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Abstract
In this paper, we will obtain the optimal Hyers-Ulam’s constant for the first-order linear
differential equations p(t)y′(t) – q(t)y(t) – r(t) = 0.
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1 Introduction
The question concerning the stability of functional equations has been originally raised by
Ulam []: Given a metric group (G, ·, d), a positive number ε, and a function f : G → G that
satisfies the inequality d(f (xy), f (x)f (y)) ≤ ε for all x, y ∈ G, do there exist an homomor-
phism a : G → G and a constant δ depending only on G and ε such that d(a(x), f (x)) ≤ δ

for all x ∈ G?
If the answer to this question is affirmative, then the functional equation a(xy) = a(x)a(y)

is said to be stable. A first answer to this question was given by Hyers [] in , who
proved that the Cauchy additive equation is stable in Banach spaces. In general, a func-
tional equation is said to be stable in the sense of Hyers and Ulam (or the equation has the
Hyers-Ulam stability) if for each solution to the perturbed equation, there exists a solution
to the equation that differs from the solution to the perturbed equation with a small error.
We recommend the reader to refer [] for the exact definition of Hyers-Ulam stability and
an excellent survey on that subject.

After Hyers’ result, mathematicians extended and generalized Hyers’ theorem in various
directions. Aoki [] and Rassias [] provided a generalization of the Hyers theorem for
additive and linear mappings, respectively. Găvruţa [] generalized it by considering a
general control function instead of ε.

Obloza [, ] investigated the Hyers-Ulam stability for the linear differential equations.
Thereafter, Alsina and Ger [] considered a differentiable function f : I → R that satisfies
the differential inequality |y′(t) – y(t)| ≤ ε and proved that there exists a solution f : I → R
of the differential equation y′(t) = y(t) such that |f (t)– f(t)| ≤ ε for any t ∈ I . In this paper,
we prove that |f (t) – f(t)| ≤ ε for any t ∈ I . So, our result is a better estimation. Miura et
al. [, ], Takahasi et al. [, ], and Jung [] also generalized their results.
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Furthermore, the Hyers-Ulam stability for the nonhomogeneous linear differential
equations of the form y′(t) + g(t)y(t) + h(t) =  has been investigated by many mathemati-
cians (see [, –]).

In particular, Wang et al. [] used the method of integrating factor to prove the Hyers-
Ulam stability of the nonhomogeneous linear differential equations of the form

p(t)y′(t) – q(t)y(t) – r(t) = . ()

Proposition . ([]) Let I = (a, b) be an interval with –∞ ≤ a < b ≤ ∞. Assume that
p, q, r : I → R are continuous real functions such that p(t) �=  and |q(t)| ≥ μ for all t ∈ I
and some constant μ > . If a continuously differentiable function y : I → R satisfies the
differential inequality

∣
∣p(t)y′(t) – q(t)y(t) – r(t)

∣
∣ ≤ ε for all t ∈ I, ()

then there exist a constant K >  and a solution z : I → R of differential equation () such
that

∣
∣y(t) – z(t)

∣
∣ ≤ Kε for all t ∈ I, ()

where K is called a Hyers-Ulam constant.

In the proof of the proposition, Wang et al. assumed that |q(t)| ≥  by saying without the
loss of generality. Indeed, their proof is just for the case of |q(t)| ≥ , and they said nothing
about general cases. In this paper, we clearly generalize their assumption for the proof.

It seems that in Proposition ., Wang et al. denoted a Hyers-Ulam constant K as
 exp{| ∫ b

a
q(s)
p(s) ds|} – . In this case, the constant K is very big when b – a is a big number.

Here, we find a Hyers-Ulam constant K that is independent of a and b.
After we introduce two examples, we will prove that, under the same assumptions of

Proposition ., we have a Hyers-Ulam constant K in () equal to 
μ

, where μ is a lower
bound of the function |q(t)|.

2 Motivation
In this section, we assume that a and b are given real numbers with a < b. Before we prove
our main theorem, in the following two examples, we will see the reason why we try to
obtain our main theorem.

Example . Let us consider the inequality

∣
∣
∣
∣
y′(t) –

(

 + e–t)y(t) +



∣
∣
∣
∣

<  =: ε, ()

where p(t) = , q(t) =  + e–t ≥ , and r(t) = – 
 . Then the function y(t) = et satisfies

∣
∣
∣
∣
y′(t) –

(

 + e–t)y(t) +



∣
∣
∣
∣

=



<  = ε.
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The general solution of the differential equation z′(t) – ( + e–t)z(t) + 
 =  is of the form

z(t) = c exp{–e–t + t} + 
 et . Therefore, we have

∣
∣y(t) – z(t)

∣
∣ =

∣
∣
∣
∣




et + c exp
{

–e–t + t
}
∣
∣
∣
∣

<  = ε for all t ∈ (a, b) ()

if and only if

(
–
et –




)

exp
{

e–t} < c <
(


et –




)

exp
{

e–t} for all t ∈ (a, b). ()

Now, an upper bound of the left side of () is –( 
eb + 

 ) exp{e–b}, and a lower bound of the
right side of () is ( 

eb – 
 ) exp{e–b}. So, for any b ∈ R, we can find a constant c ∈ R such

that

–
(


eb +




)

exp
{

e–b} < c <
(


eb –




)

exp
{

e–b}. ()

If we choose a constant c satisfying (), then it follows from () and () that

∣
∣y(t) – z(t)

∣
∣ <  for all t ∈ (a, b).

Hence, we may expect to have a Hyers-Ulam constant less than that in Proposition ..
Meanwhile, if we use the estimation in Proposition . for Example ., then we have

K :=  exp

{∣
∣
∣
∣

∫ b

a

q(s)
p(s)

ds
∣
∣
∣
∣

}

–  > eb–a –  >  for any a, b ∈ R, ()

so that the left side of (), the Wang estimation, goes to ∞ as b – a goes to ∞, whereas our
estimation is expected to be bounded as we see in Theorem ..

Example . Let us consider the inequality

∣
∣y′(t) – δy(t)

∣
∣ ≤  =: ε for a small δ > . ()

Then the function y(t) = – 
δ

+ 
δ
eδt satisfies inequality (). The general solution of the dif-

ferential equation z′(t) – δz(t) =  is of the form z(t) = ceδt for some constant c. So, we
have

∣
∣y(t) – z(t)

∣
∣ =

∣
∣
∣
∣

(

c –

δ

)

eδt +

δ

∣
∣
∣
∣
≥ 

δ
if c ≥ 

δ
.

Therefore, if K is a constant such that  < K < 
δ
, then there is no solution of z′(t) –δz(t) = 

that satisfies

∣
∣y(t) – z(t)

∣
∣ ≤ K = Kε, where c ≥ 

δ
.

Hence, if there exists a constant K < 
δ

such that

–K < z(t) – y(t) =
(

c –

δ

)

eδt +

δ

< K for all t ∈ (a, b),
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then we should have c – 
δ

< . In this case, it follows from the last inequality that

–
(

K +

δ

)

e–δt < c –

δ

<
(

K –

δ

)

e–δt <  for all t ∈ (a, b).

This means that we should have c such that

–
(

K +

δ

)

e–δb ≤ c –

δ

≤
(

K –

δ

)

e–δa < ,

which implies

(

K –

δ

)

e–δa ≥ –
(

K +

δ

)

e–δb,

where K < 
δ
. So, we have


δ

> K ≥ 
δ

e–δa – e–δb

e–δa + e–δb ↗ 
δ

as b – a → ∞. ()

Therefore, a Hyers-Ulam constant K that is independent of a and b might be less than 
δ
.

However, by our main theorem in the next section we will see that K := 
δ

is the optimal
Hyers-Ulam constant, which is a better estimation than that in [].

3 Main theorem
In this section, let I = (a, b) be an arbitrary interval, where –∞ ≤ a < b ≤ ∞. Now, we are
in the position to introduce our main theorem.

Theorem . Let p, q, r : I → R be continuous real functions such that p(t) �=  and
|q(t)| ≥ μ for all t ∈ I and some μ > . Moreover, assume that q(t)

p(t) and r(s)
p(s) exp{– ∫ s

a
q(u)
p(u) du}

are integrable on (a, c) for each c ∈ I . If a continuously differentiable function y : I → R sat-
isfies the differential inequality () for all t ∈ I , then there exists a solution z : I → R of the
differential equation () such that

∣
∣y(t) – z(t)

∣
∣ ≤ ε

μ
for all t ∈ I. ()

Proof We use the method of integrating factor of Wang et al. [].
Case : Assume that p(t) >  and q(t) ≥ μ > . In view of (), we have

–ε ≤ p(t)y′(t) – q(t)y(t) – r(t) ≤ ε for all t ∈ I.

Multiplying the formula by 
p(t) exp{– ∫ t

a
q(s)
p(s) ds}, we get

–
εq(t)
μp(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

≤ exp

{

–
∫ t

a

q(s)
p(s)

ds
}

y′(t) –
q(t)
p(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

y(t) –
r(t)
p(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

≤ εq(t)
μp(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

for all t ∈ I. ()
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Since y is continuous, we can choose t ∈ I such that y(t) is finite. For any t ∈ I , inte-
grating () from t to t and then multiplying by exp{∫ t

a
q(s)
p(s) ds}, we get

–
ε

μ

∣
∣
∣
∣
 – exp

{∫ t

t

q(s)
p(s)

ds
}∣
∣
∣
∣

≤ y(t) – exp

{∫ t

t

q(s)
p(s)

ds
}

y(t)

– exp

{∫ t

a

q(s)
p(s)

ds
}∫ t

t

r(s)
p(s)

exp

{

–
∫ s

a

q(u)
p(u)

du
}

ds

≤ ε

μ

∣
∣
∣
∣
 – exp

{∫ t

t

q(s)
p(s)

ds
}∣
∣
∣
∣

for all t ∈ I. ()

Since
∫ b

t
q(s)
p(s) ds →  as t → b, we can choose t ∈ I such that

∫ b
t

q(s)
p(s) ds < ln . Therefore,

by () we obtain

∣
∣
∣
∣
y(t) – y(t) exp

{∫ t

t

q(s)
p(s)

ds
}

– exp

{∫ t

a

q(s)
p(s)

ds
}∫ t

t

r(s)
p(s)

exp

{

–
∫ s

a

q(u)
p(u)

du
}

ds
∣
∣
∣
∣

≤ ε

μ
for all t ∈ I. ()

If we define the function z : I → R by

z(t) := y(t) exp

{∫ t

t

q(s)
p(s)

ds
}

+ exp

{∫ t

a

q(s)
p(s)

ds
}∫ t

t

r(s)
p(s)

exp

{

–
∫ s

a

q(u)
p(u)

du
}

ds, ()

then inequality () implies the validity of (). Moreover, it is easy to see that z is a solution
of the differential equation ().

Case : Let p(t) >  and q(t) ≤ –μ < . In this case, we have –q(t)
μ

≥ . Then, instead of
(), we have the inequality

εq(t)
μp(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

≤ exp

{

–
∫ t

a

q(s)
p(s)

ds
}

y′(t) –
q(t)
p(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

y(t)

–
r(t)
p(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

≤ –
εq(t)
μp(t)

exp

{

–
∫ t

a

q(s)
p(s)

ds
}

for all t ∈ I.

Then, we can choose t ∈ I such that y(t) is finite. For each t ∈ I , we integrate the last
inequality from t to t and then multiply by exp{∫ t

a
q(s)
p(s) ds} to obtain inequality () for all

t ∈ I .
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Since
∫ t

a (– q(s)
p(s) ) ds →  as t → a, we can choose t ∈ I such that

∫ t
a (– q(s)

p(s) ) ds < ln .
Similarly as in Case , by using () we obtain

∣
∣
∣
∣
y(t) – y(t) exp

{∫ t

t

q(s)
p(s)

ds
}

– exp

{∫ t

a

q(s)
p(s)

ds
}∫ t

t

r(s)
p(s)

exp

{

–
∫ s

a

q(u)
p(u)

du
}

ds
∣
∣
∣
∣

≤ ε

μ
for all t ∈ I. ()

If we define the function z : I → R by formula (), then z is a solution of the differential
equation (), and () implies the validity of ().

Case : For the cases p(t) < , q(t) ≥ μ >  and p(t) < , q(t) ≤ –μ < , we can prove our
assertion by similar calculations. �

Remark . In Theorem ., the right side of () is the optimal Hyers-Ulam constant,
which is independent of the interval (a, b) for a, b ∈ R. This means that there is no α,
 < α < , such that () becomes

∣
∣y(t) – z(t)

∣
∣ ≤ α

ε

μ
on any interval (a, b). ()

In () of Example . with μ = δ, if we have


δ

>
(

K =
α

μ
=
)

α

δ
>


δ

e–δa – e–δb

e–δa + e–δb ,

then we should have b – a < 
δ

ln +α
–α

. So, we cannot have () if b – a > 
δ

ln +α
–α

. Hence,
our Hyers-Ulam constant is an optimal Hyers-Ulam constant for any interval (a, b) with
a, b ∈ R.
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