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Abstract
In this paper, we present new Lyapunov-type inequalities for a fractional boundary
value problem that models a turbulent flow in a porous medium. The obtained
inequalities are used to obtain a lower bound for the eigenvalues of corresponding
equations.
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1 Introduction
The p-Laplacian operator arises in different mathematical models that describe physical
and natural phenomena (see, for example, [–]). In particular, it is used in some models
related to turbulent flows (see, for example, [–]).

In this paper, we present some Lyapunov-type inequalities for a fractional-order model
for turbulent flow in a porous medium. More precisely, we are interested with the nonlin-
ear fractional boundary value problem{

Dβ

a+ (�p(Dα
a+ u(t))) + χ (t)�p(u(t)) = , a < t < b,

u(a) = u′(a) = u′(b) = , Dα
a+ u(a) = Dα

a+ u(b) = ,
(.)

where  < α ≤ ,  < β ≤ , Dα
a+ , Dβ

a+ are the Riemann-Liouville fractional derivatives of
orders α, β , �p(s) = |s|p–s, p > , and χ : [a, b] → R is a continuous function. Under cer-
tain assumptions imposed on the function q, we obtain necessary conditions for the ex-
istence of nontrivial solutions to (.). Some applications to eigenvalue problems are also
presented.

For completeness, let us recall the standard Lyapunov inequality [], which states that
if u is a nontrivial solution of the problem{

u′′(t) + χ (t)u(t) = , a < t < b,
u(a) = u(b) = ,

where a < b are two consecutive zeros of u, and χ : [a, b] → R is a continuous function,
then ∫ b

a

∣∣χ (t)
∣∣dt >


b – a

. (.)
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Note that in order to obtain this inequality, it is supposed that a and b are two consecutive
zeros of u. In our case, as it will be observed in the proof of our main result, we assume
just that u is a nontrivial solution to (.).

Inequality (.) is useful in various applications, including oscillation theory, stability
criteria for periodic differential equations, and estimates for intervals of disconjugacy.

Several generalizations and extensions of inequality (.) to different boundary value
problems exist in the literature. As examples, we refer to [–] and the references
therein.

Recently, some Lyapunov-type inequalities for fractional boundary value problems have
been obtained. Ferreira [] established a fractional version of inequality (.) for a frac-
tional boundary value problem involving the Riemann-Liouville fractional derivative of
order  < α ≤ . More precisely, Ferreira [] studied the fractional boundary value prob-
lem

{
Dα

a+ u(t) + χ (t)u(t) = , a < t < b,
u(a) = u(b) = ,

(.)

where Dα
a+ is the Riemann-Liouville fractional derivative of order  < α ≤ , and χ :

[a, b] →R is a continuous function. In this case, it was proved that if (.) has a nontrivial
solution, then

∫ b

a

∣∣χ (t)
∣∣dt > �(α)

(


b – a

)α–

,

where � is the Euler gamma function. Observe that if we take α =  in the last inequality,
we obtain the standard Lyapunov inequality (.).

Ferreira [] established a fractional version of inequality (.) for a fractional boundary
value problem involving the Caputo fractional derivative of order  < α ≤ . In both papers
[, ], the author presented nice applications to obtain intervals where certain Mittag-
Leffler functions have no real zeros.

Jleli and Samet [] studied a fractional differential equation involving the Caputo frac-
tional derivative under mixed boundary conditions. More precisely, they considered the
fractional differential equation

CDα
a+ u(t) + χ (t)u(t) = , a < t < b, (.)

under the mixed boundary conditions

u(a) = u′(b) =  (.)

or

u′(a) = u(b) = , (.)

where CDα
a+ is the Caputo fractional derivative of order  < α ≤ . For the boundary con-

ditions (.) and (.), the following two Lyapunov-type inequalities were derived respec-
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tively:

∫ b

a
(b – s)α–∣∣q(s)

∣∣ds ≥ �(α)
max{α – ,  – α}(b – a)

and

∫ b

a
(b – s)α–∣∣q(s)

∣∣ds ≥ �(α).

The same equation (.) was considered by Rong and Bai [] with the fractional bound-
ary condition

u(a) = CDβ

a+ u(b) = ,

where  < β ≤ .
For other related results, we refer to [–] and the references therein.
The paper is organized as follows. In Section , we recall some basic concepts on frac-

tional calculus and establish some preliminary results that will be used in Section , where
we state and prove our main result. In Section , we present some applications of the ob-
tained Lyapunov-type inequalities to eigenvalue problems.

2 Preliminaries
For the convenience of the reader, we recall some basic concepts on fractional calculus to
make easy the analysis of (.). For more details, we refer to [].

Let C[a, b] be the set of real-valued and continuous functions in [a, b]. Let f ∈ C[a, b].
Let α ≥ . The Riemann-Liouville fractional integral of order α of f is defined by I

a f ≡ f
and

(
Iα

a+ f
)
(t) =


�(α)

∫ t

a
(t – s)α–f (s) ds, α > , t ∈ [a, b],

where � is the gamma function.
The Riemann-Liouville fractional derivative of order α >  of f is defined by

(
Dα

a+ f
)
(t) =


�(n – α)

(
d
dt

)n ∫ t

a

f (s)
(t – s)α–n+ ds, t ∈ [a, b],

where n = [α] + .

Lemma . (see []) Let α > . If Dα
a+ u ∈ C[a, b], then

Iα
a+ Dα

a+ u(t) = u(t) +
n∑

k=

ck(t – a)α–k ,

where n = [α] + .

Now, in order to obtain an integral formulation of (.), we need the following results.
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Lemma . Let  < α ≤  and y ∈ C[a, b]. Then the problem

{
Dα

a+ u(t) + y(t) = , a < t < b,
u(a) = u′(a) = u′(b) = 

has a unique solution

u(t) =
∫ b

a
G(t, s)y(s) ds,

where

G(t, s) =


�(α)

{
( b–s

b–a )α–(t – a)α– – (t – s)α–, a ≤ s ≤ t ≤ b,
( b–s

b–a )α–(t – a)α–, a ≤ t ≤ s ≤ b.

Proof From Lemma . we have

u(t) = –
(
Iα

a+ y
)
(t) + c(t – a)α– + c(t – a)α– + c(t – a)α–

for some real constants ci, i = , , , that is,

u(t) = –


�(α)

∫ t

a
(t – s)α–y(s) ds + c(t – a)α– + c(t – a)α– + c(t – a)α–.

The condition u(a) =  yields c = . Therefore,

u′(t) = –
(α – )
�(α)

∫ t

a
(t – s)α–y(s) ds + c(α – )(t – a)α– + c(α – )(t – a)α–.

The condition u′(a) =  implies that c = . Then

u′(b) = –
(α – )
�(α)

∫ b

a
(b – s)α–y(s) ds + c(α – )(b – a)α–.

Since u′(b) = , we get

c =


(b – a)α–�(α)

∫ b

a
(b – s)α–y(s) ds.

Thus,

u(t) = –
∫ t

a

(t – s)α–y(s)
�(α)

ds +
∫ b

a


�(α)

(
b – s
b – a

)α–

(t – a)α–y(s) ds.

For the uniqueness, suppose that u and u are two solutions of the considered problem.
Define u = u – u. By linearity, u solves the boundary value problem

{
Dα

a+ u(t) = , a < t < b,
u(a) = u′(a) = u′(b) = ,

which has as a unique solution u = . Therefore, u = u, and the uniqueness follows. �
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Lemma . Let y ∈ C[a, b],  < α ≤ ,  < β ≤ , p > , and 
p + 

q = . Then the problem

{
Dβ

a+ (�p(Dα
a+ u(t))) + y(t) = , a < t < b,

u(a) = u′(a) = u′(b) = , Dα
a+ u(a) = Dα

a+ u(b) = 

has a unique solution

u(t) = –
∫ b

a
G(t, s)�q

(∫ b

a
H(s, τ )y(τ ) dτ

)
ds,

where

H(t, s) =


�(β)

{
( b–s

b–a )β–(t – a)β– – (t – s)β–, a ≤ s ≤ t ≤ b,
( b–s

b–a )β–(t – a)β–, a ≤ t ≤ s ≤ b.

Proof From Lemma . we have

�p
(
Dα

a+ u
)
(t) = –

∫ t

a

(t – s)β–

�(β)
y(s) ds + c(t – a)β– + c(t – a)β–,

where ci, i = , , are real constants. The condition Dα
a+ u(a) =  implies that �p(Dα

a+ u)(a) =
, which yields c = . The condition Dα

a+ u(b) =  implies that �p(Dα
a+ u)(b) = , which

yields

c =


(b – a)β–

∫ b

a

(b – s)β–

�(β)
y(s) ds.

Therefore,

�p
(
Dα

a+ u
)
(t) = –

∫ t

a

(t – s)β–

�(β)
y(s) ds +


(b – a)β–

∫ b

a

(b – s)β–(t – a)β–

�(β)
y(s) ds,

that is,

�p
(
Dα

a+ u
)
(t) =

∫ b

a
H(t, τ )y(τ ) dτ .

Then we have

Dα
a+ u(t) – �q

(∫ b

a
H(t, τ )y(τ ) ds

)
= .

Setting

ỹ(t) = –�q

(∫ b

a
H(t, τ )y(τ ) dτ

)
,

we obtain{
Dα

a+ u(t) + ỹ(t) = , a < t < b,
u(a) = u′(a) = u′(b) = .

Finally, applying Lemma ., we obtain the desired result. �
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The following estimates will be useful later.

Lemma . We have

 ≤ G(t, s) ≤ G(b, s), (t, s) ∈ [a, b] × [a, b].

Proof Differentiating with respect to t, we obtain

Gt(t, s) =
(α – )
�(α)

{
( b–s

b–a )α–(t – a)α– – (t – s)α–, a ≤ s ≤ t ≤ b,
( b–s

b–a )α–(t – a)α–, a ≤ t ≤ s ≤ b.

Set

g(t, s) =
(

b – s
b – a

)α–

(t – a)α– – (t – s)α–, a ≤ s ≤ t ≤ b

and

g(t, s) =
(

b – s
b – a

)α–

(t – a)α–, a ≤ t ≤ s ≤ b.

Clearly,

g(t, s) ≥ , a ≤ t ≤ s ≤ b.

On the other hand, using the inequality

(b – s)(t – a) ≥ (t – s)(b – a), a ≤ s ≤ t ≤ b,

and the fact that α > , we obtain

(b – s)α–(t – a)α– ≥ (t – s)α–(b – a)α–, a ≤ s ≤ t ≤ b,

which yields

g(t, s) ≥ , a ≤ s ≤ t ≤ b.

As consequence, we have

Gt(t, s) ≥ , (t, s) ∈ [a, b] × [a, b].

Then G(·, s) is a nondecreasing function for all s ∈ [a, b], which yields

 = G(a, s) ≤ G(t, s) ≤ G(b, s), (t, s) ∈ [a, b] × [a, b].

The proof is complete. �
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Lemma . We have

 ≤ H(t, s) ≤ H(s, s), (t, s) ∈ [a, b] × [a, b].

Proof Observe that H(t, s) = Gt(t, s) for α = β + . Then, from the proof of Lemma . we
have

H(t, s) ≥ , (t, s) ∈ [a, b] × [a, b].

On the other hand, for all s ∈ [a, b], we have

�(β)H(s, s) =
(

b – s
b – a

)β–

(s – a)β–.

For a ≤ t ≤ s ≤ b, we have

�(β)H(t, s) =
(

b – s
b – a

)β–

(t – a)β–

≤
(

b – s
b – a

)β–

(s – a)β–

= �(β)H(s, s).

For a ≤ s < t ≤ b, we have

�(β)H(t, s) =
(

b – s
b – a

)β–

(t – a)β– – (t – s)β–.

Let s ∈ [a, b) be fixed. Define the function ψ : (s, b] →R by

ψ(t) = �(β)H(t, s), t ∈ (s, b].

We have

ψ ′(t) = (β – )
[(

b – s
b – a

)β–

(t – a)β– – (t – s)β–
]

, t ∈ (s, b].

Using the inequalities

(
b – s
b – a

)β–

≤ , β –  ≤ , (t – a)β– ≤ (t – s)β–,

we get

ψ ′(t) ≤ , t ∈ (s, b].

Thus, for all t ∈ (s, b], we have

ψ(t) ≤ ψ(s),
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that is,

�(β)H(t, s) ≤ �(β)H(s, s), t ∈ (s, b].

The proof is complete. �

Now, we are ready to state and prove our main result.

3 Main result
Our main result is the following Lyapunov-type inequality.

Theorem . Suppose that  < α ≤ ,  < β ≤ , p > , and χ : [a, b] → R is a continuous
function. If (.) has a nontrivial continuous solution, then

∫ b

a
(b – s)β–(s – a)β–∣∣χ (s)

∣∣ds

≥ [
�(α)

]p–
�(β)(b – a)β–

(∫ b

a
(b – s)α–(s – a) ds

)–p

. (.)

Proof We endow the set C[a, b] with the Chebyshev norm ‖ · ‖∞ given by

‖u‖∞ = max
{∣∣u(t)

∣∣ : a ≤ t ≤ b
}

, u ∈ C[a, b].

Suppose that u ∈ C[a, b] is a nontrivial solution of (.). From Lemma . we have

u(t) = –
∫ b

a
G(t, s)�q

(∫ b

a
H(s, τ )χ (τ )�p

(
u(τ )

)
dτ

)
ds, t ∈ [a, b].

Let t ∈ [a, b] be fixed. We have

∣∣u(t)
∣∣ ≤

∫ b

a

∣∣G(t, s)
∣∣∣∣∣∣�q

(∫ b

a
H(s, τ )χ (τ )φp

(
u(τ )

)
dτ

)∣∣∣∣ds

=
∫ b

a

∣∣G(t, s)
∣∣∣∣∣∣
∫ b

a
H(s, τ )χ (τ )�p

(
u(τ )

)
dτ

∣∣∣∣
q–

ds

≤
∫ b

a

∣∣G(t, s)
∣∣θ (s) ds,

where

θ (s) =
(∫ b

a

∣∣H(s, τ )
∣∣∣∣χ (τ )

∣∣∣∣u(τ )
∣∣p– dτ

)q–

, s ∈ [a, b].

Using Lemma . and Lemma ., we obtain

∣∣u(t)
∣∣ ≤ ‖u‖(p–)(q–)

∞

(∫ b

a
G(b, s) ds

)(∫ b

a
H(s, s)

∣∣χ (s)
∣∣ds

)q–

.
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Since the last inequality holds for every t ∈ [a, b], we obtain

 ≤
(∫ b

a
G(b, s) ds

)(∫ b

a
H(s, s)

∣∣χ (s)
∣∣ds

)q–

,

which yields the desired result. �

Corollary . Suppose that  < α ≤ ,  < β ≤ , p > , and χ : [a, b] → R is a continuous
function. If (.) has a nontrivial continuous solution, then

∫ b

a

∣∣χ (s)
∣∣ds ≥ β–[�(α)]p–�(β)

(b – a)β–

(∫ b

a
(b – s)α–(s – a) ds

)–p

. (.)

Proof Let

ψ(s) = (b – s)(s – a), s ∈ [a, b].

Observe that the function ψ has a maximum at the point s∗ = a+b
 , that is,

‖ψ‖∞ = ψ
(
s∗) =

(b – a)


.

The desired result follows immediately from the last equality and inequality (.). �

For p = , problem (.) becomes

{
Dβ

a+ (Dα
a+ u(t)) + χ (t)u(t) = , a < t < b,

u(a) = u′(a) = u′(b) = , Dα
a+ u(a) = Dα

a+ u(b) = ,
(.)

where  < α ≤ ,  < β ≤ , and χ : [a, b] →R is a continuous function. In this case, taking
p =  in Theorem ., we obtain the following result.

Corollary . Suppose that  < α ≤ ,  < β ≤ , and χ : [a, b] → R is a continuous func-
tion. If (.) has a nontrivial continuous solution, then

∫ b

a
(b – s)β–(s – a)β–∣∣χ (s)

∣∣ds ≥ �(α)�(β)(b – a)β–
(∫ b

a
(b – s)α–(s – a) ds

)–

.

Taking p =  in Corollary ., we obtain the following result.

Corollary . Suppose that  < α ≤ ,  < β ≤ , and χ : [a, b] → R is a continuous func-
tion. If (.) has a nontrivial continuous solution, then

∫ b

a

∣∣χ (s)
∣∣ds ≥ β–�(α)�(β)

(b – a)β–

(∫ b

a
(b – s)α–(s – a) ds

)–

.

4 Applications to eigenvalue problems
In this section, we present some applications of the obtained results to eigenvalue prob-
lems.
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Corollary . Let λ be an eigenvalue of the problem

{
Dβ

+ (�p(Dα
+ u(t))) + λ�p(u(t)) = ,  < t < ,

u() = u′() = u′() = , Dα
+ u() = Dα

+ u() = ,
(.)

where  < α ≤ ,  < β ≤ , and p > . Then

|λ| ≥ �(β)
�(β)

(
�(α)�(α + )

�(α – )

)p–

. (.)

Proof Let λ be an eigenvalue of (.). Then there exists a nontrivial solution u = uλ to (.).
Using Theorem . with (a, b) = (, ) and χ (s) = λ, we obtain

|λ|
∫ 


( – s)β–sβ– ds ≥ [

�(α)
]p–

�(β)
(∫ 


( – s)α–s ds

)–p

.

Observe that

∫ 


( – s)β–sβ– ds = B(β ,β)

and

∫ 


( – s)α–s ds =

∫ 


s–( – s)(α–)– ds = B(,α – ),

where B is the beta function defined by

B(x, y) =
∫ 


sx–( – s)y– ds, x, y > .

Using the identity

B(x, y) =
�(x)�(y)
�(x + y)

,

we get the desired result. �

Corollary . Let λ be an eigenvalue of the problem

{
Dβ

+ (Dα
+ u(t)) + λu(t) = ,  < t < ,

u() = u′() = u′() = , Dα
+ u() = Dα

+ u() = ,

where  < α ≤  and  < β ≤ . Then

|λ| ≥ �(α)�(α + )�(β)
�(α – )�(β)

. (.)

Proof It follows from inequality (.) by taking p = . �
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