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Abstract
In this paper, we consider a variant of projected Tikhonov regularization method for
solving Fredholm integral equations of the first kind. We give a theoretical analysis of
this method in the Hilbert space L2(a,b) setting and establish some convergence
rates under certain regularity assumption on the exact solution and the kernel k(·, ·).
Some numerical results are also presented.
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1 Introduction
Let H = L((a, b);R) and consider the Fredholm integral equation of the first kind

∫ b

a
k(t, s)f (s) ds = g(t), t ∈ [a, b], ()

where k(·, ·) and g are known functions, and f is the unknown function to be determined.
The equation can be written as an operator equation

K : H −→ H , f �−→ g = Kf . ()

Many inverse problems in applied science and engineering (see, e.g., [–] and refer-
ences therein) lead to the solution of Fredholm integral equations of the first kind ().

Several numerical methods are available in the literature to solve linear integral equa-
tions of the first kind; we can cite, for example, multiscale methods [–], spectral-
collocation methods [, ], reproducing kernel Hilbert space methods [, ], eigen-
value approximation methods [–], quadrature-based collocation methods [, ],
projections methods [–], and other interesting methods quite exposed in the books
[, –].

In the regularizing procedures, several authors have studied finite-dimensional approx-
imations obtained by projecting regularized approximations into finite-dimensional sub-
spaces. Such methods may be called regularization projection methods.
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The main idea of regularization by projection is to project the least squares minimization
on a finite-dimensional subspace to obtain a well-conditioned problem and, consequently,
a stabilization of the generalized inverse of the approximate operator. We can distinguish
two different cases of regularization by projection. The first one is the regularization in
preimage space, and the second is regularization in image space; see, for example, [, ,
, , , ].

Following the idea developed in [, ] and [, ], we analyze a variant of projected
Tikhonov regularization method applied to our problem () in the Hilbert space L(a, b)
setting. We develop the theoretical framework of this method of approximation and give
some results of convergence under certain conditions of regularity on the kernel k(·, ·) and
the solution of the problem in question.

More precisely, we build a method of projection by using very simple mathematical
tools, which can be concretized and implemented numerically. Moreover, we give nat-
ural conditions on the kernel k(·, ·) of the operator K , which enables us to establish the
convergence results of this approach. For the subspace of projection, we use the Legendre
polynomials, which are well studied in the literature compared to other classes of poly-
nomials. This judicious choice also enables us to give a simple calculation and explicit
formula of approximation of K∗K (see ()). It is important to note that in [], the au-
thor gives sufficient conditions on ‖A – An‖ within an abstract framework to establish the
convergence of this approximation, which returns an approach very limited in practice;
moreover, it is not exploitable from the numerical point of view.

In this investigation, we assume that

(A) k(·, ·) is nondegenerate.
(A) k(·, ·) ∈ L((a, b) × (a, b);R), that is, κ =

∫ b
a

∫ b
a |k(t, s)| dt ds < +∞.

It is well known that under these conditions, K is a compact (Hilbert-Schmidt) inte-
gral operator with infinite-dimensional range (dim(R(K)) = +∞). In this case, R(K) is
not closed, and problem () belongs to the class of ill-posed problems. The ill-posedness
character means that T† (the Moore-Penrose inverse) or K– (when K is injective) are
unbounded operators. Consequently, the standard numerical procedures to solve such
equations are unstable and pose very serious problems when the data are not exact; that
is, small perturbations of the observation data may lead to large changes on the considered
solution.

To overcome this difficulty and for obtaining stable approximate solutions for ill-posed
problems, regularization procedures are employed, and Tikhonov regularization is one
the such procedure. This method consists in minimizing over H the so-called Tikhonov
functional

�α(f ) = ‖Kf – g‖
H + α‖f ‖

H ,

where α >  is the regularization parameter. The regularized solution fα is the unique mini-
mizer of the Tikhonov functional �α(f ). We denote this minimum by fα =
arg minf ∈H �α(f ), which is a unique solution of the normal equation

(
αI + K∗K

)
f = K∗g.
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The linear operator R(α) = (αI + K∗K)–K∗ ∈ L(H) is called a regularizing operator, and
we have

∥∥(
αI + K∗K

)–K∗∥∥
H =



√

α
, ()

‖f – fα‖
H −→ , α −→ . ()

To establish the main results of our work, we introduce the following assumptions:

(H) The operator K is injective, that is, N(K) = {}.
(H) g ∈R(K).
(H) The kernel k(·, ·) ∈ Cr([a, b] × [a, b];R), r ∈N.
(H) The operator K∗ is injective (⇐⇒R(K) = H).

2 Preliminaries and notation
In this section, we present the notation and functional setting and prepare some material,
which will be used in our analysis. For more details, we refer the reader to [, , ].

Let H and H be two real Hilbert spaces. We denote by L(H, H) the space of all
bounded linear operators from H to H (and L(H) if H = H = H) with the operator
norm

‖T‖ = sup
‖u‖H ≤

‖Tu‖H , T ∈L(H).

The null-space of T ∈ L(H, H) is the set N (T) = {u ∈ H : Tu = }, whereas the range of
T is denoted by R(T) = T(H) = {v = Tu, u ∈ H}.

Let T ∈L(H, H). Recall that, for v ∈ H, the linear operator equation

Tu = v ()

has a solution if and only if v ∈R(T).
• If R(T) is infinite-dimensional and T is injective, then T– : R(T) −→ H is bounded

if and only if R(T) is closed.
• If v /∈ R(T), then we look for an element û ∈ H such that Tû is “closest to” v in the

sense that û minimizes the functional ‖Tu – v‖H .

Definition . Let T ∈ L(H, H). We call û ∈ H a least residual norm solution (LRN
solution) of () if

‖Tû – v‖H = inf
u∈H

‖Tu – v‖H .

Definition . For v ∈ G = R(T) + R(T)⊥, we denote the set of all LRN solutions of ()
by

Sv =
{

û ∈ H : ‖Tû – v‖H = inf
u∈H

‖Tu – v‖H

}
.

Definition . Let v ∈ G = R(T) + R(T)⊥. Then u† ∈ Sv is called a best approximate so-
lution (generalized solution) of () if ‖u†‖H = infû∈Sv ‖û‖H .
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Theorem . Let v ∈ G = R(T) + R(T)⊥. Then there exist a unique x† ∈ Sv such that

∥∥u†
∥∥

H
= inf

û∈Sv
‖û‖H ,

and

u† ∈N (A)⊥, u† = Pû,

where P : H −→ N (A)⊥ is the orthogonal projection onto N (A)⊥ and û is any element
in Sv.

Definition . The Moore-Penrose (generalized) inverse T† : D(T†) −→ H of T defined
on the dense domain D(T†) = R(T) + R(T)⊥ maps v ∈ D(T†) to the best-approximate
solution of (), that is, T†v = u†.

Remark .
• T† = T– if R(T)⊥ = {} and N (T) = {}.
• T† is continuous if and only if R(T) is a closed subspace of H.

Theorem . ([], Thm. ., p.) Let E, F be two Banach spaces, and (Tn) ⊂ L(E, F).
Then, Tn −→ T ∈L(E, F) pointwise (i.e., Tnx −→ Tx for all x ∈ E) if and only if the sequence
(Tn) is uniformly bounded, and Tnx −→ Tx for all x ∈D, where D ⊂ E is a dense subspace
of E.

We denote by (λi, ei)∞i= the normalized eigensystem of the compact self-adjoint operator
A = K∗K . Then A can be diagonalized according to the following formula:

h =
∞∑
i=

〈h, ei〉ei, Ah =
∞∑
i=

λi〈h, ei〉ei. ()

The classical Legendre polynomials (Lj)j∈N are defined on the interval [–, ] and can be
determined with the aid of the following recurrence formulae:

{
L(x) = , L(x) = x,

Lj+(x) = ( j+
j+ )xLj(x) – ( j

j+ )Lj–(x), j = , , . . . .
()

In order to use these polynomials on the interval [a, b], we define the so-called normalized
shifted Legendre polynomials of degree n as follows: Let x ∈ [a, b]; then the transforma-
tion y = 

b–a x – a+b
b–a transforms the interval [a, b] onto [–, ] and the normalized shifted

Legendre polynomials are given by

L̂j(x) =
√


b – a

√
j + 


Lj

(


b – a
x –

a + b
b – a

)
, x ∈ [a, b], j ∈N. ()

The set (L̂)j∈N is a complete orthonormal system in H = L((a, b);R), namely

〈L̂j, L̂i〉 =
∫ b

a
L̂j(x)L̂j(x) dx = δji, ()



Neggal et al. Journal of Inequalities and Applications  (2016) 2016:195 Page 5 of 21

where δji is the Kronecker symbol.
Thus, for any function h ∈ H = L((a, b);R), we have the Fourier-Legendre expansion

h =
∞∑
j=

cj(h)L̂j, ()

where the Fourier-Legendre coefficients cj(h) are given by

cj(h) = 〈h, L̂j〉 =
∫ b

a
L̂j(x)h(x) dx, j ∈N.

3 Projected Tikhonov regularization method
Let Hn = span{L̂j, j = , , . . . , n} be the sequence of Legendre polynomial subspaces of de-
gree ≤ n, and let �n : H −→ Hn be the orthogonal projection defined as

�nh =
n∑

j=

cj(h)L̂j, h ∈ H . ()

We quote some crucial properties of �n ([], pp.- and []).

Lemma . Let �n be the orthogonal projection defined in (). Then we have

∀u ∈ H ,
∥∥(I – �n)h

∥∥
L(a,b) −→ , n −→ ∞, ()

∀u ∈ Cr([a, b];R
)
,

∥∥(I – �n)u
∥∥

L(a,b) ≤ cn–r∥∥u(r)∥∥
L(a,b), ()

∀u ∈ Cr([a, b];R
)
,

∥∥(I – �n)u
∥∥∞ ≤ cn


 –r∥∥u(r)∥∥

L(a,b), ()

where c is a positive constant independent of n, and r is a positive integer.

Remark . Let N = {, , , . . .} and r ∈N.
. If k(·, ·) ∈ Cr([a, b] × [a, b];R), then R(K) ⊂ Cr([a, b] × [a, b];R). Further, denoting

Di,jk(t, s) = ∂ i+j

∂ti ∂sj k(t, s), we have

‖Di,jk‖r,∞ = sup
≤i+j≤r

‖Di,jk‖∞

= sup
≤i+j≤r

{
sup

(t,s)∈[a,b]×[a,b]

∣∣Di,jk(t, s)
∣∣}

= sup
≤i+j≤r

Mi,j = Mr < ∞. ()

. If f ∈ L((a, b);R) and k(·, ·) ∈ Cr([a, b] × [a, b];R), then we have the following
estimates

∣∣Di(Kf )(t)
∣∣ =

∣∣∣∣ di

dti (Kf )(t)
∣∣∣∣ =

∣∣∣∣
∫ b

a

∂ i

∂ti k(t, s)f (s) ds
∣∣∣∣

≤ Mi,

∫ b

a

∣∣f (s)
∣∣ds ≤ Mi,

√
(b – a)‖f ‖L(a,b), ()
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which leads to

∥∥Di(Kf )
∥∥

L((a,b)) ≤ Mi,(b – a)‖f ‖L(a,b), i = , , . . . , r, ()
∥∥Di(Kf )

∥∥∞ ≤ Mi,
√

(b – a)‖f ‖L(a,b), i = , , . . . , r. ()

In practice, ill-posed problems like integral equations of the first kind have to be approx-
imated by a finite-dimensional problem whose solution can be easy calculated by using
some numerical computation software.

In this paper, we replace the original problem Kf = g by an algebraic system Knf n = gn

posed on R
n+, where the Moore-Penrose generalized inverse K†

n is defined for every data
gn ∈R

n+.
We define the linear operator Qn : H = L(a, b) −→R

n+ :

∀f =
∞∑
j=

cj(f )L̂j ∈ H , Qnf =
(
c(f ), c(f ), . . . , cn(f )

)T . ()

Now, the original equation () is replaced by an operator equation in R
n+, which can be

written abstractly as

Kn : H −→ R
n+, Knf = (QnK)f = Qng = gn. ()

Theorem . Let Kn : H = L((a, b);R) −→ R
n+ be given by formula (). Then, Kn is a

bounded operator, and the adjoint K∗
n : Rn+ −→ H = L((a, b);R) of Kn is given by

{∀f ∈ H ,∀X = (x, x, . . . , xn)T ∈R
n+, 〈Knf , X〉Rn+ = 〈f , K∗

n X〉H ,

(K∗
n X)(t) =

∑n
j= xj(K∗L̂j)(t),

()

where K∗ is the adjoint of K :

(
K∗u

)
(t) =

∫ b

a
k∗(t, s)u(s) ds =

∫ b

a
k(s, t)u(s) ds.

Proof () For every f ∈ H , we have

‖Knf ‖
Rn+ =

n∑
j=

∣∣cj(Kf )
∣∣

=
n∑

j=

∣∣〈Kf , L̂j〉
∣∣
H

≤
∞∑
j=

∣∣〈Kf , L̂j〉
∣∣
H = ‖Kf ‖

H

≤ κ‖f ‖
, ()

which implies that Kn ∈L(H ,Rn+) and ‖Kn‖ ≤ κ = (
∫ b

a
∫ b

a |k(t, s)| dt ds) 
 .
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() By definition of Qn : H = L(a, b) −→ R
n+ it is easy to check that Qn ∈ L(H ,Rn+).

Thus, we can define its adjoint operator Q∗
n : Rn+ −→ H = L(a, b). Now, for

Qnf =
(〈f , L̂〉L(a,b), . . . , 〈f , L̂n〉L(a,b)

)⊥ ∈R
n+, X = (x, . . . , xn)⊥ ∈R

n+,

from the identity

〈Qnf , X〉Rn+ =
n∑

j=

xj〈f , L̂j〉L(a,b) =

〈
f ,

n∑
j=

xjL̂j

〉

L(a,b)

=
〈
f ,Q∗

nX
〉
L(a,b)

it follows that

Q
∗
nX =

n∑
j=

xjL̂j, ()

K∗
n X = (QnK)∗X = K∗

Q
∗
nX =

n∑
j=

xjK∗L̂j, ()

and

(
K∗

n Kn
)
f =

n∑
j=

〈Kf , L̂j〉L(a,b)K∗L̂j. ()
�

Remark . The expression (K∗
n X)(t) =

∑n
j= xj(K∗L̂j)(t) allows us to conclude that

R
(
K∗

n
)

= span
{

K∗L̂j, j = , , . . . , n
}

, dim
(
R

(
K∗

n
)) ≤ n + . ()

Since K∗
n is of finite rank, H can be written as

H = L(a, b) = R
(
K∗

n
) ⊕N (Kn) = R

(
K∗

n
) ⊕N (Kn). ()

Here and in what follows, we denote A = K∗K and An = K∗
n Kn. Note that K∗ and K∗K

are defined by

(
K∗u

)
(t) =

∫ b

a
k∗(t, s)u(s) ds, k∗(t, s) = k(s, t) = k(s, t),

(
K∗Ku

)
(t) =

∫ b

a
θ (t, s)u(s) ds, θ (t, s) =

∫ b

a
k(τ , t)k(τ , s) dτ .

Now, we are in the position to prove our main results. In the following theorem, we show
the convergence of An to A and also other regularizing properties of An.

Theorem . Let A = K∗K and An = K∗
n Kn be given by expression (). Then, under the

assumption

k(·, ·) ∈ L((a, b) × (a, b);R
)
, (A)
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we have

∀h ∈ H , ‖Ah – Anh‖ −→ , n −→ ∞. ()

Moreover, if

k(·, ·) ∈ Cr([a, b] × [a, b];R
)
, r ≥ , (H)

then we have

‖A – An‖ ≤ ε(n) −→ , n −→ ∞. ()

Proof We compute

∥∥(
K∗K – K∗

n Kn
)
h
∥∥

L(a,b) =

∥∥∥∥∥K∗Kh –
n∑

j=

cj(Kh)
(
K∗L̂j

)∥∥∥∥∥
L(a,b)

=

∥∥∥∥∥K∗
(

Kh –
n∑

j=

cj(Kh)L̂j

)∥∥∥∥∥
L(a,b)

=
∥∥K∗(Kh – �nKh)

∥∥
L(a,b)

≤ ∥∥K∗∥∥∥∥(Kh – �nKh)
∥∥

L(a,b) −→ , n −→ ∞. ()

By Lemma .(()) we can write

∥∥(
K∗K – K∗

n Kn
)
h
∥∥

L(a,b) =

∥∥∥∥∥K∗Kh –
n∑

j=

cj(Kh)
(
K∗L̂j

)∥∥∥∥∥
L(a,b)

=

∥∥∥∥∥K∗
(

Kh –
n∑

j=

cj(Kh)L̂j

)∥∥∥∥∥
L(a,b)

=
∥∥K∗(Kh – �nKh)

∥∥
L(a,b)

≤ ∥∥K∗∥∥∥∥(Kh – �nKh)
∥∥

L(a,b)

≤ ‖K‖(cn–r)∥∥(Kh)(r)∥∥
≤ ‖K‖(cn–r)(b – a)Mr,‖h‖L(a,b) = ε(n)‖h‖L(a,b), ()

which implies that

‖A – An‖ ≤ ‖K‖(cn–r)(b – a)Mr, = ε(n) −→ , n −→ ∞. ()
�

Lemma . Let α > , Rn(α) = (αI + An)–An, and R(α) = (αI + A)–A. Then

∀h ∈ H = L(a, b),
∥∥Rn(α)h – R(α)h

∥∥
L(a,b) −→ , n −→ ∞. ()

Proof Before starting the proof, we recall the following useful result.
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Remark . If K is a bounded injective operator, then

N (K) = N
(
K∗K

)
= {} and R

(
K∗K

)
= N

(
K∗K

)⊥ = {}⊥ = H .

In view of Theorem . and Remark ., to show the convergence result (), it suffices
to establish the result for h ∈ R(K∗K). Before starting the demonstration, we introduce
the following propositions.

Proposition . For all h ∈ H , we have

∥∥(αI + A)–Ah – h
∥∥

H −→ , α −→ . ()

Proof If h =
∑∞

i= hiei =
∑∞

i=〈h, ei〉ei, then

∥∥(αI + A)–Ah – h
∥∥

H =
∞∑
i=

(
αλi

α + λi

)

|hi|.

For ε > , we choose N ∈N such that
∑∞

i=N+ |hi| ≤ ε
 . Thus,

∞∑
i=

(
α

α + λi

)

|hi| =
N∑

i=

(
α

α + λi

)

|hi| +
∞∑

i=N+

(
α

α + λi

)

|hi|

≤
N∑

i=

(
α

α + λi

)

|hi| +
ε



≤
N∑

i=

(
α

λi

)

|hi| +
ε



≤ ε


+ α 

λ
N

‖h‖
H .

If we choose the parameter α such that α 
λ

N
‖h‖

H ≤ ε
 , then we obtain the desired con-

vergence. �

Proposition . We have

∀n ∈N,
∥∥(αI + An)–An

∥∥ = sup
λ∈[,‖An‖]

λ

α + λ
≤ , ()

that is, the sequence (Rn(α)) is uniformly bounded with respect to n.

We return now to the proof of Lemma (.). We have

∥∥Rn(α)h – R(α)h
∥∥

L(a,b) =
∥∥(αI + An)–[(αI + An)A – An(αI + A)

]
(αI + A)–h

∥∥
L(a,b)

=
∥∥α(αI + An)–(A – An)(αI + A)–h

∥∥
L(a,b)

≤ α
∥∥(αI + An)–∥∥∥∥(A – An)(αI + A)–h

∥∥
L(a,b).
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Using the fact that α‖(αI + An)–‖ ≤ , we derive

∥∥Rn(α)h – R(α)h
∥∥

L(a,b) ≤ ∥∥(A – An)(αI + A)–h
∥∥

L(a,b), ()

and from () and () we deduce that this last inequality tends to  for all h ∈R(A). �

4 Convergence and error analysis
We denote by R(α) = (αI + K∗K)–K∗ ∈ L(H) (resp. (αI + K∗

n Kn)–K∗
n ) the regularizing

operator of K (resp. of Kn).
To establish the convergence results of this method, we point out the following results:

∥∥(
αI + K∗

n Kn
)–K∗

n
∥∥ =

∥∥(
αI + K∗K

)–K∗∥∥ =



√

α
; ()

if f ∈ H , then

‖f – fα‖L(a,b) −→ , α −→ ; ()

also, if f = Au ∈ R(A), then

‖f – fα‖L(a,b) ≤ α‖u‖L(a,b). ()

Let us assume that gδ are observation data of g such that

‖g – gδ‖L(a,b) =

( ∞∑
j=

∥∥cj(g – gδ)
∥∥

) 


≤ δ ()

with a given noise level δ > . Then we have

∥∥gn – gδ
n
∥∥
Rn+ ≤ ∥∥g – gδ

∥∥
L(a,b) ≤ δ. ()

Let us consider the following equations:

Knf n = gn, ()

Knf δ,n = gδ
n, ()

(
αI + K∗K

)
f = K∗g, ()

(
αI + K∗K

)
f = K∗gδ . ()

Because our original problem (Kf = g) is ill-posed, the problem of finding the gener-
alized solution f †,δ,n = K†

n gδ
n ∈ N (Kn)T of problem () with inexact data gδ

n is instable.
Regularizing this equation by the Tikhonov regularization method, we obtain

(
αI + K∗

n Kn
)
f = K∗

n gn, ()
(
αI + K∗

n Kn
)
f = K∗

n gδ
n. ()

Denote by f = K–g the exact solution of (), by fα (resp. f δ
α ) the regularized solution of

() (resp. of ()), and by f n
α (resp. f n,δ

α ) the regularized solution of () (resp. of ()).
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Definition . We denote by fα (resp. f δ
α ) the regularized solution of problem () for the

exact data g (resp. for the inexact data gδ):

fα = R(α)g =
(
αI + K∗K

)–K∗g, ()

f δ
α = R(α)gδ =

(
αI + K∗K

)–K∗gδ . ()

Definition . For any α > , the unique solution f δ,n
α of () is considered as a regularized

solution of f †,n,δ .

Remark . Without loss of generality, we can assume that dim(R(K∗
n )) = n + . For ex-

ample, under condition (H), the vectors K∗L̂j, i = , , . . . , n, are linearly independent, and
consequently dim(R(K∗

n )) = n + .

Since f δ,n
α ∈R(K∗

n Kn) = R(K∗
n ) = span{K∗L̂j, i = , , . . . , n} (see ()), f δ,n

α can be expanded
as

f δ,n
α =

n∑
j=

ajK∗L̂j. ()

Then, equation () takes the form

n∑
j=

(
αI + aj

n∑
i=

〈
KK∗L̂i, L̂j

〉
L(a,b)

)
K∗L̂j =

n∑
j=

〈
gδ , L̂j

〉
L(a,b)K

∗L̂j. ()

For notational convenience and simplicity, we denote

–→a = (a, . . . , an)⊥ ∈R
n+, ()

–→
gδ

n =
(∫ b

a
gδ(t)L̂(t) dt, . . . ,

∫ b

a
gδ(t)L̂n(t) dt

)⊥
∈R

n+, ()

bij =
〈
KK∗L̂i, L̂j

〉
L(a,b) =

∫ b

a

∫ b

a

∫ b

a
k(s, t)k(t, τ )L̂i(s)L̂i(t)ds dt dτ , i, j = , . . . , n, ()

B = (bij) ∈Mn+(R), An(α) = αIn+ + B. ()

Now, to determine the unknown coefficients (aj)n
j=, we must solve the linear algebraic

system

An(α)–→a =
–→
gδ

n . ()

Proposition . The linear system () has a unique solution
––→
an,δ

α for every
–→
gδ

n ∈R
n+.

Proof Let

S(f , g) =
〈
K∗Kf , g

〉
L(a,b), f , g ∈ L(a, b).

We have

S(f , g) =
〈
K∗Kf , g

〉
L(a,b) =

〈
f , K∗Kg

〉
L(a,b) =

〈
K∗Kg, f

〉
L(a,b) = S(g, f )
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and

S(f , g) =
〈
K∗f , K∗g

〉
L(a,b) ≥ ,

that is, S(·, ·) is a positive symmetric bilinear form. Hence, B = (bij)≤i,j≤n = (S(L̂i, L̂j))≤i,j≤n

is a positive symmetric matrix, and for any α > , the matrix An(α) of system () is in-
vertible. Therefore, this system is uniquely solvable. �

The aim of this part is to derive the convergence and error bound for ‖f – f n,δ
α ‖L(a,b). To

do this, we split the error into three parts:

(
f n,δ
α – f

)
=

(
f n,δ
α – f n

α

)
+

(
f δ
α – f

)
+

(
f n
α – f δ

α

)
.

Using (), (), and the triangle inequality, we can write

� =
∥∥f n,δ

α – f n∥∥
L(a,b) =

∥∥(
αI + K∗

n Kn
)–K∗

n
(
gδ

n – gn
)∥∥

L(a,b) ≤ δ


√

α
, ()

� =
∥∥f δ

α – f
∥∥

L(a,b) ≤ ∥∥f δ
α – fα

∥∥
L(a,b) + ‖fα – f ‖L(a,b)

≤ ∥∥(
αI + K∗K

)–K∗(gδ – g
)∥∥

L(a,b) + ‖fα – f ‖L(a,b)

≤ δ


√

α
+ ‖f – fα‖L(a,b), ()

� =
∥∥f n

α – f δ
α

∥∥
L(a,b) ≤ ∥∥f n

α – fα
∥∥

L(a,b) +
∥∥fα – f δ

α

∥∥
L(a,b)

≤ δ


√

α
+

∥∥f n
α – fα

∥∥
L(a,b). ()

Now, by () the quantity ‖f n
α – fα‖L(a,b) can be estimated as follows:

∥∥f n
α – fα

∥∥
L(a,b) =

∥∥(
αI + K∗

n Kn
)–K∗

n gn –
(
αI + K∗K

)–K∗g
∥∥

L(a,b)

=
∥∥(

αI + K∗
n Kn

)–K∗
n Knf –

(
αI + K∗K

)–K∗Kf
∥∥

L(a,b)

=
∥∥Rn(α)h – R(α)f

∥∥
L(a,b)

≤ ∥∥(A – An)(α + A)–f
∥∥

L(a,b). ()

Combining (), (), (), and (), we derive

∥∥f n,δ
α – f

∥∥
L(a,b) ≤ δ


√

α
+

∥∥(A – An)(α + A)–f
∥∥

L(a,b) + ‖f – fα‖L(a,b). ()

Consequently, we have the following theorem.

Theorem . Let us assume that f = Au ∈R(A). Then, under assumptions (H), (H), and
(H), we have the estimate

∥∥f n,δ
α – f

∥∥
L(a,b) ≤ δ


√

α
+

(
ε(n) + α

)‖u‖L(a,b), ()

where ε(n) = c
nr ‖K‖(b – a)Mr,.
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4.1 An a posteriori parameter choice strategy
In this section, we consider the determination of α(δ) from the discrepancy principle of
Morozov. The discrepancy principle (DP) suggests computing α(δ) >  such that

∥∥Kf n,δ
α – gδ

∥∥
L(a,b) = δ. ()

In this work, we consider a more general class of the damped Morozov principle given
by

∥∥Kf n,δ
α – gδ

∥∥
L(a,b) + αη

∥∥f n,δ
α

∥∥
L(a,b) = δ, ()

where η ∈ [,∞]. Obviously, the classical Morozov principle () is a particular case of the
damped case with η = ∞ .

In [, ], the authors propose a cubically convergent algorithm for choosing a reason-
able regularization parameter. This algorithm is summarized as follows.

Algorithm of the cubic Morozov discrepancy principle (CMDP)

Step . Input α > , δ > , ε(tolerance) > , lmax, set l := .
Step . Compute f n,δ

αl
, d

dα
f n,δ
αl

, and d

dα f n,δ
αl

.
Step . Compute �(αl), �′(αl), and �′′(αl) from formula ().
Step . Solve for αl+ from iterative formulas (), (), and ().
Step . If |αl+ – αl| ≤ ε or l = lmax, STOP; otherwise, set l = l + , GOTO step .

�(α) =
∥∥Kf n,δ

α – gδ
∥∥

L(a,b) + αη
∥∥f n,δ

α

∥∥
L(a,b) – δ ()

and

αl+ = αl –
�(αl)

�′(αl) + (�′(αl) – �(αl)�′′(αl))



. ()

Now, we present an alternate way to calculate �′(α) and �′′(α) in algorithm (CMDP).
Let G(α) denote the function

G(α) =
∥∥Kf n,δ

α – gδ
∥∥

L(a,b) + α
∥∥f n,δ

α

∥∥
L(a,b) = ψ(α) + αφ(α), ()

where

ψ(α) =
∥∥Kf n,δ

α – gδ
∥∥

L(a,b), φ(α) =
∥∥f n,δ

α

∥∥
L(a,b).

The first derivative of G(α) (see []) is given by

G′(α) = φ(α). ()

Using () and (), we get

G′(α) = φ(α) = ψ ′(α) + φ(α) + αφ′(α),
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which implies that

ψ ′(α) = –αφ′(α) ()

and

�′(α) =
d

dα

(
ψ(α) + αηφ(α) – δ)

= ψ ′(α) + ηαη–φ(α) + αηφ′(α)

= –αφ′(α) + ηαη–φ(α) + αηφ′(α).

Thus, it follows that

�′(α) =
(
αη – α

)
φ′(α) + ηαη–φ(α) ()

and

�′′(α) =
(
αη – α

)
φ′(α) +

(
ηαη– – 

)
φ′(α) + η(η – )αη–φ(α), ()

where

φ′(α) = 
〈

d
dα

f n,δ
α , f n,δ

α

〉
L(a,b)

and

φ′′(α) = 
(〈

d

dα f n,δ
α , f n,δ

α

〉
L(a,b)

+
∥∥∥∥ d

dα
f n,δ
α

∥∥∥∥


L(a,b)

)
.

In our case, using (), we can write

dm

dαm f n,δ
α =

n∑
j=

dm

dαm aj(α)K∗L̂j =
〈

dm

dαm
–––→
a(α), –→Y

〉
, m ≥ , ()

where

dm

dαm
–––→
a(α) =

(
dm

dαm a(α),
dm

dαm a(α), . . . ,
dm

dαm an(α)
)⊥

,

–→Y =
(
K∗L̂, K∗L̂, . . . , K∗L̂n

)⊥. ()

It is easy to check that

An(α)
dm

dαm
–––→
a(α) = –m

dm–

dαm–
–––→
a(α), m ≥ , ()

where the matrix An(α) is given by ().

Remark . We note that formula () provides us a practical method to calculate ex-
pression ().
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5 Numerical tests
The purpose of this final section is to illustrate this theoretical study with two numerical
examples. The numerical experiments are completed with MATLAB.

Example 

∫ 


exp

(
st

)
f (t) dt = g(s) =

(
exp

(
s + 

)
– 

)
/
(
s + 

)

with the exact solution

f (t) = exp(t).

Example 

∫ π/


cos

(
s + t + 

)
f (t) dt = g(s) = (/) cos

(
s + 

)
– π/ sin

(
s)

with the exact solution

f (t) = sin(t + ).

Let {ti = a + (i–)(b–a)
N , i = , , . . . , N + } ⊂ [a, b] the collocation points of the trapezoidal

quadrature formula. The trapezoidal quadrature rule associated with these collocation
points has the weights ω = ωN+ = b–a

N , ωi = b–a
N , i = , , . . . , N .

We denote by

g =
(
g(t), . . . g(tN+)

)⊥

the discrete datum of g . Adding a random distributed perturbation (obtained by the Mat-
lab command randn) to each data function, we obtain the vector gδ :

gδ = g + ε randn
(
size(g)

)
,

where ε indicates the noise level of the measurement data, and the function “randn(·)”
generates arrays of normally distributed random numbers with mean , variance σ  = ,
and standard deviation σ = . “randn(size(g))” returns an array of random entries of the
same size as g . The bound on the measurement error δ can be measured in the sense of
root mean square error (RMSE) according to

δ =
∥∥gδ – g

∥∥∗ =

(


N + 

N+∑
i=

(
g(ti) – gδ(ti)

)
)/

.

The discrete errors ‖en‖∞ and ‖en‖ are defined by

‖en‖∞ = max
≤i≤N+

∣∣f (ti) – f n,δ
α (ti)

∣∣ and ‖en‖ =

[N+∑
i=

wi
(
f (ti) – f n,δ

α (ti)
)

] 


.
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Using the trapezoid rule, we compute

(
gδ

n
)

j =
〈
gδ , L̂j

〉 ≈
N+∑
i=

wi

N+∑
k=

wkk(sk , ti)gδ(sk)L̂j(ti), j = , , . . . , n,

gδ
n =

((
gδ

n
)

,
(
gδ

n
)

, . . . ,
(
gδ

n
)

n

)⊥,

and

bij =
∫ b

a

∫ b

a

∫ b

a
k(s, t)k(t, τ )L̂i(s)L̂i(t)ds dt dτ

≈ bij =
N+∑
m=

ωm

(N+∑
r=

wr

(N+∑
l=

ωlk(sl, tr)k(tr, τm)L̂i(sl)L̂j(tr)

))
, i, j = , . . . , n.

Under this notation, we obtain a discrete version of system () in the form

An(α)a = gδ
n,

and the approximate solution will be calculated by the formula

fn,δ
α (ti) ≈

n∑
j=

aj(α)

(N+∑
r=

ωrk(sr , ti)L̂j(sr)

)
, i = , , . . . , N + ,

where

B = (bij), An(α) = (αIn + B), a =
(
a(α), a(α), . . . , an(α)

)⊥.

Appendix: Tables: Example 1 and Example 2 (discrete data)
Figures - show the comparison between the exact solution and its computed approxi-
mation for different values of n (n = , ).

Figure 1 Example 1, noise level = 1/1,000, n = 2.
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Figure 2 Example 1, noise level = 1/100, n = 2.

Figure 3 Example 1, noise level = 1/1,000, n = 3.

Figure 4 Example 1, noise level = 1/100, n = 3.
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Figure 5 Example 2, noise level = 1/1,000, n = 2.

Figure 6 Example 2, noise level = 1/100, n = 2.

Figure 7 Example 2, noise level = 1/1,000, n = 3.
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Figure 8 Example 2, noise level = 1/100, n = 3.

Table 1 Example 1, n = 2

ε α �2-norm �∞-norm re (relative error)

0.001 1.058451967635953e–010 0.015010783744725 0.035613080391689 8.343729340481704e–004
0.01 1.523132088372481e–006 0.015011143017205 0.035448296130840 8.343929041735275e–004

Table 2 Example 1, n = 3

ε α �2-norm �∞-norm re (relative error)

0.001 3.386965172845820e–009 0.003471711713518 0.007531359104993 1.929747532066797e–004
0.01 4.363395697816134e–007 0.011051454981111 0.027181028421710 6.142940352019532e–004

Table 3 Example 2, n = 2

ε α �2-norm �∞-norm re (relative error)

0.001 4.848918710302366e–008 3.516777971379156e–004 3.637947670728225e–004 4.534822996062119e–005
0.01 6.575353855416842e–006 0.004454265966245 0.005633164279727 5.743697184950506e–004

Table 4 Example 2, n = 3

ε α �2-norm �∞-norm re (relative error)

0.001 5.187878275981052e–007 2.337236516213294e–004 2.682894481292331e–004 3.013825151095230e–005
0.01 1.901137499862827e–005 0.002424879642149 0.002729060667431 3.126839411925939e–004

Conclusion. From Tables - we see that the numerical results agree with the theoretical
results.

The projected Tikhonov regularization method developed and used in this investiga-
tion to solve the Fredholm integral equations of the first kind is very simple and effective,
owing to the fact that the dimension of the subspace of projection is very small (n = , );
moreover, the regularized solution remains stable for a strong noise (ε = /) and for
regular data.
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