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Abstract
In this paper we develop Caccioppoli-type estimates for arbitrary convex vectors and
the vectors having both convex and concave arguments. To do this, we first develop
these estimates for smooth convex vectors and then, through mollification, extend
the results for arbitrary convex vectors. These types of estimates are valuable in the
problems of financial mathematics for the establishment of the optimal investment
strategies.
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1 Introduction
Mathematical inequalities are the branch of mathematics having wide applications in the
theory of optimizations, mathematical finance, theory of uniform approximations, ordi-
nary and partial differential equations, game theory, mathematical economics, etc. Thus
the development of the new inequalities often puts on a firm foundation the heuristic
technique one uses in the applied sciences.

The classical work of Hardy, Littlewood and Polya [] introduced the inequalities as a
field of mathematics. Hardy et al. [] and Beckenbach and Bellman [] are considered as the
classical references in this field. In order to understand the use of inequalities in optimiza-
tion and uniform approximations, we refer to [] and []. Usually the payoff function of the
various options (for example, European and American options) in mathematical finance
is convex and this property leads to the corresponding value function to be convex with
respect to the underlying stock price (see for details El Karoui et al. [] and Hobson []).
Traders and practitioners dealing with real-world financial markets use the value function
to construct an optimal hedging process of the options. When the value function is un-
known, they use the above property to construct uniform approximations to the unknown
optimal hedging process. In this construction one has to pass some weighted integrals in-
volving weak partial derivative of the value function. For this purpose, Shashiashvili and
Shashiashvili [] introduced a very particular weighted integral inequality for the deriva-
tive of convex functions bounded from below with a very particular weight function, and
with this they opened a new direction in the field of weighted inequalities. Hussain et al.
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[, ] extended this work to a variety of convex functions and subsequently applied to the
hedging problems of financial mathematics. Saleem et al. [] studied the weighted reverse
Poincaré-type inequalities for the difference of two weak sub-solutions.

For convenience we will use the following notations and definitions:
I = (a, b) = I(x, r), where

x =
a + b


and r =

a + b


– a

and I is closed interval [a, b].
The n-dimensional vector

F(x) =
(
f(x), f(x), . . . , fn(x)

)
(.)

is smooth convex if

d

dx fi(x) ≥  ∀i = , , . . . , n. (.)

The vector F(x) in (.) is arbitrary convex provided

fi
(
λx + ( – λ)y

) ≤ λfi(x) + ( – λ)f (y) ∀i = , , . . . , n (.)

for each λ ∈ [, ] and all x, y belongs to R.
Let χ

[j+,n]
[,j] [a, b] be the class of vectors having convex function on its first j components

and the remaining n – j components are concave on the interval [a, b], and let χ
[,j]
[j+,n][a, b]

be the class of vectors having concave functions on its first j components and remaining are
convex on the interval [a, b]. It is trivial that if F(x) ∈ χ

[j+,n]
[,j] [a, b] then –F(x) ∈ χ

[,j]
[j+,n][a, b].

The vector addition and scalar multiplication is defined in the usual way:
For

F(x) =
(
f(x), f(x), . . . , fn(x)

)

and

G(x) =
(
g(x), g(x), . . . , gn(x)

)

the vector addition is defined as

F(x) + G(x) =
(
f(x) + g(x), f(x) + g(x), . . . , fn(x) + gn(x)

)

and scalar multiplication as

αF(x) =
(
αf(x),αf(x), . . . ,αfn(x)

)
.

The vector composition is defined as follows:

F ◦ G(x) = F
(
G(x)

)
=

(
f
(
g(x)

)
, f

(
g(x)

)
, . . . , fn

(
gn(x)

))
.
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The vector F(x) is said to be increasing (decreasing) vector if fi(x) are increasing (decreas-
ing) functions ∀i = , , . . . , n.

The following properties are easy to prove. For proof, one can refer to [] and Proposi-
tion .. of [].

Proposition . For convex vectors, we have:
(i) Adding two convex vectors, we obtain a convex vector.

(ii) Multiplication of a convex vector by a positive scalar results in a convex vector.
(iii) If F : I →R is a convex vector and G : R →R is an increasing vector then G ◦ F is a

convex vector.

Proposition . Let F(x), G(x) ∈ χ
[j+,n]
[,j] [a, b] then:

(i) F(x) + G(x) ∈ χ
[j+,n]
[,j] [a, b].

(ii) For any positive scalar α,

αF(x) ∈ χ
[j+,n]
[,j] [a, b].

(iii) Let F(x) ∈ χ
[j+,n]
[,j] [a, b], and G(x) be the vector such that gi(x) are increasing

functions ∀i = , . . . , j and gi(x) are decreasing functions ∀i = j + , . . . , n; then

G ◦ F(x) ∈ χ
[j+,n]
[,j] [a, b].

The paper is organized as follows:
In next section, we develop reverse Poincaré-type inequalities for the difference of two

smooth convex vectors. Then through a classical mollification technique, we pass to arbi-
trary convex vectors.

In the last section, we prove the existence, integrability, and weighted energy inequality
for the weak partial derivative of convex vectors. These results can be directly applied to
problems of mathematical finance, especially to discrete time hedging of the European
and American type options.

2 The reverse Poincaré-type inequalities for smooth vectors and
approximation of arbitrary convex vectors by smooth ones

Let h(x) be the weight function which is non-negative and twice continuously differen-
tiable and satisfying

h(a) = h(b) = , h′(a) = h′(b) = , (.)

with a ≤ x ≤ b, we arrive at the following result of Hussain, Pečarić, and Shashiashvili [].

Lemma . Let the smooth convex functions f (x) and g(x) and non-negative weight func-
tion h(x) be defined on the interval I , satisfying (.); we have

∫

I

(
f ′(x) – g ′(x)

)h(x) dx

≤
∫

I

[(
f (x) – g(x)



)

+ sup
x∈I

∣∣f (x) – g(x)
∣∣(f (x) + g(x)

)
]∣∣h′′(x)

∣∣dx. (.)
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This result gives the following estimate for n-dimensional convex vectors.

Lemma . Let F(x) and G(x) be two n-dimensional convex vectors on the interval In and
h(x) be a smooth non-negative weight function satisfying (.); then the following energy
estimate is valid:

∫

I

∣∣F ′(x) – G′(x)
∣∣h(x) dx

≤
n∑

i=

∫

I

[
(fi(x) – gi(x))


+ sup

x∈I

∣∣fi(x) – gi(x)
∣∣(fi(x) + gi(x)

)
]∣∣h′′(x)

∣∣dx. (.)

If f (x) and g(x) are concave functions on the interval I then –f (x) and –g(x) become
convex. Hence, we get the following result.

Lemma . Let f (x) and g(x) be any two smooth concave functions on the interval I and
h(x) be a non-negative weight function satisfying (.). The following estimate holds:

∫

I

(
f ′(x) – g ′(x)

)h(x) dx

≤
∫

I

[(
f (x) – g(x)



)

– sup
x∈I

∣
∣f (x) – g(x)

∣
∣(f (x) + g(x)

)]∣
∣h′′(x)

∣
∣dx. (.)

Taking the supremum on both sides of (.), we find the following.

Corollary . Let the n-dimensional smooth convex vectors F(x) and G(x) in interval In

and non-negative weight function h(x) satisfies (.), we get the following estimate:

∫

I

∣∣F ′(x) – G′(x)
∣∣h(x) dx

≤
n∑

i=

[


∥∥fi(x) – gi(x)

∥∥
L∞ +

∥∥fi(x) – gi(x)
∥∥

L∞
(∥∥fi(x)

∥∥
L∞ +

∥∥gi(x)
∥∥

L∞
)
]

×
∫

I

∣
∣h′′(x)

∣
∣dx. (.)

For concave n-dimensional vectors we have the following estimate.

Corollary . Let F(x) and G(x) be n-dimensional concave vectors on In and h(x) be the
non-negative smooth weight function satisfying (.) then

∫

I

∣∣F ′(x) – G′(x)
∣∣h(x) dx

≤
n∑

i=

∫

I

[
(fi(x) – gi(x))


+ sup

x∈I

∣
∣fi(x) – gi(x)

∣
∣(fi(x) + gi(x)

)]∣
∣h′′(x)

∣
∣dx. (.)

The next theorem gives the reverse Poincaré inequality for the difference of vectors be-
longing to χ

[j+,n]
[,j] [a, b].
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Theorem . Let F(x) and G(x) belong to χ
[j+,n]
[,j] [a, b] and h(x) be a non-negative weight

function satisfying (.); then the following inequality is valid:

∫

I

∣∣F ′(x) – G′(x)
∣∣h(x) dx

≤
n∑

i=

∫

I

(fi(x) – gi(x))


h′′(x) dx +

[ j∑

i=

sup
x∈I

∣∣fi(x) – gi(x)
∣∣[fi(x) + gi(x)

]

–
n∑

i=j+

sup
x∈I

∣
∣fi(x) – gi(x)

∣
∣[fi(x) + gi(x)

]
]∫

I

∣
∣h′′(x)

∣
∣dx. (.)

Proof Let us express

∫

I

∣
∣F ′(x) – G′(x)

∣
∣h(x) dx

=
n∑

i=

∫

I

(
f ′
i (x) – g ′

i(x)
)h(x) dx (.)

=
j∑

i=

∫

I

(
f ′
i (x) – g ′

i(x)
)h(x) dx +

n∑

i=j+

∫

I

(
f ′
i (x) – g ′

i(x)
)h(x) dx. (.)

Using Lemma . in the first series on the right side of the latter expression, we obtain

∫

I

(
f ′
i (x) – g ′

i(x)
)h(x) dx

≤
[∫

I

(fi(x) – gi(x))


+ sup

x∈I

∣
∣fi(x) – gi(x)

∣
∣
∫

I

(
fi(x) – gi(x)

)]
, (.)

and Lemma . in the second series, we get

∫

I

(
f ′
i (x) – g ′

i(x)
)h(x) dx

≤
[∫

I

(fi(x) – gi(x))


– sup

x∈I

∣∣fi(x) – gi(x)
∣∣
∫

I

(
fi(x) – gi(x)

)
]

. (.)

On combining the inequalities (.) and (.) we have the required inequality (.). �

Remark . Using the supremum norm in (.), we obtain the following inequality:

∫

I

∣∣F ′(x) – G′(x)
∣∣h(x) dx

≤
n∑

i=

[


∥
∥fi(x) – gi(x)

∥
∥

L∞ +
n∑

i=

∥
∥fi(x) – gi(x)

∥
∥

L∞
(∥∥fi(x)

∥
∥

L∞ +
∥
∥gi(x)

∥
∥

L∞
)
]

×
∫

I

∣∣h′′(x)
∣∣dx. (.)

Corollary . Let F(x) and G(x) be any two twice continuously differentiable n-dimen-
sional convex vectors defined on a closed bounded interval [a, b] and weight function h(x)



Saleem et al. Journal of Inequalities and Applications  (2016) 2016:194 Page 6 of 12

given in [] and [] as

h(x) = (x – a)(b – x), a ≤ x ≤ b.

Then we get the estimate
∫

I

∣
∣F ′(x) – G′(x)

∣
∣h(x) dx

≤ 
√




n∑

i=

[


∥∥fi(x) – gi(x)

∥∥
L∞ +

∥∥fi(x) – gi(x)
∥∥

L∞
(∥∥fi(x)

∥∥
L∞ +

∥∥gi(x)
∥∥

L∞
)
]

× (b – a). (.)

Proof From [], we have

∫

I

∣∣h′′(x)
∣∣dx =


√




(b – a).

Using the latter value in (.), we obtain the desired estimate. �

We define the vector convolution for F(x) ∈ χ
[j+,n]
[,j] [a, b] in the following way:

Assume

F(x) =
(
f(x), f(x), . . . , fn(x)

)

to be an n-dimensional vector and

ε = (ε, ε, . . . , εn), with εi ≥ 

with ε→  means {max(ε, ε, . . . , εn)} → . Take

θε(x) =
(
θε (x), θε (x), . . . , θεn (x)

)

and

θεi (x) =

⎧
⎨

⎩

ci exp 
|x|–ε

i
if |x| < εi,

 if |x| > εi

∀i = , , . . . , n, where ci is the constant such that
∫

I
θεi (x) dx =  ∀i = , , . . . , n.

Now we define the convolution as

F ∗ θε(x) = (f ∗ θε , f ∗ θε , . . . , fn ∗ θεn ),

where fi ∗ θεi is defined as

fεi =
∫

�
fi(x – y)θεi (y) dy.
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If fi is continuous then fεi converges uniformly to fi in any compact subset Ki ⊆ I i.e.

|fεi – fi| −→
εi→

; this implies that

|Fε – F| =
n∑

i=

|fεi – fi| −→
εi→

.

We claim that Fε ∈ χ
[j+,n]
[,j] [a, b] i.e. fεi is a convex function ∀i = , , . . . , j and concave for

∀i = j + , . . . , n. It can be seen in the following way:
We can write

fεi

(
λx + ( – λ)x

)
=

∫

I
fi
(
λx + ( – λ)x – y

)
θεi (y) dy

=
∫

I
fi
[
λ(x – y) + ( – λ)(x – y)

]
θεi (y) dy. (.)

For i = , . . . , j, we have

≤
∫

I

[
λfi(x – y) + ( – λ)fi(x – y)

]
θεi (y) dy

= λ

∫

I
fi(x – y)θεi (y) dy + ( – λ)

∫

I
fi(x – y)θεi (y) dy

= λfεi (x) + ( – λ)fε ,

while, for i = j + , . . . , n,

≥ λ

∫

I
fi(x – y) + ( – λ)

∫

I
fi(x – y)θεi (y) dy

= λfεi (x) + ( – λ)fε .

3 Existence of weak derivative and reverse Poincaré-type inequality for
arbitrary convex vectors

Throughout this section we use Ik = I(x, rk) where the radius rk is defined as

rk = r
(

k + 
k + 

)
.

It is trivial that Ik ⊂ Ik+ and
⋃∞

k= Ik = I and C∞
 (I) is the space of infinite times continu-

ously differentiable functions having compact support. We may take a particular weight
function for interval I as

h(x) =
[
r – (x – x)].

It is trivial that h(x) is non-negative ∀x ∈ I and h(x) = h′(x) =  for all x ∈ ∂I . We also define
the corresponding weight functions hk for the interval Ik as

hk(x) =
[
rk

 – (x – x)].

We arrive at the following result.
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Theorem . The arbitrary convex vector F(x) possesses a weak derivative F ′(x) over the
interval I = I(x, r) and satisfies

∫

I

∣∣F ′(x)
∣∣h(x) dx < ∞,

where h(x) is the weight function satisfying (.).

Proof Take Fε(x), the mollification of the arbitrary convex vector F(x) as defined in (.).
Since F(x) is continuous on the interval I , thus by the properties of mollification it is well

known that on any closed interval Ik ⊂ I , we have

sup
Ik

∣∣fε,i(x) – fi(x)
∣∣ −→

ε→
.

Let us choose ε = 
m , m = , , . . . , n, then the above convergence becomes

sup
Ik

∣∣fm,i(x) – fi(x)
∣∣ −→

m→∞
.

Since Ik ⊂ I for p, m ∈ N, we write inequality (.), for the vectors Fp and Fm,

∫

Ik+l

∣∣F ′
p(x) – F ′

m(x)
∣∣hk+l(x) dx

≤
n∑

i=



∥
∥fp,i(x) – fm,i(x)

∥
∥

L∞ +
n∑

i=

∥
∥fp,i(x) – fm,i(x)

∥
∥

L∞

× (∥∥fp,i(x)
∥∥

L∞ +
∥∥fm,i(x)

∥∥)∫

I

∣∣h′′
k+l(x)

∣∣dx. (.)

Denote

∫

I

∣∣h′′
k+l(x)

∣∣dx = ck+l

and

ĉk+l = min
∣
∣hk+l(x)

∣
∣,

ĉk+l

∫

Ik

∣∣F ′
p(x) – F ′

m(x)
∣∣ dx

≤ ck+l

n∑

i=



∥
∥fp,i(x) – fm,i(x)

∥
∥

L∞ +
n∑

i=

∥
∥fp,i(x) – fm,i(x)

∥
∥

L∞

× (∥∥fp,i(x)
∥∥

L∞ +
∥∥fm,i(x)

∥∥)
, (.)

since

∥
∥fp,i(x) – fm,i(x)

∥
∥

L∞
Ik+l

→ , m, p → ∞.
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This implies that

lim
m,p→∞

∫

Ik

∣∣F ′
p(x) – F ′

m(x)
∣∣ dx = lim

m,p→∞

n∑

i=

∫

Ik

(
f ′
p,i(x) – f ′

m,i(x)
) dx = .

By the completeness of the space L∞(Ik), there exists an n-dimensional measurable vector

gk = (gk,, gk,, . . . , gk,n)

such that

lim
m→

n∑

i=

∫

Ik

(
f ′
m,i(x) – gk,i(x)

) dx = .

Let us extend gk , outside the interval Ik by , and let us define

g(x) = lim
k→∞

sup gk,i(x).

It is trivial that g(x) = gk(x) on the interval Ik .
We claim that

g(x) =
(
g(x), g(x), . . . , gn(x)

)

is the weak derivative of

F(x) =
(
f(x), f(x), . . . , fn(x)

)
.

To show this it is enough to prove that gi(x) is the weak partial derivative of fi(x) for all
i = , , . . . , n.

To do this, let us take φ ∈ C∞
 (I). Then φ ⊂ Ik for some k.

Hence
∫

Ik

f ′
m,i(x)φ(x) dx = –

∫

Ik

fm,i(x)φ′(x) dx.

Since

∣
∣fm,i(x) – fi(x)

∣
∣
Ik

−→
m→∞



and

∥
∥f ′

m,i(x) – gi(x)
∥
∥

L(Ik ) −→
m→∞

,

which implies

∫

Ik

gi(x)φ(x) dx = –
∫

Ik

fi(x)φ′(x) dx.

Thus gi(x) is the weak derivative of fi(x) for i = , , . . . , n.
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Writing the inequality (.) for F = Fm and G = , we have

∫

Ik+l

∣∣F ′
m(x)

∣∣hk+l dx ≤
n∑

i=

[∥∥fm(x)
∥∥

L∞
Ik+l

+


∥∥fm(x)

∥∥
L∞

Ik+l

]∫

Ik+l

∣∣h′′(x) dx
∣∣

and we denote
∫

Ik+l

∣
∣h′′(x) dx

∣
∣ = ck+l;

we get

∫

Ik+l

∣
∣F ′

m(x)
∣
∣hk+l dx ≤

n∑

i=

[∥
∥fm(x)

∥
∥

L∞
Ik+l

+


∥
∥fm(x)

∥
∥

L∞
Ik+l

]
ck+l.

Taking the limit as m → ∞, we get

∫

Ik+l

∣∣F ′(x)
∣∣hk+l dx ≤ ∥∥f (x)

∥∥
L∞

Ik+l
(ck+l).

Since Ik ⊆ Ik+l , we have

∫

Ik

∣∣F ′(x)
∣∣hk+l(x) dx ≤ ∥∥F(x)

∥∥
L∞

Ik+l
ck+l.

In the last integral, letting l → ∞ we find

∫

Ik

∣
∣F ′(x)

∣
∣hk(x) dx ≤ ∥

∥F(x)
∥
∥

L∞
Ik

c∞ < ∞.

Since the above integral is bounded for each k, we have

∫

I

∣
∣F ′(x)

∣
∣h(x) dx < ∞.

This completes the proof. �

Theorem . Let F(x) and G(x) be two arbitrary convex vectors that belong to χ
[i,j]
[j+,n][a, b]

and let h(x) be the non-negative weight function satisfying (.) on the interval I , then the
following estimate holds:

∫

I

∣
∣F ′(x) – G′(x)

∣
∣h(x) dx

≤
n∑

i=



∥
∥fi(x) – gi(x)

∥
∥

L∞ +
∥
∥fi(x) – gi(x)

∥
∥

L∞
(∥∥fi(x)

∥
∥

L∞ +
∥
∥gi(x)

∥
∥

L∞
)

×
∫

I

∣∣h′′(x)
∣∣dx. (.)

Proof Let Fm(x) and Gm(x) be the smooth approximations of F(x) and G(x), respectively,
for m = , , . . . ,∞. There exists an integer mk+l such that Fm and Gm are smooth over the
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interval Ik+l and Fm(x) and Gm(x) converge uniformly to F(x) and G(x), respectively, for
m ≥ mk+l .

Let us write the inequality (.) for the functions Fm(x) and Gm(x) on the interval Ik+l as

∫

Ik+l

∣
∣F ′

m(x) – G′
m(x)

∣
∣hk+l(x) dx

≤
∫

Ik+l

[



n∑

i=

∥∥fm,i(x) – gm,i(x)
∥∥

L∞ +
n∑

i=

∥∥fm,i(x) – gm,i(x)
∥∥

L∞

× (∥∥fm,i(x)
∥
∥

L∞ +
∥
∥gm,i(x)

∥
∥

L∞
)
]
∣
∣h′′(x)

∣
∣dx.

Taking the limit as m → ∞, we get

∫

Ik+l

∣∣F ′(x) – G′(x)
∣∣hk+l(x) dx

≤
∫

Ik+l

[



n∑

i=

∥
∥fi(x) – gi(x)

∥
∥

L∞ +
n∑

i=

∥
∥fi(x) – gi(x)

∥
∥

L∞

× (∥∥fi(x)
∥∥

L∞ +
∥∥gi(x)

∥∥
L∞

)
]
∣∣h′′(x)

∣∣dx.

As Ik ⊂ Ik+l , taking the limit as l → ∞, we obtain

∫

Ik

∣
∣F ′(x) – G′(x)

∣
∣hk(x) dx

≤
∫

I

[



n∑

i=

∥∥fi(x) – gi(x)
∥∥

L∞ +
n∑

i=

∥∥fi(x) – gi(x)
∥∥

L∞

× (∥∥fi(x)
∥
∥

L∞ +
∥
∥gi(x)

∥
∥

L∞
)
]
∣
∣h′′(x)

∣
∣dx.

Using Theorem ., we get

∫

I

∣∣F ′(x) – G′(x)
∣∣h(x) dx < ∞.

By letting k → ∞, we complete the proof. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, University of Okara, Okara, Pakistan. 2Faculty of Textile Technology, University of Zagreb,
Zagreb, 10000, Croatia. 3Department of Mathematics, Comsats Institute of Information Technology, Abbotabad, Pakistan.
4Department of Mathematics, University of Education, Lahore, Pakistan.

Received: 21 March 2016 Accepted: 22 July 2016



Saleem et al. Journal of Inequalities and Applications  (2016) 2016:194 Page 12 of 12

References
1. Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, Cambridge (1934)
2. Beckenbach, EF, Bellman, R: Inequalities. Springer, Berlin (1965)
3. Cheney, EW: Approximation Theory III. Academic Press, New York (1980)
4. Niculescu, P, Persson, L-E: Convex Functions and Their Applications. Springer, Berlin (2004)
5. El Karoui, N, Jeanblanc-Picque, M, Shreve, SE: Robustness of the Black and Scholes formula. Math. Finance 8(2), 93-126

(1998)
6. Hobson, DG: Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8(1),

193-205 (1998)
7. Shashiashvili, K, Shashiashvili, M: Estimation of the derivative of the convex function by means of its uniform

approximation. J. Inequal. Pure Appl. Math. 6(4), Article 113 (2005)
8. Hussain, S, Shashiashvili, M: Discrete time hedging of the American option. Math. Finance 20(4), 647-670 (2010)
9. Hussain, S, Rehman, N: Estimate for the discrete time hedging error of the American option on a dividend paying

stock. Math. Inequal. Appl. 15, 137-163 (2012)
10. Saleem, MS, Shashiashvili, M: The weighted reverse Poincaré inequality for the difference of two weak subsolutions.

Bull. Georgian Natl. Acad. Sci. 4(3), 24-28 (2010)
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