R].

Then

f ′(t) = πA


(
t –

PP

πA

)

and

f ′′(t) = πA
 > .

Therefore, f (t) is concave and reaches the minimum at t = PP
πA

and the maximum at t = r

or t = R. Then we obtain the following Bonnesen-style symmetric mixed inequality.

Corollary . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk

in R
. Then we have

P
P

 – πAA ≥ πA


(
R –

PP

πA

)

+
[

πA

(
R +

PP

πA

)
– PP

]

, (.)

where the equality holds if and only if both K and K are discs.
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Proof When t = PP
πA

in (.), we immediately obtain (.). From the proof of Lemma .
we see that the equality holds in (.) if and only if the equalities hold in (.) when
t = R and t = PP

πA
, that is, R and PP

πA
are roots of the equation BK,K (t) = πAt –

PPt + πA = . It is obvious that BK,K (t) reaches the minimum at t = PP
πA

, therefore,
there is only one root R = PP

πA
for the equation BK,K (t) = , that is, the determinant

P
P

 – πAA = . By the symmetric mixed isoperimetric inequality (.), K and K

are discs. �

Letting t = r in inequality (.), we immediately obtain the following:

Theorem . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk

in R
. Then we have

P
P

 – πAA ≥ πA
 (R – r) +

[
πA(R + r) – PP

], (.)

where the equality holds if and only if both K and K are discs.

The following Kotlyar inequality (see [, , –]) is an immediate consequence of
Theorem ..

Corollary . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk

in R
. Then we have

P
P

 – πAA ≥ πA
 (R – r), (.)

where the equality holds if and only if both K and K are discs.

When t = R in inequality (.), we immediately have the following:

Theorem . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk

in R
. Then we have

P
P

 – πAA ≥ πA


(
R –

PP

πA

)

, (.)

where the equality holds if and only if K is a disc and K is the Minkowski sum of a disc
and a line segment (which may be a point).

We also have the following:

Lemma . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk inR
.

Then we have

P
P

 – πAA ≥ πA
 (t – r) +

[
πA(t + r) – PP

], t ∈ [r, R]. (.)

The inequality is strict whenever r < t < R. When t = r, the equality holds if and only
if K is a disc and K is the Minkowski sum of a disc and a line segment (which may be a
point). When t = R, the equality holds if and only if both K and K are discs.
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Proof By inequality (.),

πAt – PPt + πA ≤ , t ∈ [r, R],

and thus

πAr
 – PPr + πA ≤ ,

so that

–πAA ≥ πA
 t – πAtPP,

–πAA ≥ πA
 r

 – πArPP.

By adding the last inequalities side by side we have

–πAA ≥ πA
 t + πA

 r
 – πAtPP – πArPP.

Then,

P
P

 – πAA ≥ πA
 (t – r) +

[
πA(t + r) – PP

].

Similarly, following the equality conditions in Lemma ., we have the equality conditions
for (.). �

The function

g(t) = πA
 (t – r) +

[
πA(t + r) – PP

], t ∈ [r, R],

is concave and reaches the minimum at t = PP
πA

. Then we immediately obtain the follow-
ing Bonnesen-style symmetric mixed inequality.

Corollary . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk

in R
. Then we have

P
P

 – πAA ≥ πA


(
PP

πA
– r

)

+
[

πA

(
PP

πA
+ r

)
– PP

]

, (.)

where the equality holds if and only if K and K are discs.

Letting t = R in inequality (.), we obtain Theorem ..
When t = r in inequality (.), we have the following Bonnesen-style symmetric

mixed inequality.

Theorem . Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk

in R
. Then we have

P
P

 – πAA ≥ πA


(
PP

πA
– r

)

, (.)
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where the equality holds if and only if K is a disc and K is the Minkowski sum of a disc
and a line segment (which may be a point).

The lower bound of symmetric mixed isoperimetric deficit in inequality (.) or (.)
is the maximum of the function f (t). The lower bound of symmetric mixed isoperimetric
deficit in inequality (.) or (.) is the maximum of the function g(t). Which one is the
best lower bound of symmetric mixed isoperimetric deficit in inequalities (.), (.),
and (.)?

Since

πA


(
R –

PP

πA

)

–
{

πA
 (R – r) +

[
πA(R + r) – PP

]}

= πA
 (R – r)

(
R + r –

PP

πA

)
,

πA


(
PP

πA
– r

)

–
{

πA
 (R – r) +

[
πA(R + r) – PP

]}

= –πA
 (R – r)

(
R + r –

PP

πA

)
,

and

πA


(
R –

PP

πA

)

– πA


(
PP

πA
– r

)

= πA
 (R – r)

(
R + r –

PP

πA

)
,

when R + r – PP
πA

≥ , these lower bounds in inequalities (.), (.), and (.)
satisfy

πA


(
R –

PP

πA

)

≥ πA
 (R – r) +

[
πA(R + r) – PP

]

≥ πA


(
PP

πA
– r

)

.

Therefore, the lower bound πA
 (R – PP

πA
) in inequality (.) is the best among

(.), (.), and (.), that is, inequality (.) is the strongest Bonnesen-style sym-
metric mixed inequality among inequalities (.), (.), and (.).

When R + r – PP
πA

≤ , the lower bounds in inequalities (.), (.), and (.)
satisfy

πA


(
PP

πA
– r

)

≥ πA
 (R – r) +

[
πA(R + r) – PP

]

≥ πA


(
R –

PP

πA

)

.
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The Bonnesen-style symmetric mixed inequality (.), that is,

P
P

 – πAA ≥ πA


(
PP

πA
– r

)

,

is the best one among inequalities (.), (.), and (.).
When K is the unit disc, these Bonnesen-style symmetric mixed inequalities immedi-

ately lead to the following known Bonnesen-style inequalities of Burago, Grinberg, Hsi-
ung, Hadwiger, Osserman, Zhou, and Ren (see [, , , , , , ]).

Corollary . Let K be a convex domain with area A and perimeter P in R
. Denote by R

and r, respectively, the radius of the minimum circumscribed disc and radius of the maxi-
mum inscribed disc of K . Then

P – πA ≥ (P – πr),

P – πA ≥ (πR – P),

P – πA ≥ π(R – r) +
[
π (R + r) – P

],

P – πA ≥ π
(

R –
P

π

)

+
[
π

(
R +

P
π

)
– P

]

,

P – πA ≥ π
(

P
π

– r
)

+
[
π

(
P

π
+ r

)
– P

]

.

The equality in the first inequality holds if and only if K is the Minkowski sum of a disc and
a line segment (which may be a point). The equalities of the other inequalities hold if and
only if K is a disc.
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