
Zhu et al. Journal of Inequalities and Applications  (2016) 2016:191 
DOI 10.1186/s13660-016-1130-0

R E S E A R C H Open Access

Eigenvalue inequalities of elliptic
operators in weighted divergence form on
smooth metric measure spaces
Yuming Zhu, Gusheng Liu and Feng Du*

*Correspondence:
defengdu123@163.com
School of Mathematics and Physics
Science, Jingchu University of
Technology, Jingmen, 448000,
China

Abstract
In this paper, we study the eigenvalue problem of elliptic operators in weighted
divergence form on smooth metric measure spaces. First of all, we give a general
inequality for eigenvalues of the eigenvalue problem of elliptic operators in weighted
divergence form on compact smooth metric measure space with boundary (possibly
empty). Then applying this general inequality, we get some universal inequalities of
Payne-Pólya-Weinberger-Yang type for the eigenvalues of elliptic operators in
weighted divergence form on a connected bounded domain in the smooth metric
measure spaces, the Gaussian shrinking solitons, and the general product solitons,
respectively.
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1 Introduction
A smooth metric measure space is actually a Riemannian manifold equipped with some
measure which is absolutely continuous with respect to the usual Riemannian measure.
More precisely, for a given complete n-dimensional Riemannian manifold (M, 〈, 〉) with the
metric 〈, 〉, the triple (M, 〈, 〉, e–f dν) is called a smooth metric measure space, where f is a
smooth real-valued function on M and dν is the Riemannian volume element related to 〈, 〉
(sometimes, we also call dν the volume density). Let � be a bounded domain in a smooth
metric measure space (M, 〈, 〉, e–f dν), and let A : � → End(T�) be a smooth symmetric
and positive definite section of the bundle of all endomorphisms of T�, we can define the
elliptic operator in weighted divergence form as

Lf = – divf A∇ , (.)

where divf X = ef div(e–f X) is the weighted divergence of vector fields X, and ∇ is the gra-
dient operator. When A is an identity map, –Lf becomes the drifting Laplacian �f , for
the drifting Laplacian, some universal inequalities have been given in [–]. When f is a
constant, Lf becomes the elliptic operator in divergence form, for some recent develop-
ments about universal inequalities of the eigenvalue of elliptic operator in divergence form
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on Riemannian manifolds, we refer to [–] and the references therein. As briefly men-
tioned above, it is a natural problem how to get the universal inequalities of the eigenvalues
of elliptic operator in weighted divergence form. Actually, in this paper, we first consider
the eigenvalue problem as follows:{

(Lf + V )u = λρu, in �,
u = , on ∂�,

(.)

where � is a bounded domain in a complete smooth metric measure space (M, 〈, 〉, e–f dν),
V is a non-negative continuous function on M, and ρ is a weight function which is positive
and continuous on M. For the eigenvalues of (.), we can give the following universal
inequalities.

Theorem . Let � be a connected bounded domain in an n-dimensional complete smooth
metric measure space (M, 〈, 〉, e–f dν) . Assume that ξI ≤ A, tr(A) ≤ nξ throughout �, and
ρ ≤ ρ(x) ≤ ρ, |∇f |(x) ≤ C,∀x ∈ �, here I is the identity map, ξ, ξ,ρ,ρ, C are positive
constants and tr(A) denotes the trace of A. Let λi be the ith eigenvalue of the eigenvalue
problem (.), then we have

k∑
i=

(λk+ – λi)

≤ ξρ



nρ


k∑
i=

(λk+ – λi)
{

λi – ρ–
 V

ξ
+ C

(
λi – ρ–

 V

ξ

) 


+
nH

 + C


ρ

}
, (.)

where H = supx∈� |H|(x), V = minx∈� V (x), and H is the mean curvature vector field of M
in a Euclidean space Rm.

Remark . From inequality (.), we can get some results which are given in [, ], for
example, if f is a constant, then C = , (.) becomes (.) in [].

For the fourth-order elliptic operator in weighted divergence, we can consider the fol-
lowing eigenvalue problem:

{
L

f u = 	u, in �,
u = ∂u

∂ν
= , on ∂�,

(.)

we also give some universal inequalities for the eigenvalues of (.) as follows.

Theorem . Let � be a connected bounded domain in an n-dimensional complete
smooth metric measure space (M, 〈, 〉, e–f dν). Assume that ξI ≤ A ≤ ξI throughout �,
and |∇f |(x) ≤ C,∀x ∈ �, here I is the identity map, ξ, ξ, C are positive constants. Let 	i

be the ith eigenvalue of the eigenvalue problem (.), then we have

k∑
i=

(	k+ – 	i) ≤ ξ

nξ

{ k∑
i=

(	k+ – 	i)((n + )	


i + Cξ




 	


i + ξ

(
nH

 + C

))

×
k∑

i=

(	k+ – 	i)
(
	



i + Cξ




 	


i + ξ

(
nH

 + C

))} 



, (.)
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where H = supx∈� |H|(x), and H is the mean curvature vector field of M in a Euclidean
space Rm.

Remark . From inequality (.), we can get some results which are given in [, ], for
example, if A is an identity map, then ξ = ξ = , (.) becomes (.) in [].

On smooth metric measure spaces, we can also define the so-called weighted Ricci cur-
vature Ricf given by

Ricf = Ric + Hess f ,

which is also called the ∞-Bakry-Émery Ricci tensor. The equation Ricf = κ〈, 〉 for some
constant κ is just the gradient Ricci soliton equation, which plays an important role in the
study of Ricci flow. We refer the reader to [] for some recent progress about Ricci soli-
tons. For κ > ,κ = , orκ < , the gradient Ricci soliton (M, 〈, 〉, e–f dν,κ) is called shrink-
ing, steady, or expanding, respectively. In the following, we would like to give two examples
of Ricci solitons.

Example  The Gaussian shrinking soliton (Rn, 〈, 〉can, e– 
 |x| dν, 

 ), where 〈, 〉can is the
standard Euclidean metric on R

n, f = 
 |x|, x ∈R

n, and Ricf = 
 〈, 〉can.

Example  More generally, consider the Riemannian product � ×R
n, where (�; 〈, 〉�) is

an Einstein manifold satisfying Ric� = κ〈, 〉� . Define the smooth function f : � ×R
n →R

by setting f (p; x) = κ
 |x| + x · a + b, for any a ∈ R

n \ {} and b ∈ R. Then (� × R
n, 〈, 〉� +

〈, 〉can, e–f dν� ⊗ dνn
R

,κ) is a non-trivial gradient Ricci soliton. Similarly, one could even
construct gradient Ricci solitons with a warped product structure. More details of the
product solitons can be found in the Remark . in [].

In the following, we will give some universal inequalities for the Dirichlet eigenvalues
in a connected bounded domain on the Gaussian shrinking solitons and general product
solitons.

Theorem . Let � be a connected bounded domain in the Gaussian shrinking soliton
(Rn, 〈, 〉can, e– 

 |x| dν, 
 ), and assume that ξI ≤ A, tr(A) ≤ nξ throughout �, here I is the

identity map, ξ, ξ are positive constants and tr(A) denotes the trace of A. Let λi be the ith
eigenvalue of the Dirichlet problem

{
Lf u = λu, in �,
u = , on ∂�,

(.)

where f = 
 |x|, then we have

k∑
i=

(λk+ – λi) ≤ ξ

nξ

k∑
i=

(λk+ – λi)
{
λi +

ξ



(
n – min

x∈�

{|x|})}
. (.)

Remark . (i) For a self-shrinker, the drifting Laplacian �f with f = |x|
 is actually the

operator L := � – 
 〈x,∇(·)〉, which was introduced by Colding-Minicozzi [] to study

self-shrinker hypersurfaces. For the Dirichlet problem of the operator L, some univer-
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sal inequalities have been obtained by Cheng and Peng []. In this case, our results can
be regarded as conclusions for the Dirichlet problem of the elliptic operator in weighted
divergence form.

(ii) Let b = ξ
ξ

, using the recursive formula in Cheng and Yang [], we can infer from
(.) that

λk+ +
ξ



(
n – min

x∈�

{|x|}) ≤ C(n, k)k
b
n

(
λ +

ξ



(
n – min

x∈�

{|x|}))
, (.)

where C(n, k) ≤  + b
n is a constant (see []).

Theorem . Let � be a connected bounded domain in the gradient product Ricci soliton
(� × R, 〈, 〉, e– κt

 dν,κ), where � is an Einstein manifold with constant Ricci curvature κ .
Set x = (x, t) ∈ �, where x ∈ �, t ∈R, and assume that ξI ≤ A ≤ ξI throughout �, here I is
the identity map, ξ, ξ are positive constants. Let λi be the ith eigenvalue of the eigenvalue
problem (.), where f = κt

 , then we have

k∑
i=

(λk+ – λi) ≤ ξ

ξ

k∑
i=

(λk+ – λi)
{

λi + ξ – κξ min
(x,t)∈�

{|t|}}. (.)

2 A general inequality
In this section, we will prove a general inequality, which will play a key role in the proof of
our main results which are listed in Section .

Lemma . Let (M, 〈, 〉, e–f dν) be an n-dimensional compact smooth metric measure space
with boundary ∂M (possibly empty), and let a, b be the random non-negative constants and
a + b �= . Let λi be the ith eigenvalue of the eigenvalue problem of the fourth-order elliptic
operator in weighted divergence form with weight ρ such that

{
(aL

f + bLf + V )u = λρu, in M,
u = ∂u

∂ν
= , on ∂M,

and ui be the orthonormal eigenfunction corresponding to λi, that is,

⎧⎪⎨
⎪⎩

(aL
f + bLf + V )ui = λiρui, in M,

ui = ∂ui
∂ν

= , on ∂M,∫
M ρuiuj dμ = δij, ∀i, j = , , . . . ,

where dμ = e–f dν . Then, for any h ∈ C(M), we have

k∑
i=

(λk+ – λi)
∫

M
u

i |∇h| dμ

≤
k∑

i=

δ(λk+ – λi)
∫

M
huipi dμ

+
k∑

i=

λk+ – λi

δ

∫
M


ρ

(
〈∇h,∇ui〉 +

ui�f h


)

dμ, (.)
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where δ is any positive constant and

pi = –a
〈∇h, A∇(Lf ui)

〉
+ aLf hLf ui – aLf

(〈∇h, A∇ui〉
)

+ aLf (uiLf h) – b〈∇h, A∇ui〉 + buiLf h.

Proof Let ϕi = hui –
∑k

j= aijuj, here k ≥  is any integer and aij =
∑k

j=
∫

M ρhuiuj dμ = aji.
Then we have

ϕi|∂M =
∂ϕi

∂ν

∣∣∣∣
∂M

= , and
∫

M
ρϕiuj dμ = , ∀i, j = , . . . , k.

By the Rayleigh-Ritz inequality, we get

λk+

∫
M

ρϕ
i dμ ≤

∫
M

ϕi
(
aL

f + bLf + V
)
ϕi dμ. (.)

From the definition of Lf , we have

Lf (hui) = – divf
(
A∇(hui)

)
= –ef div

(
e–f (A(h∇ui + ui∇h)

))
= – div

(
A(h∇ui + ui∇h)

)
–

〈∇f , A(h∇ui + ui∇h)
〉

= –h divf (A∇ui) – 〈∇h, A∇ui〉 – ui divf (A∇h) – 〈∇ui, A∇h〉
= hLf ui – 〈∇h, A∇ui〉 + uiLf h (.)

and

L

f (hui) = Lf

(
hLf ui – 〈∇h, A∇ui〉 + uiLf h

)
= hL

f ui – 
〈∇h, A∇(Lf ui)

〉
+ Lf hLf ui

– Lf
(〈∇h, A∇ui〉

)
+ Lf (uiLf h). (.)

It follows from (.) and (.) that

(
aL

f + bLf + V
)
(hui) = λiρhui + pi, (.)

where pi is defined by

pi = –a
〈∇h, A∇(

Lf (ui)
)〉

+ aLf hLf ui – aLf
(〈∇h, A∇ui〉

)
+ aLf

(
uiL(h)

)
– b〈∇h, A∇ui〉 + buiLf h.

Let us compute

∫
M

ϕi
(
aL

f + bLf + V
)
ϕi dμ

=
∫

M
ϕi

(
aL

f + bLf + V
)
(hui) dμ



Zhu et al. Journal of Inequalities and Applications  (2016) 2016:191 Page 6 of 15

= λi

∫
M

ϕiρhui dμ +
∫

M
ϕipi dμ

= λi

∫
M

ρϕ
i dμ +

∫
M

huipi dμ –
k∑

j=

aijbij, (.)

where bij is defined by bij =
∫

M piuj dμ.
On the other hand, by (.) and (.), we have

(λk+ – λi)
∫

M
ρϕ

i dμ ≤
∫

M
huipi dμ –

k∑
j=

aijbij. (.)

By a similar computation to (.)-(.) in [], we have


∫

M
Lf uj〈A∇h,∇ui〉dμ – 

∫
M
Lf ui〈A∇h,∇uj〉dμ

= –
∫

M
huiL


f uj dμ +

∫
M

hujL

f ui dμ +

∫
M

uiLf ujLf h dμ –
∫

M
ujLf uiLf h dμ, (.)

∫
M

ujLf 〈∇h, A∇ui〉dμ +
∫

M
uj

〈∇h, A∇(Lf ui)
〉
dμ

=
∫

M
Lf uj〈∇h, A∇ui〉dμ –

∫
M
Lf ui〈∇h, A∇uj〉dμ +

∫
M

ujLf uiLf h dμ, (.)
∫

M
ujLf (uiLf h) dμ =

∫
M

uiLf ujLf h dμ, (.)

and ∫
M

uj
{

–〈∇h, A∇ui〉 + uiLf h
}

dμ =
∫

M
huiLf uj dμ –

∫
M

hujLf ui dμ. (.)

Combining (.)-(.) and a similar calculation to (.) in [], we get

bij =
∫

M
piuj dμ = (λj – λi)aij. (.)

We infer from (.) and (.) that

(λk+ – λi)
∫

M
ρϕ

i dμ ≤
∫

M
huipi dμ –

k∑
j=

(λj – λi)a
ij. (.)

Setting tij =
∫

M uj(〈∇h,∇ui〉 + ui�f h
 ) dμ, thus cij = –cji and

∫
M

–ϕi

(
〈∇h,∇ui〉 +

ui�f h


)
dμ

=
∫

M

(
–hui〈∇h,∇ui〉 – hu

i �f h
)

dμ + 
k∑

j=

aijcij

=
∫

M
u

i |∇h| dμ + 
k∑

j=

aijcij. (.)
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Using (.), (.), and the Schwarz inequality, we can get

(λk+ – λi)

(∫
M

u
i |∇h| dμ + 

k∑
j=

aijcij

)

= (λk+ – λi)
∫

M
–

√
ρϕi

(
√
ρ

(
〈∇h,∇ui〉 +

ui�f h


)
–

k∑
j=

cij
√

ρuj

)
dμ

≤ δ(λk+ – λi)
∫

M
ρϕ

i dμ

+
λk+ – λi

δ

∫
M

(
√
ρ

(
〈∇h,∇ui〉 +

ui�f h


)
–

k∑
j=

cij
√

ρuj

)

dμ

≤ δ(λk+ – λi)

(∫
M

huipi dμ –
k∑

j=

(λj – λi)a
ij

)

+
λk+ – λi

δ

(∫
M


ρ

(
〈∇h,∇ui〉 +

ui�f h


)

–
k∑

j=

c
ij

)
, (.)

where δ is any positive constant. Summing over i from  to k in (.) and noticing aij =
aji, cij = –cji, we have

k∑
i=

(λk+ – λi)
∫

M
u

i |∇h| dμ – 
k∑

i,j=

(λk+ – λi)(λi – λj)aijcij

≤
k∑

i=

δ(λk+ – λi)
∫

M
huipi dμ +

k∑
i=

λk+ – λi

δ

∫
M


ρ

(
〈∇h,∇ui〉 +

ui�f h


)

dμ

–
k∑

i,j=

δ(λk+ – λi)(λj – λi)a
ij –

k∑
i,j=

λk+ – λi

δ
c

ij, (.)

which implies that

k∑
i=

(λk+ – λi)
∫

M
u

i |∇h| dμ

≤
k∑

i=

δ(λk+ – λi)
∫

M
huipi dμ +

k∑
i=

λk+ – λi

δ

∫
M


ρ

(
〈∇h,∇ui〉 +

ui�f h


)

dμ.

This completes the proof of Lemma .. �

3 Proof of Theorem 1.1 and Theorem 1.3
In this section, we will give the proof of Theorem . and Theorem . by using Lemma ..

Proof of Theorem . From the Nash embedding theorem, we know that there exists an
isometric immersion from a complete Riemannian manifold M into a Euclidean space Rm.
Thus, M can be considered as an n-dimensional complete isometrically immersed sub-
manifold in R

m. Let y, y, . . . , ym be the standard coordinate functions of Rm. Then we
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have

m∑
α=

|∇yα| = n, (.)

�(y, y, . . . , ym) = (�y,�y, . . . ,�ym) = nH, (.)
m∑

α=

〈∇yα ,∇f 〉 =
m∑

α=

(∇f (yα)
) = |∇f |, (.)

m∑
α=

〈∇yα ,∇ui〉 =
m∑

α=

(∇ui(yα)
) = |∇ui|, (.)

m∑
α=

〈∇yα ,∇ui〉〈∇yα ,∇f 〉 =
m∑

α=

∇ui(yα)∇f (yα) = 〈∇ui,∇f 〉, (.)

m∑
α=

�yα〈∇yα ,∇ui〉 =
m∑

α=

�yα∇ui(yα) = 〈nH,∇ui〉 = , (.)

and

m∑
α=

�yα〈∇yα ,∇f 〉 =
m∑

α=

�yα∇f (yα) = 〈nH,∇f 〉 = . (.)

Then we infer from (.)-(.) that

m∑
α=

�f yα〈∇yα ,∇ui〉 =
m∑

α=

(
�yα – 〈∇yα ,∇f 〉)〈∇yα ,∇ui〉 = 〈∇ui,∇f 〉 (.)

and

m∑
α=

(�f yα) =
m∑

α=

(
�yα – 〈∇yα ,∇f 〉)

=
m∑

α=

(
(�yα) – �yα〈∇yα ,∇f 〉 + 〈∇yα ,∇f 〉)

= n|H| + |∇f |. (.)

Let a = , b =  in (.), then taking h = yα and summing over α, and noticing ρ–
 ≤

‖ui‖ ≤ ρ–
 , we get

nρ–


k∑
i=

(λk+ – λi) ≤
k∑

i=

δ(λk+ – λi)
∫

�

m∑
α=

yαuipαi dμ

+
k∑

i=

λk+ – λi

δ

∫
�


ρ

m∑
α=

(
〈∇yα ,∇ui〉 +

ui�f yα



)

dμ, (.)

where pαi = –〈∇yα , A∇ui〉 + uiLf yα . Since

–
∫

�

yαui〈∇yα , A∇ui〉dμ =
∫

�

u
i 〈∇yα , A∇yα〉dμ –

∫
�

yαu
i Lf yα dμ,
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we infer from above equality and
∑m

α=〈∇yα , A∇yα〉 = tr(A) ≤ nξ that

∫
�

m∑
α=

yαuipαi dμ =
∫

�

m∑
α=

yαui
(
–〈∇yα , A∇ui〉 + uiLf yα

)
dμ

=
∫

�

m∑
α=

u
i 〈∇yα , A∇yα〉dμ ≤ nξ‖ui‖ ≤ nξρ

–
 . (.)

From ρ–
 ≤ ‖ui‖ ≤ ρ–

 and A ≥ ξI , we have

λi =
∫

�

ui(Lf + V )ui dμ =
∫

�

–ui divf (A∇ui) dμ +
∫

�

Vu
i dμ

=
∫

�

〈∇ui, A∇ui〉dμ +
∫

�

Vu
i dμ ≥ ξ‖∇ui‖ + ρ–

 V,

which implies

‖∇ui‖ ≤ λi – ρ–
 V

ξ
. (.)

Using the Schwarz inequality and the above inequality, we have

∫
�

〈∇f ,∇ui〉dμ ≤
∫

�

|∇f ||∇ui|dμ ≤ C
{‖∇ui‖} 

 ≤ C

(
λi – ρ–

 V

ξ

) 


. (.)

Combining (.), (.), (.), (.), and (.), we have

∫
�


ρ

m∑
α=

(
〈∇yα ,∇ui〉 +

ui�f yα



)

dμ

=
∫

�


ρ

m∑
α=

(
〈∇yα ,∇ui〉 + ui�f yα〈∇yα ,∇ui〉 +

u
i (�f yα)



)
dμ

=
∫

�


ρ

(
|∇ui| + 〈∇f ,∇ui〉 +

u
i


(
n|H| + |∇f |))dμ

≤ 
ρ

{
λi – ρ–

 V

ξ
+ C

(
λi – ρ–

 V

ξ

) 


+


ρ

(
nH

 + C

)}

. (.)

Substituting (.) and (.) into (.), we have

k∑
i=

(λk+ – λi) ≤
k∑

i=

δ(λk+ – λi) ρξ

ρ

+
k∑

i=

λk+ – λi

δ

ρ

nρ

{
λi – ρ–

 V

ξ
+ C

(
λi – ρ–

 V

ξ

) 


+
nH

 + C


ρ

}
.
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Taking

δ =
{∑k

i=(λk+ – λi){ λi–ρ–
 V
ξ

+ C( λi–ρ–
 V
ξ

) 
 + nH

 +C


ρ
}∑k

i=(λk+ – λi)nξ

} 


,

we can get (.). This completes the proof of Theorem .. �

Proof of Theorem . Let a = , b = , V ≡ ,ρ ≡  in (.), then taking h = yα and summing
over α, where {yα}m

α= are defined as above, we get

n
k∑

i=

(	k+ – 	i) ≤
k∑

i=

δ(	k+ – 	i)
∫

�

m∑
α=

yαuipαi dμ

+
k∑

i=

	k+ – 	i

δ

∫
�

m∑
α=

(
〈∇yα ,∇ui〉 +

ui�f yα



)

dμ, (.)

where pαi = –〈∇yα , A∇(Lf ui)〉 + Lf yαLf ui – Lf (〈∇yα , A∇ui〉) + Lf (uiLf yα). By a direct
computation, we have

∫
�

yαuipαi dμ

=
∫

�

yαui
{

–
〈∇yα , A∇(Lf ui)

〉
+ Lf yαLf ui – Lf

(〈∇yα , A∇ui〉
)

+ Lf (uiLf yα)
}

dμ

=
∫

�


{

uiLf ui〈∇yα , A∇yα〉 + yαLf ui〈∇ui, A∇yα〉 – yαuiLf yαLf ui
}

dμ

+
∫

�

yαuiLf yαLf ui dμ

+
∫

�

{
Lf yαui + yαLf ui – 〈∇yα , A∇ui〉

}{
–〈∇yα , A∇ui〉 + uiLf yα

}
dμ

=
∫

�

uiLf ui〈∇yα , A∇yα〉dμ +
∫

�

〈∇yα , A∇ui〉 dμ

–
∫

�

uiLf yα〈∇yα , A∇ui〉dμ +
∫

�

(uiLf yα) dμ. (.)

Since ξI ≤ A ≤ ξI , we can infer from (.)-(.) that

m∑
α=

∫
�

uiLf ui〈∇yα , A∇yα〉dμ ≤ nξ

∫
�

uiLf ui dμ

≤ nξ
{‖ui‖‖Lf ui‖} 

 = nξ	


i , (.)

m∑
α=

∫
�

〈∇yα , A∇ui〉 dμ = ‖A∇ui‖ ≤ ξ

∫
�

〈∇ui, A∇ui〉

= ξ

∫
�

uiLf ui dμ ≤ ξ	


i , (.)
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m∑
α=

–
∫

�

uiLf yα〈∇yα , A∇ui〉dμ

≤
∣∣∣∣ξ

∫
�

ui�f yα〈∇yα , A∇ui〉dμ

∣∣∣∣
=

∣∣∣∣ξ

∫
�

ui〈∇f , A∇ui〉dμ

∣∣∣∣
≤ ξ

∫
�

ui|∇f ||∇ui|dμ

≤ Cξ
{‖ui‖‖A∇ui‖} 



= Cξ





{∫
�

〈∇ui, A∇ui〉dμ

} 
 ≤ Cξ




 	


i , (.)

and

m∑
α=

∫
�

(uiLf yα) dμ ≤ ξ 


m∑
α=

∫
�

u
i (�f yα) dμ

= ξ 


∫
�

u
i
(
n|H| + |∇f |)dμ

≤ ξ 

(
nH

 + C

)
. (.)

Combining (.)-(.), we have

m∑
α=

∫
�

yαuipαi dμ ≤ ξ
(
(n + )	



i + Cξ




 	


i + ξ

(
nH

 + C

))

. (.)

Since ‖∇ui‖ ≤ 
ξ

∫
�
〈∇ui, A∇ui〉dμ = 

ξ

∫
�

uiLf ui dμ ≤ 	


i

ξ
, then from (.), we have

∫
�

m∑
α=

(
〈∇yα ,∇ui〉 +

ui�f yα



)

dμ

=
∫

�

(
|∇ui| + 〈∇f ,∇ui〉 +

u
i


(
n|H| + |∇f |))dμ

≤ 	


i

ξ
+

C	


i

ξ





+
nH

 + C



. (.)

Taking (.) and (.) into (.), we have

n
k∑

i=

(	k+ – 	i) ≤
k∑

i=

δ(	k+ – 	i)ξ
(
(n + )	



i + Cξ




 	


i + ξ

(
nH

 + C

))

+
k∑

i=

	k+ – 	i

δ

(
	



i

ξ
+

C	


i

ξ





+
nH

 + C




)
. (.)
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Let

δ =
{ ∑k

i=(	k+ – 	i){	


i

ξ
+ C	



i

ξ





+ nH
 +C


 }

∑k
i=(	k+ – 	i)ξ((n + )	



i + Cξ




 	


i + ξ(nH

 + C
))

} 


,

we can infer from (.) that

k∑
i=

(	k+ – 	i) ≤ ξ

nξ

{ k∑
i=

(	k+ – 	i)((n + )	


i + Cξ




 	


i + ξ

(
nH

 + C

))

×
k∑

i=

(	k+ – 	i)
(
	



i + Cξ




 	


i + ξ

(
nH

 + C

))} 



, (.)

this completes the proof of Theorem .. �

4 Proof of Theorem 1.5 and Theorem 1.7
In this section, applying Lemma ., we will give the proof of Theorem . and Theo-
rem ..

Proof of Theorem . Let a = , b = , V ≡ ,ρ ≡  in (.), then taking h = xα and summing
over α, where {xα}n

α= are the coordinate functions of Rn, we have

n
k∑

i=

(λk+ – λi) ≤
k∑

i=

δ(λk+ – λi)
∫

�

n∑
α=

xαuipαi dμ

+
k∑

i=

λk+ – λi

δ

n∑
α=

(
〈∇xα ,∇ui〉 +

ui�f xα



)

dμ, (.)

where pαi = –〈∇xα , A∇ui〉 + uiLf xα .
By a similar computation to (.), we have

∫
�

n∑
α=

xαuipαi dμ ≤ nξ. (.)

Since f = |x|
 , we have

�f xα = �xα –
〈
∇

( |x|


)
,∇xα

〉
= –




xα ,

hence, we infer from the above equality that

∫
�

n∑
α=

(
〈∇xα ,∇ui〉 +

ui�f xα



)

dμ

=
∫

�

n∑
α=

(
〈∇xα ,∇ui〉 + ui�f xα〈∇xα ,∇ui〉 +

u
i (�f xα)



)
dμ

=
∫

�

(
|∇ui| +

n∑
α=

xαui
∂ui

∂xα

+
n∑

α=

x
αu

i


)
dμ. (.)
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From integration by parts, we have

n∑
α=

∫
�

uixα

∂ui

∂xα

e– |x|
 dν

=
n∑

α=

{
–

∫
�

u
i e– |x|

 dν –
∫

�

uixα

∂ui

∂xα

e– |x|
 dν +




∫
�

u
i x

αe– |x|
 dν

}

= –n –
n∑

α=

a
∫

�

uixα

∂ui

∂xα

e– |x|
 dν +




∫
�

u
i |x|e– |x|

 dν,

which implies that

–
n∑

α=

∫
�

uixα

∂ui

∂xα

dμ = n –



∫
�

u
i |x| dμ. (.)

By a similar computation to (.), we have

‖∇ui‖ ≤ λi

ξ
. (.)

Using (.), we have

n∑
α=

∫
�

(
〈∇xα ,∇ui〉 –

uixα



)

dμ =
n∑

α=

∫
�

(
〈∇xα ,∇ui〉 –




∂ui

∂xα

uixα +
u

i x
α



)
dμ

=
n


+
∫

�

(
|∇ui| –




u
i |x|

)
dμ

≤ n


+
λi

ξ
–




min
x∈�

{|x|}. (.)

Taking (.) and (.) into (.), we have

n
k∑

i=

(λk+ – λi) ≤
k∑

i=

δ(λk+ – λi)nξ

+
k∑

i=

(λk+ – λi)
δ

(
n


+
λi

ξ
–




min
x∈�

{|x|}). (.)

Taking

δ =
{∑k

i=(λk+ – λi){ n
 + λi

ξ
– 

 minx∈�{|x|}}∑k
i=(λk+ – λi)nξ

} 


,

we obtain (.). This finishes the proof of Theorem .. �

Proof of Theorem . Let a = , b = , V ≡ ,ρ ≡  in (.), Set x = (x, t) ∈ �, where x ∈
�, t ∈ R. By a direct computation, we know that |∇t| = ,�f t = –κt, then taking h = t, we
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have

k∑
i=

(λk+ – λi) ≤
k∑

i=

δ(λk+ – λi)
∫

�

tuipi dμ

+
k∑

i=

λk+ – λi

δ

∫
�

(
〈∇t,∇ui〉 –

κtui



)

dμ, (.)

where pi = –〈∇t, A∇ui〉 + uiLf t.
In the following, let us estimate the right side of (.), first of all, by a similar computation

to (.), we infer from A ≤ ξI that
∫

�

tuipi dμ =
∫

�

tui
(
–〈∇t, A∇ui〉 + uiLf t

)
dμ =

∫
�

u
i 〈∇t, A∇t〉dμ ≤ ξ. (.)

By a direct computation,
∫

�

tui〈∇t,∇ui〉dμ = –
∫

�

u
i |∇t| dμ –

∫
�

tui〈∇t,∇ui〉dμ –
∫

�

tu
i �f t dμ,

which implies that


∫

�

tui〈∇t,∇ui〉dμ = – + κ

∫
�

tu
i dμ. (.)

From the above equality, we have


∫

�

(
〈∇t,∇ui〉 –

κtui



)

dμ =
∫

�

(
〈∇t,∇ui〉 – κtui〈∇t,∇ui〉 +

κ


tu

i

)
dμ

=
∫

�

(
〈∇t,∇ui〉 +  –

κ


tu

i

)
dμ

≤  + ‖∇ui‖ –
κ


min

(x,t)∈�

{|t|}

≤  +
λi

ξ
–

κ


min

(x,t)∈�

{|t|}. (.)

Taking (.) and (.) into (.), we have

k∑
i=

(λk+ – λi) ≤
k∑

i=

δ(λk+ – λi)ξ

+
k∑

i=

λk+ – λi

δ

(
 +

λi

ξ
–

κ


min

(x,t)∈�

{|t|}). (.)

Taking

δ =
{∑k

i=(λk+ – λi){ + λi
ξ

– κ

 min(x,t)∈�{|t|}}∑k
i=(λk+ – λi)ξ

} 


,

we obtain (.). This finishes the proof of Theorem .. �
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