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Abstract
Let (Pu)(t) = – d

dt (ω
2(t)q(t) du(t)dt ) be a degenerate non-self-adjoint operator defined on

the space H� = L2(0, 1)� with Dirichlet-type boundary conditions, where ω(t) ∈ C1(0, 1)
is a positive function with further assumptions that will be specified later, and
q(t) ∈ C2([0, 1], EndC�) is a matrix function. In this article, some spectral characteristics
of the operator P are considered. We estimate the resolvent of P and then prove the
limit argument theorem. Finally, we find a formula for the distribution of eigenvalues
of the operator P acting on H�.
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1 Introduction
For more information, see papers [–]. In [], the authors consider a certain matrix el-
liptic differential operator and some spectral characteristics of this operator. The spectral
characteristics of non-self-adjoint elliptic differential operators are considered in [, , –
]. In this paper, we generalize the operator in [, ] and consider its spectral properties
by generalizing the distance function ρ(t) to the function ω(t).

This paper consists of five sections. Section  is devoted to introduction and definitions.
In Section , we consider the operator (Pu)(t) = – d

dt (ω(t)q(t) du(t)
dt ) on the one-dimensional

space H = L(, ). Using different techniques, in Theorem . and Theorem ., we prove
estimates (.) and (.) (note that assumption (.) is not used in Theorem .). We con-
sider the operator P on the �-dimensional space H� = L(, )� and then prove Theorem .
in Section . In Section , we prove the vanishing limit argument theorem, that is, we show
that limj→∞ argλj = . Finally, in Section , we find the asymptotic distribution formula for
the eigenvalue function N(τ ) = card{j : |λj| ≤ τ } as τ → +∞.

Formulation and notation: In this paper, H� denotes the weighted Sobolev space
W 

,ω(, )� = W 
,ω(, ) × · · · × W 

,ω(, ) (�-times) of vector functions u(t) = (u(t), . . . ,
u�(t)) on (, ) with finite norm

|u|+ =
(∫ 


ω(t)

∣∣∣∣du(t)
dt

∣∣∣∣


C�

dt +
∫ 



∣∣u(t)
∣∣
C�

)/

.
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Here | du(t)
dt |C� and |u(t)|C� stand for the norm in the space C� (the above definition of the

norm has been previously used in [, , , ]. Of course, this could also be done in matrix
language at the cost of greater notational complexity). By Ḣ� we denote the closure of
C∞

 (, ) in the space H� with respect to the above norm, where C∞
 (, ) denotes the space

of infinitely differentiable functions with compact support in (, ). Note that if � = , then
H = H, H = H, and Ḣ = Ḣ. We now consider a non-self-adjoint differential operator
of type (Pu)(t) = – d

dt (ω(t)q(t) du(t)
dt ) acting on the space H� = L(, )� with Dirichlet-type

boundary conditions. Here ω(t) ∈ C(, ) is a positive function that satisfies the following
conditions:

ctα( – t)β ≤ ∣∣ω(t)
∣∣ ≤ M, (.)

∣∣(ω)′(t)
∣∣ ≤ Mt

α
 –+ε ( – t)

β
 –+ε , (.)

where  ≤ α,  ≤ β , ε =  if α �=  and ε >  if α = , and ε =  if β �=  and ε >  if β = .
Suppose that q(t) ∈ C([, ], End C�) is a matrix function such that for each ∈ [, ], q(t)

has � distinct nonzero simple eigenvalues μ(t), . . . ,μ�(t) in the complex plane such that
μj(t) ∈ C[, ] for j = , . . . ,�.

Note that in Section , the latter assumption enables us to diagonalize the matrix func-
tion q(t) for each t ∈ [, ]. Moreover, let 
 = {z ∈ C : | arg z| ≤ ϕ}, ϕ ∈ (,π ) be some closed
angle with vertex at zero. We now consider μ(t), . . . ,μv(t) ∈ R+ and μv+(t), . . . ,μ�(t) ∈
C \ 
. In other words, for t ∈ [, ], the eigenvalues μj(t) are on the positive real line R+

for j = , . . . , v and are out of the closed angle 
 in the complex plane C for j = v + , . . . ,�.
In all remaining sections, we need to extend the domain of operator P to the closed

domain

D(P) =
{

u ∈ Ḣ� ∩ W 
,loc(, )� : ωu′ ∈ H�,

d
dt

(
ωq

du
dt

)
∈ H�

}
.

Here the closed domain refers to the following sesquilinear form:

t[u, v] =
∫ 


ω(t)q(t)u′(t)v′(t) dt

connected with P by t[u, v] = 〈Pu, v〉 (for more explanation, see the representation theo-
rems in Chapter  of []). In this article, W 

,loc(, )� × · · · × W 
,loc(, ) (�-times), where

W 
,loc(, ) is the space of the functions u(t) ( < t < ) satisfying

∑
i=

∫ –ε

ε

∣∣u(i)(t)
∣∣ dt < ∞ ∀ε ∈

(
,




)
.

2 On the resolvent estimate of the differential operator P on H = L2(0, 1)
In this section, we need to reduce the operator (Pu)(t) = – d

dt (ω(t)q(t) du(t)
dt ) acting on

the �-dimensional space H� = L(, )� to the operator (Pu)(t) = – d
dt (ω(t)μ(t) du(t)

dt ) acting
on the one-dimensional space H = L(, ). In fact, the matrix q(t) exchanges to a one-
dimensional function μ(t) satisfying the following conditions:

μ(t) ∈ C[, ], μ(t) ∈ C \ 
 ∀t ∈ [, ]. (.)
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Since we work on the small oscillation of the argument of the function μ(t), as in [],
without loss of generality, we can assume that the oscillation of this function in the interval
[, ] does not exceed π

 , that is,

∣∣arg
{
μ(t)μ–(t)

}∣∣ ≤ π


(∀t, t ∈ [, ]

)
. (.)

Theorem . Let (Pu)(t) = – d
dt (ω(t)μ(t) du(t)

dt ) be a differential operator acting on the space
H = L(, ). If (.) and (.) are satisfied, then for sufficiently large in modulus λ ∈ 
,
the inverse operator (P – λI)– exists and is continuous in the space H = L(, ), and the
following estimates hold:

∥∥(P – λI)–∥∥ ≤ M|λ|– (
λ ∈ 
, |λ| > C

)
, (.)∥∥∥∥ω(t)

d
dt

(P – λI)–
∥∥∥∥ ≤ M|λ|– 


(
λ ∈ 
, |λ| > C

)
, (.)

where M, C >  are sufficiently large numbers depending on 
.

Proof Step . In this step, we prove assertion (.). We need to extend the domain of P to
the closed set

D(P) =
{

u ∈ Ḣ ∩ W 
,loc(, ) : ωu′ ∈ H ,

(
ω(t)μu′)′ ∈ H

}
.

For all λ = |λ|eiα ∈ 
 and μ = |μ|eiβ ∈ C \ 
, we can choose γ ∈ (–π ,π ] such that cos(γ +
α) <  and cos(γ + β) > . Now we define c′ as follows:

c′ = min

{
– Re{eiγ λ}

|λ| , Re
{

eiγ μ
}}

.

So we have:

c′ ≤ Re
{

eiγ μ(t)
}

, c′|λ| ≤ – Re
{

eiγ λ
}

, c′ > , t ∈ [, ],λ ∈ 
. (.)

For u ∈ D(P), by integrating two sides of c′ ≤ Re{eiγ μ(t)} we have

c
′ ∫ 

 ω(t)|u′(t)| dt≤Re
∫ 

 eiγ ω(t)μ(t)|u′(t)| dt=Re{eiγ (Pu,u)}.

Here the symbol ( , ) denotes the inner product in H .
By multiplying the inequality c′|λ| ≤ – Re{eiγ λ} by

∫ 
 |u(t)| dt = (u, u) = ‖u‖ >  we

have

c′|λ|
∫ 



∣∣u(t)
∣∣ dt ≤ – Re

{
eiγ λ

}
(u, u).

For c′ = 
M , from the above inequalities we have:

∫ 


ω(t)

∣∣u′(t)
∣∣ dt + |λ|

∫ 



∣∣u(t)
∣∣ dt ≤ M Re

{
eiγ (Pu, u) – eiγ λ(u, u)

}

= M Re
{

eiγ (P – λI)u, u
}
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≤ M
∥∥eiγ ∥∥‖u‖∥∥(P – λI)u

∥∥
= M‖u‖∥∥(P – λI)u

∥∥. (.)

Since
∫ 

 ω(t)|u′(t)| dt > , we have

|λ|
∫ 



∣∣u(t)
∣∣ dt ≤ M‖u‖∥∥(P – λI)u

∥∥ (.)

or

|λ|‖u‖ ≤ M
∥∥(P – λI)u

∥∥.

The above relation ensures that the operator (P – λI) is one-to-one, which implies that
ker(P – λI) = . Therefore, the inverse operator (P – λI)– exists, and its continuity follows
from the proof of estimate (.) of Theorem .. To prove (.), we set u = (P – λI)–f ,
f ∈ H . By (.) we have:

|λ|
∫ 



∣∣(P – λI)–f
∣∣ dt ≤ M

∥∥(P – λI)–f
∥∥∥∥(P – λI)(P – λI)–f

∥∥.

Since (P – λI)(P – λI)–f = I(f ) = f , it follows that

|λ|
∫ 



∣∣(P – λI)–f
∣∣ dt ≤ M

∥∥(P – λI)–f
∥∥|f |.

Therefore,

|λ|∥∥(P – λI)–f
∥∥ ≤ M

∥∥(P – λI)–(f )
∥∥|f |,

which implies |λ|‖(P – λI)–(f )‖ ≤ M|f |. Since λ �= , we have ‖(P – λI)–(f )‖ ≤ M|λ|–|f |.
The final result is

∥∥(P – λI)–∥∥ ≤ M|λ|–.

This estimate completes the proof of assertion (.).
Step . In this step, we prove inequality (.). Since |λ| ∫ 

 |u(t)| dt > , from (.) we
have

∫ 


ω(t)

∣∣u′(t)
∣∣ dt ≤ M‖u‖∥∥(P – λI)u

∥∥.

By setting u = (P – λI)–f , f ∈ H , in the last inequality we have

∫ 


ω(t)

∣∣∣∣ d
dt

(P – λI)–f (t)
∣∣∣∣


dt ≤ M
∥∥(P – λI)–f

∥∥∥∥(P – λI)(P – λI)–f
∥∥.

Since (P – λI)(P – λI)–f = f , we get

∫ 


ω(t)

∣∣∣∣ d
dt

(P – λI)–f (t)
∣∣∣∣


dt ≤ M
∥∥(P – λI)–f

∥∥‖f ‖,
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and by (.) we have ‖(P – λI)–f ‖ ≤ M‖f ‖|λ|–, so

∫ 


ω(t)

∣∣∣∣ d
dt

(P – λI)–f (t)
∣∣∣∣


dt ≤ MM|λ|–‖f ‖.

Therefore,

∫ 


ω(t)

∣∣∣∣ d
dt

(P – λI)–f (t)
∣∣∣∣


dt ≤ M|λ|–‖f ‖,

that is,

∥∥∥∥ω(t)
d
dt

(P – λI)–f (t)
∥∥∥∥



≤ M|λ|–‖f ‖.

So
∥∥∥∥ω(t)

d
dt

(P – λI)–f (t)
∥∥∥∥ ≤ M|λ|– 

 . �

Now we claim that in spite of dropping assumption (.), assertions (.) and (.) of
Theorem . are valid.

Theorem . Let (Pu)(t) = – d
dt (ω(t)μ(t) du(t)

dt ) be a differential operator acting on the
space H = L(, ). If (.) is satisfied, then for sufficiently large in modulus λ ∈ 
, the in-
verse operator (P – λI)– exists and is continuous, and the following estimates hold:

∥∥(P – λI)–∥∥ ≤ M
|λ|– (
λ ∈ 
, |λ| > C


)
, (.)∥∥∥∥ω(t)

d
dt

(P – λI)–
∥∥∥∥ ≤ M′


|λ|– 


(
λ ∈ 
, |λ| > C


)
, (.)

where M
, M′

, C
 >  are sufficiently large numbers depending on 
.

Proof Step . In this step, we prove assertion (.). We need to construct nonnegative func-
tions ϕ()(t), . . . ,ϕ(ρ)(t) and new functions μ()(t), . . . ,μ(ρ)(t) with the following properties:

μ()(t), . . . ,μ(ρ)(t),ϕ()(t), . . . ,ϕ(ρ)(t) ∈ C∞[, ],

 ≤ ϕ(j)(t), ϕ
()(t) + · · · + ϕ

(ρ)(t) ≡  ( ≤ t ≤ ),

d
dt

ϕ(j)(t) ∈ C∞
 (, ), μ(j)(t) = μ(t) ∀t ∈ suppϕ(j),

μ(j)(t) ∈ C \ 
 ∀t ∈ [, ], j = , . . . ,ρ,
∣∣arg

{
μ(j)(t)μ–

(j) (t)
}∣∣ ≤ π


(∀t, t ∈ suppϕ(j)), j = , . . . ,ρ.

Considering Theorem ., by (.) and (.) set

(A(j)v)(t) = –
d
dt

(
ω(t)μ(j)(t)

dv(t)
dt

)
,
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acting on the space H = L(, ), where

D(A(j)) =
{

v ∈ Ḣ ∩ W 
,loc(, ) :

(
ω(t)μ(j)v′)′ ∈ H

}
.

By Theorem . the operator (A(j) –λI) has a continuous inverse for  �= λ ∈ 
 and satisfies

∥∥(A(j) – λI)–∥∥ ≤ M|λ|–,
∥∥∥∥ω(t)

d
dt

(A(j) – λI)–
∥∥∥∥ ≤ M|λ|– 

 . (.)

Let us introduce the operator

T(λ) =
ρ∑

J=

ϕ(j)(A(j) – λI)–ϕ(j) (.)

in the space H. Here ϕ(j) is the operator of multiplication by the function ϕ(j)(t). Conse-
quently, it is easily verified that

(P – λI)T(λ)v = I + I + I + I,

where

I = –
ρ∑

j=

(
ω(t)μ(ϕ(j))′t

)′
t(A(j) – λI)–ϕ(j)v,

I = –
ρ∑

j=

ω(t)μ(ϕ(j))′t
d
dt

(A(j) – λI)–ϕ(j)v,

I = –
ρ∑

j=

ϕ(j)

(
ω(t)μ

d
dt

(A(j) – λI)–ϕ(j)v
)′

t
,

I = –λ

ρ∑
j=

ϕ(j)(A(j) – λI)–ϕ(j)v.

Since μ(j)(t) = μ(t) ∀t ∈ suppϕ(j), we can replace μ(t) by μ(j)(t) in I. Then using∑ρ
j= ϕ

(j)(t) ≡ , it follows that

I + I = –
ρ∑

j=

ϕ(j)

[(
ω(t)μ

d
dt

(A(j) – λI)–ϕ(j)v
)′

t
+ λ(A(j) – λI)–ϕ(j)v

]

=
ρ∑

j=

ϕ(j)(A(j) – λI)(A(j) – λI)–ϕ(j)v =
ρ∑

j=

ϕ
(j)v = v.

Now if we suppose that I + I = G(λ)v, then (P – λI)T(λ)v = v + G(λ)v, so

(P – λI)T(λ) = I + G(λ). (.)

Since ϕ′
(j)t

∈ C∞(, ), by (.) we can estimate I, I as follows:

‖I‖ ≤ M
ρ∑

j=

∣∣(A(j) – λI)–ϕ(j)v
∣∣ ≤ M|λ|– 

 ‖v‖,
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‖I‖ ≤ M
ρ∑

j=

∣∣∣∣ d
dt

(A(j) – λI)–ϕ(j)v
∣∣∣∣ ≤ M′|λ|– 

 ‖v‖.

Using these estimates, we have

∥∥G(λ)
∥∥ ≤ ‖I‖ + ‖I‖ ≤ M|λ|–‖v‖ + M

′|λ|– 
 ‖v‖.

For sufficiently large number C
 >  such that |λ| > C
, we have |λ|– ≤ |λ|– 
 , so

∥∥G(λ)
∥∥ ≤ M

′′|λ|– 
 . (.)

By choosing suitable λ we conclude that ‖G(λ)‖ ≤ 
 < . Using this and the well-known

theorem in the operator theory, we conclude that I + G(λ) is invertible. So by (.) we
have that (P – λI)T(λ) is eversible and

(
T(λ)

)–(P – λI)– =
(
I + G(λ)

)–. (.)

We add +I and –I to the right side of the (.) and consider F(λ) = (I + G(λ))– – I :

(
T(λ)

)–(P – λI)– = F(λ) + I. (.)

In view of ‖G(λ)‖ ≤ 
 <  and (.), by applying the geometric series for F(λ) we have

∥∥F(λ)
∥∥ ≤

+∞∑
i=

∥∥Gk(λ)
∥∥ ≤ ∥∥G(λ)

∥∥
(

 +



+



+ · · ·
)

≤ 
(
M′′|λ|– 


),

so

∥∥F(λ)
∥∥ ≤ M′′′|λ|–.

By (.) and (.) we have

∥∥T(λ)
∥∥ =

∥∥∥∥∥
ρ∑

j=

ϕ(j)(A(j) – λI)–ϕ(j)

∥∥∥∥∥ ≤ K
∥∥(A(j) – λI)–∥∥,

that is,

∥∥T(λ)
∥∥ ≤ KM|λ|– = K|λ|–. (.)

Now by (.) and (.) we have

∥∥(P–λI)–∥∥ =
∥∥T(λ)

∥∥∥∥(
I +F(λ)

)∥∥ ≤ K|λ|–(+M′′′|λ|–) ≤ K|λ|– +K|λ|–M′′′|λ|–.

As before, for sufficiently large number C
 >  such that |λ| > C
, we have |λ|–|λ|– =
|λ|– ≤ |λ|–, so

∥∥(P – λI)–∥∥ ≤ K|λ|– + K|λ|–M′′′|λ|– = M
|λ|– (|λ| ≥ C
,λ ∈ 

)
.
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Step . To prove assertion (.), by replacing ω(t) d
dt (A(j) – λI)– instead of (A(j) – λI)– in

the T(λ) and using the previous calculations, we have

∥∥∥∥∥T ′(λ) =
ρ∑

j=

ϕ(j)
d
dt

(A(j) – λI)–ϕ(j)

∥∥∥∥∥ ≤ K ′


∥∥∥∥ω(t)
d
dt

(A(j) – λI)–
∥∥∥∥,

that is,

∥∥T ′(λ)
∥∥ ≤ K ′

M|λ|– 
 = K ′

|λ|– 
 .

By similar calculations we have

ω(t)
d
dt

(P – λI)– = T ′(λ)
(
I + F ′(λ)

)
,

where ‖F ′(λ)‖ ≤ M′′′
 |λ|–, and hence

∥∥∥∥ω(t)
d
dt

(P – λI)–
∥∥∥∥ =

∥∥T ′(λ)
∥∥∥∥(

I + F ′(λ)
)∥∥.

Therefore,
∥∥∥∥ω(t)

d
dt

(P – λI)–
∥∥∥∥ ≤ K ′

|λ|– 

(
 + M′′′

 |λ|–) = K ′
|λ|– 

 + K ′
|λ|– 

 M′′′
 |λ|–

since |λ|– 
 |λ|– ≤ |λ|– 

 , and, consequently,

∥∥∥∥ω(t)
d
dt

(P – λI)–
∥∥∥∥ ≤ K ′

|λ|– 
 + K ′

M′′′
 |λ|– 

 = M′

|λ|– 

 . �

3 On the resolvent estimate of the operator on H� = L2(0, 1)�

In this section, we consider the operator P on the �-dimensional space H� = L(, )�. In
fact, the conditions in this section are more general than in the previous one.

Theorem . Let (Pu)(t) = – d
dt (ω(t)q(t) du(t)

dt ) be an operator acting on the space H� =
L(, )� with Dirichlet-type boundary conditions. Here ω(t) ∈ C(, ) is a positive function
that satisfies conditions (.) and (.). Let 
 = {z ∈ C : | arg z| ≤ ϕ}, where ϕ ∈ (,π ) is a
closed angle with vertex at zero. Let q(t) ∈ C([, ], End C�) be such that the matrix function
q(t) has � distinct nonzero simple eigenvalues μj(t) ∈ C[, ] ( ≤ j ≤ �) for each t ∈ [, ]
that are arranged in the complex plane C in the following way: μ(t), . . . ,μv(t) ∈ R+,
μv+(t), . . . ,μ�(t) ∈ C \
. Then for sufficiently large in modulus λ ∈ 
, the inverse operator
(P – λI)– exists and is continuous in the space H� = L(, )�, and the following estimates
hold:

∥∥(P – λI)–∥∥ ≤ M|λ|– (
λ ∈ 
, |λ| > C

)
, (.)∥∥∥∥ω(t)

d
dt

(P – λI)–
∥∥∥∥ ≤ M′

|λ|– 


(
λ ∈ 
, |λ| > C

)
, (.)

where the M, C >  are sufficiently large numbers depending on 
.
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Proof Step . In this step, we proof assertion (.). First, note that the conditions we con-
sider on the eigenvalues μj(t) of the matrix function q(t) guarantee that we can convert
the matrix to the diagonal form

q(t) = U(t)�(t)U–(t), where U(t), U–(t) ∈ C([, ], End C�
)

and �(t) = diag{μ(t), . . . ,μ�(t)}. Consider the space H� = H ⊕· · ·⊕ H (�-times) and let us
introduce the operator

B(λ) = diag
{

(P – λI)–, . . . , (P – λI)–} (.)

acting on H�, where (Pjv)(t) = – d
dt (ωμj

dv(t)
dt ) and

D(Pj) =
{

v ∈ Ḣ ∩ W 
,loc(, );ωu′ ∈ H ,

d
dt

(
ωμj

du
dt

)
∈ H

}
.

According to the results that obtained in Section , the operator B(λ) exists and is con-
tinuous for sufficiently large modulus of λ ∈ 
. Consider the operator �(λ) = UB(λ)U–,
where (Uu)(t) = U(t)u(t) (u ∈ H�). Consequently, it follows that

(P – λI)�(λ)u = –
d
dt

(
ωq(t)

d
dt

(
U(t)B(λ)U–(t)u(t)

))
= T + T + T,

where

T = –
d
dt

(
ωq(t)U(t)

d
dt

B(λ)U–(t)u(t)
)

= –
d
dt

(
ωU(t)�(t)

d
dt

B(λ)U–u(t)
)

= –U
d
dt

(
ω�(t)

d
dt

B(λ)U–u
)

– U ′(t)ω�
d
dt

B(λ)U–u

= λUB(λ)U–u – U ′(t)ω�
d
dt

B(λ)U–u + UU–u,

T = –
d
dt

(
ωqU ′B(λ)U–u

)
,

and

T = –λU(t)B(λ)U–u.

Using (.) and (.), have (P – λI)�(λ) = I + T
 + T

 , where T
 = (ω)′qU ′B(λ)U– and

‖T
 ‖ ≤ M|λ|– 

 .
Now by the Hardy-type inequality we estimate the operator T

 as follows:

∫ 


t–+ε′

( – t)–+ε′∣∣y(t)
∣∣ dt

≤ M
(
ε′

, ε′

)∫ 



∣∣y(t)
∣∣ dt

+ M
(
ε′

, ε′

)∫ 


t+ε′

 ( – t)+ε′

∣∣y′(t)

∣∣ dt ∀y ∈ Ḣ, ε′
, ε′

 �= .
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Since |q(t)U ′(t)|C�→C� ≤ M, by (.) we have the following inequality:

∫ 



∣∣(ω(t)
)′∣∣∣∣(B(λ)u(t)

)∣∣
C� dt

≤ M

∫ 


tα–+ε′

 ( – t)β–+ε′∣∣W ′(t)
∣∣
C� dt

≤ M

∫ 



∣∣tα( – t)βω–(t)
∣∣∣∣ω((B(λ)u

)
(t)

)′
t

∣∣
C� dt

+ M
∣∣(B(λ)u

)∣∣
H�

, W = B(λ)u.

Now by (.) and estimate (.) it follows

∫ 



∣∣(ω(t)
)′∣∣∣∣(B(λ)u

)
(t)

∣∣
C� dt

≤ M
∫ 


ω∣∣((B(λ)u

)
(t)

)′
t

∣∣
C� dt + M

∣∣(B(λ)u
)∣∣

H�

≤ M′|λ|–|u|H�

(
λ ∈ 
, |λ| > C

)
.

Then ‖T
 ‖ ≤ M′|λ|–/ for sufficiently large in modulus of λ ∈ 
; consequently,

(P – λI)�(λ) = I + F(λ),
∥∥F(λ)

∥∥ ≤ M|λ|– 


(
λ ∈ 
, |λ| > C

)
. (.)

Proceeding as at the end of Section  (e.g., see (.)) from ‖F(λ)‖ ≤ M|λ|– 
 it easily fol-

lows that I + F(λ) is inversible and then that (A – λI)�(λ) is inversible, that is,

(
(P – λI)�(λ)

)– =
(
I + F(λ)

)–.

Then by adding –I and +I to the last relation we have

(
I + F(λ)

)– =
(
I + F(λ)

)– – I + I.

Since ‖F(λ)‖ ≤ M|λ|– 
 , in a calculation as in Section , take y(λ) = (i + F(λ))– – I . Then

y(λ) satisfies

∥∥y(λ)
∥∥ ≤ M|λ|– (

λ ∈ 
, |λ| > C
)
. (.)

Consequently,

(P – λI)– = �(λ)
(
I + y(λ)

)
(.)

since

�(λ) = UB(λ)U–, B(λ) = diag
{

(P – λI)–, . . . , (P� – λI)–}. (.)
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Put Pj = Aj, j = , . . . ,�, as in (.). By (.)-(.) we have ‖(Pj –λI)–‖ ≤ M|λ|–, j = , . . . ,�,
and it follows that ‖�(λ)‖ ≤ M|λ|–, so

∥∥(P – λI)–∥∥ ≤ ∥∥�(λ)
∥∥∥∥(

I + y(λ)
)∥∥

≤ M|λ|–( + M|λ|–) ≤ M|λ|–.

Step . Now we prove estimate (.). Since ‖ω d
dt (Pj – λI)–‖ ≤ M|λ|– 

 , j = , . . . ,�, for
�(λ), we can get the corresponding estimate ‖�(λ)‖ ≤ M|λ|– 

 , and this implies

∥∥∥∥ω
d
dt

(P – λI)–
∥∥∥∥ ≤ ∥∥�(λ)

∥∥∥∥(
I + y(λ)

)∥∥.

Since ‖y(λ)‖ ≤ M′
|λ|–, we have ‖ω d

dt (Pj – λI)–‖‖ω d
dt (Pj – λI)–‖ ≤ M|λ|– 

 ( + M′
|λ|–),

which implies ‖ω d
dt (Pj – λI)–‖ ≤ M|λ|– 

 for (λ ∈ 
, |λ| ≥ C), so that the proof of the
fundamental Theorem . in the general case H� = L(, )� is completed. �

4 Vanishing limit arguments
Denote by λ,λ, . . . the eigenvalues of P that belong to the angle


 =
{

z ∈ C : | arg z| < ϕ
}

, ϕ ∈ (,π ).

We want to find the limit of the sequence {λj} as j → ∞.

Theorem . Suppose that for every closed angle S ⊂ 
\R+ with origin at zero, there exists
a number C(S) >  such that for all λ ∈ S with |λ| ≥ C(S), the inverse operator (P – λI)–

exists and is continuous. Then

argλj →  (j → ∞).

Proof Assume the set K = {argλj : j = , , . . .} has a nonzero limit point ϕ ∈ [–ϕ, +ϕ]. Then
there exists a subsequence {λjk } such that

lim
k→∞

argλjk = ϕ.

We consider the closed sector S ⊂ 
 \ R+ such that the ray

� = {z ∈ C; arg z = ϕ} ⊂ S.

By the definition of the limit and our assumption there exists N ∈ N such that ∀k > N,
λjk ∈ S. Since λn → ∞ (n → ∞) for C(S) > , there exists N ∈ N such that |λjk | ≥ C(S) for
k > N.

Now if k > max(N, N), then λjk ∈ S and |λjk | ≥ C(S), so that the latter condition implies
that (P – λjk I)– exists and is continuous, which in turn by definition implies that λjk is not
an eigenvalue of P (since by Theorem . this λjk is the resolvent of P, that is, cannot be
an eigenvalue of P), so λjk /∈ 
, which is a contradiction. Hence, we must have

argλj →  (j → ∞). �
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5 On the asymptotic distribution of eigenvalues of the differential operator P
on H�

Theorem . Let � = 
π

∑v
j=

∫ 
 ω–(t)μ– 


j (t) dt and N(τ ) = card{j : |λj| ≤ τ } be a distri-

bution function. Then we have the following asymptotic formula:

N(τ ) ∼ �τ / as → +∞.

Proof We know that for an arbitrary kernel operator T and an arbitrary bounded operator
T,

tr TT = tr TT, |TT| ≤ |T|‖T‖

(see []).
Using these relations, from (.) and (.) we get

tr(P – λI)– =
+∞∑
J=


λj – λ

= tr�(λ) + O()
∣∣�(λ)

∣∣


∥∥y(λ)
∥∥,

tr�(λ) = tr UB(λ)U– = tr B(λ) =
�∑

j=

tr(Pj – λI)–,

∣∣�(λ)
∣∣
 ≤ ‖U‖∥∥U–∥∥∣∣B(λ)

∣∣
 ≤ M|λ|– (

λ ∈ 
, |λ| > C
)
.

Now if λ → ∞, then

+∞∑
j=


λj – λ

=
�∑

j=

tr(Pj – λI)– + O
(|λ|–). (.)

Let λ,λ, . . . and λj,,λj,, . . . be the sequences of the eigenvalues of the operators P and
Pj (for j = v + , . . . , l), respectively. So

+∞∑
j=


λj – λ

=
�∑

k=

+∞∑
j=


λj,k – λ

+ O
(|λ|–), λ → ∞,λ ∈ 
. (.)

If � = {z ∈ C : | arg z| < ψ}, ψ ∈ (,ϕ), then we can take the index j such that, for j > j,

| argλj| < ψ , | argλj,k| > ϕ for k = v + , . . . ,�. (.)

Suppose that the eigenvalues of the operators P and Pj satisfy the following conditions:

λ(t), . . . ,λv ∈ R+ and λv+(t), . . . ,λ�(t) ∈ C \ 
;

λj,, . . . ,λj,v ∈ R+ and λj,v+, . . . ,λj,� ∈ C \ 
.

So we can change the sum
∑�

k= to
∑v

k= and the sum
∑+∞

j= to
∑+∞

j=j in (.):

+∞∑
j=j


λ – λj

=
v∑

k=

+∞∑
j=j


λ – λj,k

+ O
(|λ|–), λ → +∞,λ ∈ ∂
.
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Multiplying both sides of the last equation by 
λ+τ

, τ > , using the contour integral method
(see [], Chapter ), and from (.) integrating with respect to λ ∈ ∂� , we get that

+∞∑
j=j


λ + λj

=
v∑

k=

+∞∑
j=j


λ + λj,k

+ O
(|λ|–), λ → +∞.

Replace λ by η in the previous relation, we have

+∞∑
j=j


η + λj

=
v∑

k=

+∞∑
j=


η + λj,k

+ O
(
η–), η → +∞

(remark that here, as before, by applying the contour integral method we can change the
negative sign to the positive sign in the denominator of the last relation). We now use the
countable discreteness of the eigenvalues of the operator P, and then we can change the
above series to the following integral:

∫ +∞



dN(τ )
η + τ

=
v∑

k=

∫ +∞



dNk(τ )
η + τ

+ O
(
η–), η → +∞, (.)

where

N(τ ) = card
{

j :
∣∣λ′

j
∣∣ ≤ τ

}
,

Nk(τ ) = card{j : λj,k ≤ τ }, k = , . . . , v.

By considering the previous conditions concerning the functions ω(t), μk(t) and by apply-
ing the theorems of Chapter  of [] we can derive the following formula for the functions
Nk(τ ), k = , . . . , v:

Nk(τ ) ∼ ckτ

 , τ → +∞,

where

ck =

π

∫ 


ω–(t)μ– 


k (t) dt, k = , . . . , v.

By (.) we have

∫ +∞



dN(τ )
x + τ

∼
v∑

j=

∫ +∞



dN(τ )
x + τ

, x → +∞.

Now applying for this last relation the Shakalikov multiray Tauberian theorem (see []),
we get

N(τ ) ∼
v∑

k=

Nk(τ ), τ → ∞,
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where Nk(τ ) ∼ ckτ

 with ck as before. Consequently, the following asymptotic formula is

valid:

N(τ ) ∼ �τ

 , τ → +∞,

where

� =
v∑

k=

ck =

π

v∑
j=

∫ 


ω–(t)μ– 


j (t) dt.

This completes the proof of the theorem. �
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