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Abstract
In this paper, we prove a functional central limit theorem for the multidimensional
parameter fractional Brownian sheet using martingale difference random fields. The
proof is based on the invariance principle for the Brownian sheet due Poghosyan and
Roelly (Stat. Probab. Lett. 38:235-245, 1998).
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1 Introduction
Self-similar stochastic processes with long range dependence (or long memory) are im-
portant aspect of stochastic models in various scientific areas, such as econometrics,
network traffic analysis, hydrology, telecommunications, and so on. These are processes
X = {Xt , t ≥ } whose dependence on the time parameter t is self-similar, in the sense
that there exists a (self-similarity) parameter  < H <  such that for any constant c ≥ ,
{Xct , t ≥ } and {cHXt , t ≥ } have the same distribution. These processes are often en-
dowed with other distinctive properties.

Fractional Brownian motion (fBm) is the usual candidate to model phenomena in which
the self-similarity property can be observed from the empirical data. It is a suitable gen-
eralization of the standard Brownian motion B, which exhibits a long range dependence
(when H > /), self-similarity, and Hölder’s continuity, and which has stationary incre-
ments. Some surveys and comprehensive literature concerning fBm could be found in
Biagini et al. [], Gradinaru et al. [], Hu [], Mishura [] and Nualart [].

The so-called fBm of Hurst parameter H is a continuous centered Gaussian process
BH = {BH

t , t ≥ } with the covariance function

R(t, s) = E
[
BH

t BH
s
]

=


[
sH + tH – |t – s|H]

.

Recall that BH has the following integral representation with respect to the standard Brow-
nian motion B (when H > 

 ):

BH
t =

∫ t


KH (t, s) dBs, t ≥ , (.)
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where KH is the kernel defined by (see, e.g., Decreusefond and Üstünel [])

KH (t, s) =
(

H –



)
cH s


 –H

∫ t

s
uH– 

 (u – s)H– 
 du (.)

with cH >  the following normalizing constant:

cH =

√
H�( 

 – H)
�(H + 

 )�( – H)
.

There are two possible multidimensional parameter extensions of the fBm. The first
one is the Lévy fractional Brownian random field (see Ciesielski and Kamont []), and the
second one is the anisotropic fractional Brownian random field introduced by Kamont []
as a centered Gaussian process Bα = {Bα

t , t ∈R
d
+} with covariance function given by

E
[
Bα

t Bα
s
]

=
d∏

k=



[
sαk

k + tαk
k – |tk – sk|αk

]
,

where α = (α,α, . . . ,αd) ∈ (, )d . We will call it a d-parameter fractional Brownian sheet.
For α = α = · · · = αd = 

 , it coincides with the standard d-parameter Brownian sheet
W = {Wt , t ∈ R

d
+}. This process is null on the axes and has a continuous version.

It is well known that a martingale difference random field is extremely useful because it
imposes much milder restrictions on the memory of the sequence than under indepen-
dence, yet most limit theorems that hold for an independent sequence will also hold for a
martingale difference random field. Limit theorems for martingale differences were stud-
ied for example by Dai et al. [], Nahapetian [], Nieminen [], Poghosyan [], Shen
and Yan [], Shen et al. [], Wang et al. [] and so on. In this work, we will present a
multidimensional parameter invariance principle for the fractional Brownian sheet, which
is proved by a convergence criterion for random fields to multi-parameter Brownian sheet
proved in Poghosyan and Roelly [].

The rest of this paper is organized as follows. Section  contains some preliminaries on
the multidimensional parameter stochastic processes and a precise statement of the main
result of this paper. Finally, Section  is devoted to a proof of the main weak convergence
theorem, Theorem ..

2 Preliminaries and main results
We will use the definitions and notations introduced in the basic work of Bickel and
Wichura []. Consider [, ]d with the usual partial order. Let (�,F , P) be a complete
probability space and let {Ft ; t ∈ [, ]d} be a family of sub-σ -fields of F such that
Fs ⊆ Ft for any s ≤ t. Given s ≤ t, we denote by �sXt the increment of the process X
over the rectangle (s, t] =

∏d
i=(si, ti] ⊂R

d .
Let � be the group of all mappings λ : [, ]d → [, ]d of the form λ(t) = (λ(t), . . . ,

λd(td)), where each λi : [, ] → [, ] is continuous, is strictly increasing, and fixes zero
and one. Denote by D = D([, ]d) the Skorohod space of functions on [, ]d which are
continuous from above with limits from below and equip D, as usual, with the metric

d(x, y) := inf
{
min

(‖x – yλ‖,‖λ‖) : λ ∈ �
}

,
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where ‖x – yλ‖ = sup{|x(t) – y(λ(t))| : t ∈ [, ]d} and ‖λ‖ = sup{|λ(t) – t| : t ∈ [, ]d}. Under
this metric, D is a separable and complete metric space. For more details we refer to Bickel
and Wichura []. Let X, Xn be processes in D, we say Xn converges in law to X if Ef (Xn) →
Ef (X) for all bounded and continuous functions f : D →R as n tends to infinity.

On the d-dimensional integer lattice Zd , let I be the σ -algebra of invariant subsets of �:

I =
{

A ∈ F : τu(A) = A for each u ∈ Z
d},

where {τu, u ∈ Z
d} is the group of translations, acting on � by τu(X) = X(t – u), t ∈ Z

d .

Definition . A random field {ξ (t), t ∈ Z
d} is called translation invariant (homogeneous)

if P(τu(A)) = P(A) for each A ∈ F and u ∈ Z
d .

Definition . A translation invariant random field {ξ (t), t ∈ Z
d} is called ergodic if P is

trivial on the σ -algebra of invariant subsets, i.e. P(A) =  or P(A) =  for each A ∈ I .

For u = (u, u, . . . , ud) ∈ Z
d , let

Z
d
–(u) =

{
t ∈ Z

d : ∃j,  ≤ j ≤ d such that tj < uj
}

,

and let Zd
+(u) = Z

d\Zd
–(u). For a random field {ξ (t), t ∈ Z

d}, set P(u) = σ {ξ (t), t ∈ Z
d
–(u)}.

Definition . A random field {ξ (t), t ∈ Z
d} is called a martingale difference if, for each

t ∈ Z
d ,

E
(
ξ (t)|P(t – )

)
=  a.s.,

where t –  = (t – , t – , . . . , td – ).

Set

Kn
H (t, s) := n

∫ s

s– 
n

KH

(
nt�
n

, u
)

du, n = , , . . . , (.)

where 
x� denotes the greatest integer not exceeding x. It is an approximation of KH (t, s).
Let αk > 

 , k = , , . . . , d. Taking into account the integral representation (.) for the
fBm, the d-parameter fractional Brownian sheet Bα has also the following integral repre-
sentation:

Bα
t =

∫ td


· · ·

∫ t


Kα (t, u)Kα (t, u) · · ·Kαd (td, ud) dWu, (.)

where {Kαk , k = , . . . , d} is given by (.).
The following theorem is the main result of the present paper, it is a multidimensional

extension of Nieminen [].

Theorem . Let αk > 
 , k = , , . . . , d. {ξn

i,i,...,id , ik = , , . . .} is a translation invariant,
ergodic, martingale difference random field with finite second moment E(ξn

i,i,...,id ) < +∞
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such that

lim
n→∞ ξn

i,i,...,id =  a.s. (.)

for all  ≤ ik ≤ n and

max
≤ik≤n

∣
∣ξn

i,i,...,id

∣
∣ ≤ C a.s. (.)

for some C ≥ . Define, for all n ≥ , t = (t, t, . . . , td) ∈ [, ]d ,

Bn
t :=



n d


d∑

k=


ntk�∑

ik =

ξn
i,i,...,id (.)

and

Zn
t :=

∫ td


· · ·

∫ t


Kn

α (t, u) · · ·Kn
αd

(td, ud) dBn
u

= n
d


d∑

k=


ntk�∑

ik =

ξn
i,i,...,id

×
∫ id

n

id–
n

· · ·
∫ i

n

i–
n

Kα

(
nt�
n

, u

)
· · ·Kαd

(
ntd�
n

, ud

)
du · · · dud, (.)

where the kernel Kαk is given by (.) and the sequence {Kn
αk

, n = , , . . .} defined by (.) is
an approximation of Kαk .

Then, {Zn} converges weakly in the Skorohod space D([, ]d) to the d-parameter frac-
tional Brownian sheet Bα .

In the rest of this paper, most of the estimates contain unspecified constants. An un-
specified positive and finite constant will be denoted by C, which may not be the same in
each occurrence. Sometimes we shall emphasize the dependence of these constants upon
parameters.

3 Proof of Theorem 2.1
In this section, we will prove Theorem .. We verify weak convergence via the conver-
gence of finite dimensional distributions and tightness. We first check the tightness. Since
the Zn are null on the axes, using the criterion established in Bickel and Wichura [], it
suffices to prove the following lemma.

Lemma . Let {Zn
t } be the family of processes defined by (.). Then for any s, t ∈ [, ]d

with s < t and any even number m ≥ , there exists a constant Cm such that

sup
n

E
(
�sZn

t
)m ≤ Cm

d∏

k=

(tk – sk)mαk .
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Proof Notice that

�sZn
t =

∫ td

sd

· · ·
∫ t

s

(
Kn

α (t, u) – Kn
α (s, u)

) × · · · × (
Kn

αd
(td, ud) – Kn

α (sd, ud)
)

dBn
u

= n
d


d∑

k=


ntk�∑

ik =

ξn
i,i,...,id

∫ id
n

id–
n

· · ·
∫ i

n

i–
n

(
Kα

(
nt�
n

, u

)
– Kα

(
ns�
n

, u

))

× · · · ×
(

Kαd

(
ntd�
n

, ud

)
– Kαd

(
nsd�
n

, ud

))
du · · · dud

= n
d


d∑

k=


ntk�∑

ik =

ξn
i,i,...,id

∫ i
n

i–
n

(
Kα

(
nt�
n

, u

)
– Kα

(
ns�
n

, u

))
du

× · · · ×
∫ id

n

id–
n

(
Kαd

(
ntd�
n

, ud

)
– Kαd

(
nsd�
n

, ud

))
dud.

Thus,

E
(
�sZn

t
)m = n

dm
 E

[ d∑

k=


ntk�∑

ik =

ξn
i,i,...,id

∫ i
n

i–
n

(
Kα

(
nt�
n

, u

)
– Kα

(
ns�
n

, u

))
du

× · · · ×
∫ id

n

id–
n

(
Kαd

(
ntd�
n

, ud

)
– Kαd

(
nsd�
n

, ud

))
dud

]m

≤ n
dm
 Cm

[ d∑

k=


ntk�∑

ik =

∫ i
n

i–
n

(
Kα

(
nt�
n

, u

)
– Kα

(
ns�
n

, u

))
du

× · · · ×
∫ id

n

id–
n

· · ·
(

Kαd

(
ntd�
n

, ud

)
– Kαd

(
nsd�
n

, ud

))
dud

]m

= Cm

[ d∏

k=

(√
n


ntk�∑

ik =

∫ ik
n

ik–
n

(
Kαk

(
ntk�
n

, uk

)
– Kαk

(
nsk�
n

, uk

))
duk

)] m


.

By the Cauchy-Schwarz inequality, the last expression can be bounded by

Cm

d∏

k=

[
ntk�∑

ik =

∫ ik
n

ik–
n

(
Kαk

(
ntk�
n

, uk

)
– Kαk

(
nsk�
n

, uk

))

duk

] m


≤ Cm

d∏

k=

[∫ tk



(
Kαk

(
ntk�
n

, uk

)
– Kαk

(
nsk�
n

, uk

))

duk

] m


= Cm

d∏

k=

∣∣
∣∣

ntk� – 
nsk�

n

∣∣
∣∣

mαk

.

Let us have now arbitrary  < sk < tk and 
 < αk < . If ntk – nsk ≥ , then we have

| 
ntk�–
nsk�
n |αk ≤ |(tk – sk)|αk . On the other hand, if ntk – nsk <  then either tk and sk be-

long to a same subinterval [ m
n , m+

n ) for some integer m, which implies | 
ntk�–
nsk�
n |αk = .
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Therefore, we get

∣
∣∣
∣

ntk� – 
nsk�

n

∣
∣∣
∣

αk

≤ ∣∣(tk – sk)
∣∣αk

for all n ≥ . This completes the proof of this lemma. �

We now proceed with the identification of the limit law by proving the convergence of
the finite-dimensional distributions of the processes {Zn

t } to those of Bα .

Theorem . The family of processes {Zn
t } defined by (.) converges, in the sense of a

finite-dimensional distribution, to the d-parameter fractional Brownian sheet Bα .

Proof For all N ∈ N, consider a, . . . , aN ∈R and t, . . . , tN ∈ [, ]d . It suffices to prove that
the linear combination

Y n :=
N∑

j=

ajZn
tj

converges in distribution, as n tends to infinity, to a normally distributed random variable
with zero mean and variance

E

( N∑

j=

ajBα

tj

)

.

Fact is that the zero mean is trivial. Next, we observe that

(
σ n) := E

(
Y n) =

N∑

j,l=

ajalEZn
tj Zn

tl

=
N∑

j,l=

ajalnd
d∑

k=

n∑

ik =

∫ id
n

id–
n

· · ·
∫ i

n

i–
n

Kα

(
ntj
�

n
, u

)

× · · · × Kαd

(
ntj
d�

n
, ud

)
du · · · dud

×
∫ id

n

id–
n

· · ·
∫ i

n

i–
n

Kα

(
ntl
�

n
, u

)
· · ·Kαd

(
ntl
d�

n
, ud

)
du · · · dud

(
ξn

i,i,...,id

)

=
N∑

j,l=

ajalnd
d∏

k=

n∑

ik =

∫ ik
n

ik –
n

Kαk

(
ntj
k�

n
, u

)
du

∫ ik
n

ik –
n

Kαk

(
ntl
k�

n
, u

)
du

(
ξn

i,i,...,id

).

Consider now the inner sum. By the mean value theorem, we have

n
n∑

ik =

∫ ik
n

ik –
n

Kαk

(
ntj
k�

n
, u

)
du

∫ ik
n

ik –
n

Kαk

(
ntl
k�

n
, u

)
du

=

n

n∑

ik =

Kαk

(
ntj
k�

n
, un

i,k

)
Kαk

(
ntl
k�

n
, un

i,l

)
(.)
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for some un
i,k , un

i,l ∈ ( ik –
n , ik

n ]. Since the kernel Kαk (t, ·) is continuous and decreasing we see
that (.) is equal to


n

n∑

ik =

Kαk

(
ntj
k�

n
, un

i

)
Kαk

(
ntl
k�

n
, un

i

)
(.)

for some

un
i ∈ [

min
(
un

i,k , un
i,l
)
, max

(
un

i,k , un
i,l
)] ⊆

(
ik – 

n
,

ik

n

]
.

On the other hand, we observe that the kernel KH with 
 < H <  is continuous with respect

to both arguments and the maps t �→ 
nt�
n converge uniformly to the identity map in [, T].

So (.) is a Riemann type sum. Thus, combining with (.), we see that (.) converges to

∫ 


Kαk

(
tj
k , u

)
Kαk

(
tl
k , u

)
du.

As a consequence, we see that (σ n) converges to

N∑

j,l=

ajal

d∏

k=

∫ 


Kαk

(
tj
k , u

)
Kαk

(
tl
k , u

)
du = E

( N∑

j=

ajBα

tj

)

.

Let us now write Y n as

Y n =
N∑

j=

ajZn
tj

=
d∑

k=

n∑

ik =

n
d
 ξn

i,i,...,id

N∑

j=

aj

∫ id
n

id–
n

· · ·
∫ i

n

i–
n

Kα

(
ntj
�

n
, u

)

× · · · × Kαd

(
ntj
d�

n
, ud

)
du · · · dud

:=
d∑

k=

n∑

ik =

Y n
i,i,...,id .

Then, it remains to prove that the following Lindeberg condition is satisfied:

lim
n→∞

d∑

k=

n∑

ik =

E
[(

Y n
i,i,...,id

){|Y n
i,i,...,id

|>ε}|P(i – , i – , . . . , id – )
]

=  (.)

for all ε > . By the Cauchy-Schwarz inequality and the fact that the kernel KH (t, s) with

 < H <  is increasing in t and decreasing in s, we have

(
Y n

i,i,...,id

) = nd(ξn
i,i,...,id

)

×
( N∑

j=

aj

∫ id
n

id–
n

· · ·
∫ i

n

i–
n

Kα

(
ntj
�

n
, u

)
· · ·Kαd

(
ntj
d�

n
, ud

)
du · · · dud

)
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≤ nd(ξn
i,i,...,id

)A
(∫ i

n

i–
n

Kα (, u) du × · · · ×
∫ id

n

id–
n

Kαd (, ud) dud

)

≤ (
ξn

i,i,...,id

)A
∫ i

n

i–
n

K
α (, u) du × · · · ×

∫ id
n

id–
n

K
αd

(, ud) dud

≤ (
ξn

i,i,...,id

)A
d∏

k=

∫ 
n


K

αk
(, u) du

=
(
ξn

i,i,...,id

)Aδn,

where A := (
∑N

j= aj) and δn :=
∏d

k=
∫ 

n
 K

αk
(, u) du. So we get

{∣∣Y n
i,i,...,id

∣∣ > ε
}

=
{(

Y n
i,i,...,id

) > ε} ⊆ {(
ξn

i,i,...,id

)Aδn > ε}.

Consequently, we obtain

E
[(

Y n
i,i,...,id

){|Y n
i,i,...,id

|>ε}|P(i – , i – , . . . , id – )
]

≤ E
[(

ξn
i,i,...,id

)Aδn{(ξn
i,i,...,id

)Aδn>ε}|P(i – , i – , . . . , id – )
]

≤ CAδnE
[
{(ξn

i,i,...,id
)Aδn>ε}|P(i – , i – , . . . , id – )

]

for all ik = , , . . . , n, k = , , . . . , d, and that

d∑

k=

n∑

ik =

E
[(

Y n
i,i,...,id

){|Y n
i,i,...,id

|>ε}|P(i – , i – , . . . , id – )
]

≤
d∑

k=

n∑

ik =

CAδnE
[
{(ξn

i,i,...,id
)Aδn>ε}|P(i – , i – , . . . , id – )

]

≤ CAδn
d∑

k=

n∑

ik =

E[{CAδn>ε}] →  (n → ∞)

because δn → , implies {CAδn>ε} → .
Thus, the Lindeberg condition (.) holds and the proof of Theorem . is now com-

plete. �
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