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Abstract
In this paper, we derive some identities or estimates for the operator norms and the
Hausdorff measures of noncompactness of certain matrix operators on the sequence
space �p(r, s, t;B(m)) which is related to �p spaces. By applying the Hausdorff measure
of noncompactness, we obtain the necessary and sufficient conditions for such
operators to be compact. Further, we study some geometric properties of this space.
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1 Background, notation, and preliminaries
Let w denote the space of all complex sequences x = (xk)∞k=. By �∞, c, c, and φ we denote
the sets of all bounded, convergent, null, and finite sequences, respectively. We write cs
for the set of all convergent series and

�p =

{
x ∈ ω :

∞∑
k=

|xk|p < ∞
}

for  ≤ p < ∞.

By e and e(n) (n = , , . . .), we denote the sequences with ek =  for all k, and e(n)
n =  and

e(n)
k =  for k �= n, respectively. For any sequence x = (xk)∞k=, let

x[m] =
m∑

k=

xke(k)

be its m-section.
Let x and y be sequences, X and Y be subsets of ω and A = (ank)∞n,k= be an infinite matrix

of complex numbers. We write xy = (xkyk)∞k=,

Z = x– ∗ Y = {x ∈ ω : xz ∈ Y }, xβ = x– ∗ cs,

Xβ =
⋂
x∈X

x– ∗ cs =

{
a ∈ ω :

∞∑
k=

akxk converges for all x ∈ X

}

for the β-dual of X. Note that �
β
∞ = cβ = cβ

 = �, �β
 = �∞ and �

β
p = �q.
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By An = (ank)∞k= and Ak = (ank)∞n= we denote the sequences in the nth row and the kth
column of A, and we write

An(x) =
∞∑

k=

ankxk (n = , , . . .) (.)

and A(x) = (An(x))∞n=, provided An ∈ Xβ for all n. The set XA = X(A) = {z ∈ ω : A(z) ∈ X} is
called the matrix domain of A in X. Finally (X, Y ) denotes the class of all matrices A that
map X into Y , that is for which An ∈ Xβ for all n and A(x) ∈ Y for all x ∈ X, or equivalently
A ∈ (X, Y ) if and only if X ⊂ XA.

The theory of BK spaces is the most powerful tool in the characterization of matrix
transformations between sequence spaces.

A sequence space X is called a BK space if it is a Banach space with continuous co-
ordinates pn : X → C (n ∈ N), where C denotes the complex field and pn(x) = xn for all
x = (xk) ∈ X and every n ∈ N. A BK space X ⊃ φ is said to have AK if every sequence
x = (xk) ∈ X has a unique representation x =

∑∞
k= xke(k).

The sequence spaces �∞, c, and c are BK spaces with the same sup-norm given by
‖x‖�∞ = supk |xk|, where the supremum is taken over all k ∈ N. Further, the space �p is
a BK space with the usual �p-norm defined by ‖x‖�p = (

∑∞
k= |xk|p)/p, where  ≤ p < ∞.

Moreover, the BK spaces c and �p ( ≤ p < ∞) have AK [], Examples ., ..
Let X and Y be Banach spaces. Then B(X, Y ) is the set of all bounded linear operators

L : X → Y , a Banach space with the operator norm defined as usual by

‖L‖ = sup
{∥∥L(x)

∥∥/‖x‖ ≤ 
} (

L ∈ B(X, Y )
)
.

If Y = C then we write X∗ for the space of all continuous linear functionals on X with the
norm defined by

‖f ‖ = sup
{∣∣f (x)

∣∣ : ‖x‖ ≤ 
} (

f ∈ X∗).

If X ⊂ w is a normed space and a ∈ w then we write

‖a‖∗ = ‖a‖∗
X = sup

{∣∣∣∣∣
∞∑

k=

akxk

∣∣∣∣∣ : ‖x‖ ≤ 

}
, (.)

provided the expression on the right-hand side exists and is finite which is the case when-
ever X ⊃ φ is a BK space and a ∈ Xβ [], p..

For any subset X of w, the matrix domain of an infinite matrix A in X is defined by

XA = {x ∈ w : Ax ∈ X}.

An infinite matrix T = (tnk) is called a triangle if tnn �=  and tnk =  for all k > n (n ∈ N).
The study of matrix domains of triangles in sequence spaces has a special importance due
to the various properties which they have. For example, if X is a BK space then XT is also
a BK space with the norm given by ‖x‖XT = ‖Tx‖X for all x ∈ XT [], Theorem ...

The following known results are fundamental for our investigation [], Theorem ...
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Lemma .
(a) Let X denote any of the spaces c, c, �∞, � or �p. Then we have ‖a‖∗

X = ‖a‖Xβ for all
a ∈ Xβ , where ‖ · ‖Xβ is the natural norm on the dual space Xβ .

(b) Let X and Y be BK spaces. Then every matrix A ∈ (X, Y ) defines an operator
LA ∈ B(X, Y ) by LA(x) = Ax for all x ∈ X ; we denote this by (X, Y ) ⊂ B(X, Y ).

(c) Let X ⊃ φ be a BK space and Y be any of the spaces c, c or �∞. If A ∈ (X, Y ), then

‖LA‖ = ‖A‖(X,�∞) = sup
n

‖An‖∗
X < ∞.

Also, let F be the collection of all non-empty and finite subsets of N = {, , , . . .},
throughout. Then we have the following result.

Lemma . Let X ⊃ φ be a BK space. If A ∈ (X,�), then

‖A‖(X,�) ≤ ‖LA‖ ≤  · ‖A‖(X,�),

where ‖A‖(X,�) = supN∈F ‖∑
n∈N An‖∗

X < ∞.

For the reader’s convenience, we list a few well-known definitions and results concerning
the Hausdorff measure of noncompactness which can be found in [, ], and [].

Let S and M be subsets of a metric space (X, d) and ε > . Then S is called an ε-net of M
in X if for every x ∈ M there exists s ∈ S such that d(x, s) < ε. Further, if the set S is finite,
then the ε-net S of M is called a finite ε-net of M, and we say that M has a finite ε-net in X.
A subset M of a metric space X is said to be totally bounded if it has a finite ε-net for every
ε > . If X is complete, then M is totally bounded if and only if M is relatively compact (its
closure M̄ is a compact set). Let X and Y be Banach spaces. A linear operator L : X → Y
is called compact if D(L) = X for the domain of L and, for every bounded sequence (xn)∞n=
in X, the sequence (L(xn))∞n= has a convergent subsequence in Y .

By MX , we denote the collection of all bounded subsets of a metric space (X, d). If Q ∈
MX , then the Hausdorff measure of noncompactness of Q, is defined by

χ (Q) = inf{ε >  : Q has a finite ε-net in X}.

The function χ : MX → [,∞) is called the Hausdorff measure of noncompactness.
It is well known that if Q, Q, and Q are bounded subsets of a metric space X, then we

have

χ (Q) =  if and only if Q is totally bounded,

Q ⊂ Q implies χ (Q) ≤ χ (Q),

χ (Q) = χ (Q) for the closure Q of Q,

χ (Q ∪ Q) = max
(
χ (Q),χ (Q)

)
,

χ (Q ∩ Q) ≤ min
(
χ (Q),χ (Q)

)
.

Further, if X is a normed space then we also have

χ (Q + Q) ≤ χ (Q) + χ (Q),
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χ (αQ) = |α|χ (Q) for all α ∈C.

Let X and Y be Banach spaces and L ∈ B(X, Y ). Then the Hausdorff measure of noncom-
pactness of the operator L, denoted by ‖L‖χ , is defined by

‖L‖χ = χ
(
L(SX)

)
, (.)

where S = {x ∈ X : ‖x‖ ≤ } is the unit ball in X. Also we have

L is compact if and only if ‖L‖χ = . (.)

Now we shall point out the well-known result of Goldenštein, Gohberg, and Markus [],
Theorem , concerning the Hausdorff measure of noncompactness in Banach spaces. The
Hausdorff measure of noncompactness of a bounded subset of the BK space �p ( ≤ p < ∞)
is given by the following result.

Lemma . Let X be a BK space with AK and monotone norm, Q ∈MX , and Pn : X → X
(n ∈ N) be the operator (projection) defined by Pn(x, x, . . .) = x[n] = (x, x, . . . , xn, , , . . .)
for all x = (x, x, . . .) ∈ X. Then

χ (Q) = lim
n→∞

(
sup
x∈Q

∥∥(I – Pn)x
∥∥)

.

For some recent related work on this topic, we refer to [–], and []. For some ap-
plications in differential and integral equations, we refer to [, –], and [].

2 Results and discussion
Throughout this paper, let r, t ∈ U and s ∈ Uo, where

U =
{

u = (uk) ∈ w : uk �=  for all k
}

and Uo =
{

u = (uk) ∈ w : u �= 
}

.

For any sequence x = (xn) ∈ w, we define the sequence x̄ = (x̄n) of generalized means of
x by

x̄n =

rn

n∑
k=

sn–ktkxk (n ∈ N). (.)

Further, we define the infinite matrix Ā(r, s, t) of generalized means by

(
Ā(r, s, t)

)
nk =

⎧⎨
⎩sn–ktk/rn ( ≤ k ≤ n),

 (k > n)
(.)

for all n, k ∈ N. Then, by using the notation of (.), it follows by (.) that x̄ is the Ā(r, s, t)-
transform of x, that is, x̄ = (Ā(r, s, t))x for all x ∈ w.
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Moreover, it is obvious by (.) that Ā(r, s, t) is a triangle. Thus, it has a unique inverse
(Ā(r, s, t))– which is also a triangle. More precisely, we put D(s)

 = /s and

D(s)
n =


sn+



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s s   · · · 
s s s  · · · 
s s s s · · · 
...

...
...

...
...

sn– sn– sn– sn– · · · s

sn sn– sn– sn– · · · s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n = , , , . . .).

Then the entries of (Ā(r, s, t))– are given by

(
Ā(r, s, t)

)–
nk =

⎧⎨
⎩(–)n–kD(s)

n–krk/tn ( ≤ k ≤ n),

 (k > n)
(.)

for all n, k ∈N, that is, (Ā(r, s, t))– = Ā(t, s′, r), where s′ = (s′
n) such that s′

n = (–)nD(s)
n for all

n ∈N [], p.. Therefore, we have by (.) that

xn =

tn

n∑
k=

(–)n–kD(s)
n–krkx̄k (n ∈N). (.)

For an arbitrary subset X of w, the set X(r, s, t) has recently been introduced in [] as
the matrix domain of the triangle Ā(r, s, t) in X, that is,

X(r, s, t) =

{
x = (xk) ∈ w : y =

(

rn

n∑
k=

sn–ktkxk

)∞

n=

∈ X

}
.

It is obvious that X(r, s, t) is a sequence space whenever X is a sequence space, and we call
it the sequence space of generalized means. Further, if X is a BK space then X̄ = X(r, s, t)
is also a BK space with the norm given by

‖x‖X̄ = ‖y‖X (x ∈ X̄). (.)

Recently, Maji and Srivastava [] have defined and studied the sequence space X(r, s,
t; B(m)) for X ∈ {�∞, c, c} which is obtained by combining the generalized means and the
mth order generalized difference operator B(m)(u, v). They characterized some compact
operators on the spaces X(r, s, t; B(m)) for X ∈ {�∞, c, c} by using the Hausdorff measure
of noncompactness. In this paper, we derive some identities or estimates for the operator
norms and the Hausdorff measures of noncompactness of certain matrix operators on the
sequence space �p(r, s, t; B(m)). By applying the Hausdorff measure of noncompactness, we
obtain the necessary and sufficient conditions for such operators to be compact. Further,
we study some geometric properties of this space.

The generalized difference matrix of order m denoted as B(m) = B(m)(u, v) = (b(m)
nk ), u, v �= 

(see []) is defined as

b(m)
nk =

⎧⎪⎪⎨
⎪⎪⎩

( m
n–k

)
um–n+kvn–k (max{, n – m} ≤ k ≤ n),

 ( ≤ k < max{, n – m}),
 (k > n).
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The sequence spaces X(r, s, t; B(m)) for X ∈ {�∞, c, c} are defined as follows:

X
(
r, s, t; B(m)) =

{
x = (xk) ∈ w :

((
Ā(r, s, t)·B(m))x

)∞
n= ∈ X

}
.

By using the matrix domain, we can write

X
(
r, s, t; B(m)) = XĀ(r,s,t;B(m)) =

{
x = (xk) ∈ w : Ā

(
r, s, t; B(m))x ∈ X

}
,

where Ā(r, s, t; B(m)) = Ā(r, s, t)·B(m). The sequence x̄ = (x̄n) is Ā(r, s, t)·B(m)-transform of x =
(xn), i.e.

x̄n =
n∑

j=

( n∑
i=j

(
m

i – j

)
sn–iti

rn
um+j–ivi–j

)
xj (n ∈ N).

In this paper, we are interested in the study of �p(r, s, t; B(m)). We have the following
lemma which is immediate by Theorem . in [].

Lemma . If a = (ak) ∈ (�p(r, s, t; B(m)))β , then ã = (ãk) ∈ �
β
p (= �q) and we have

∞∑
k=

akxk =
∞∑

k=

ãk x̄k (.)

for all x = (xk) ∈ �̄p with x̄ = (Ā(r, s, t; B(m)))x, where

ãk = rk

[
ak

stkum +
k+∑
i=k

(–)i–k D(s)
i–k
ti

∞∑
j=k+

(
m + j – i – 

j – i

)
(–v)j–i

uj–i+m aj

+
∞∑

i=k+

(–)i–k D(s)
i–k
ti

∞∑
j=i

(
m + j – i – 

j – i

)
(–v)j–i

uj–i+m aj

]
. (.)

The following results will be needed in our study.

Lemma . We have

‖a‖∗
�̄p

= ‖ã‖∗
�p

for all a = (ak) ∈ �̄
β
p , where ã = (ãk) is the sequence defined by (.).

Proof Let a = (ak) ∈ �̄
β
p . Then it follows by Lemma . that ã = (ãk) ∈ �

β
p and the equality

(.) holds for all sequences x = (xk) ∈ �̄p and x̄ = (x̄k) ∈ �p which are connected by the
relation x̄ = (Ā(r, s, t; B(m)))x. Further, we see that x ∈ S�̄p if and only if x̄ ∈ S�p . Therefore,
we derive from (.) and (.) that

‖a‖∗
�̄p

= sup
x∈S

�̄p

∣∣∣∣∣
∞∑

k=

akxk

∣∣∣∣∣ = sup
x̄∈S�p

∣∣∣∣∣
∞∑

k=

ãkx̄k

∣∣∣∣∣ = ‖ã‖∗
�p .

This concludes the proof. �
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Remark . By combining Lemmas . and ., we have the following:
(a) If a ∈ (�(r, s, t; B(m)))β , then ‖a‖∗

�̄
= supk |ãk| < ∞.

(b) If a ∈ (�p(r, s, t; B(m)))β , then ‖a‖∗
�̄p

= (
∑∞

k= |ãk|q)/q < ∞, where q = p/(p – ) and
 < p < ∞.

Throughout this paper, if A = (ank) is an infinite matrix, we define the associated matrix
Ã = (ãnk) by

ãnk = rk

[
ank

stkum +
k+∑
i=k

(–)i–k D(s)
i–k
ti

∞∑
j=k+

(
m + j – i – 

j – i

)
(–v)j–i

uj–i+m anj

+
∞∑

i=k+

(–)i–k D(s)
i–k
ti

∞∑
j=i

(
m + j – i – 

j – i

)
(–v)j–i

uj–i+m anj

]
(.)

provided the series on the right converge for all n, k ∈N, which is the case whenever An ∈
(�p(r, s, t))β for all n ∈N [], Theorem .. Then we have the following.

Lemma . Let Y be a sequence space and A = (ank) be an infinite matrix. If A ∈
(�p(r, s, t; B(m)), Y ), then Ã ∈ (�p, Y ) such that Ax = Ãx̄ for all x ∈ �p(r, s, t) with x̄ =
(Ā(r, s, t))x, where Ã = (ãnk) is the associated matrix defined by (.).

Proof Suppose that A ∈ (�p(r, s, t; B(m)), Y ) and let x ∈ �p(r, s, t; B(m)). Then An ∈ (�p(r, s, t;
B(m)))β for all n ∈ N. Thus, it follows by Lemma . that Ãn ∈ �

β
p for all n ∈ N and the

equality Ax = Ãx̄ holds which yields that Ãx̄ ∈ Y , where x̄ is the sequence of generalized
means of x, i.e., x̄ = (Ā(r, s, t; B(m)))x. Further, it is obvious by (.) and Remark . that
every x̄ ∈ �p is the sequence of generalized means of some x ∈ �p(r, s, t; B(m)). Hence, we
deduce that Ã ∈ (�p, Y ). This completes the proof. �

Finally, we conclude this section by the following results on operator norms.

Theorem . Let A = (ank) an infinite matrix and Ã = (ãnk) the associated matrix. If A is
in any of the classes (�p(r, s, t; B(m)),�∞), (�p(r, s, t; B(m)), c) or (�p(r, s, t; B(m)), c), then

‖LA‖ = ‖A‖(�p(r,s,t;B(m)),�∞) = sup
n

‖Ãn‖∗
�p < ∞.

Proof This is immediate by combining Lemmas . and .. �

Theorem . If A ∈ (�p(r, s, t; B(m)),�), then

‖A‖(�p(r,s,t;B(m)),�) ≤ ‖LA‖ ≤  · ‖A‖(�p(r,s,t;B(m)),�),

where

‖A‖(�p(r,s,t;B(m)),�) = sup
N∈F

∥∥∥∥∑
n∈N

Ãn

∥∥∥∥
∗

�p

< ∞.

Proof This result follows from Lemmas . and .. �
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Theorem . If A ∈ (�(r, s, t; B(m)),�p), then

‖LA‖ = ‖A‖(�(r,s,t;B(m)),�p) = sup
k

( ∞∑
n=

|ãnk|p
)/p

< ∞.

Proof The proof is elementary and left to the reader. �

Remark . The characterizations of matrix classes considered in this paper can easily be
obtained as in Corollaries . and . of []. Thus, we shall omit these characterizations
and only deal with the operator norms and the Hausdorff measures of noncompactness
of some matrix operators which are given by infinite matrices in such classes.

3 Main results
In this section, we derive some identities or estimates for the Hausdorff measures of non-
compactness of certain matrix operators on the spaces of generalized means. Further, we
apply our results to obtain the necessary and sufficient (or only sufficient) conditions for
such operators to be compact.

We may begin with quoting the following lemma [], Theorem ..

Lemma . Let X ⊃ φ be a BK space. Then we have:
(a) If A ∈ (X,�∞), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

‖An‖∗
X .

(b) If A ∈ (X, c), then

‖LA‖χ = lim sup
n→∞

‖An‖∗
X .

(c) If X has AK or X = �∞ and A ∈ (X, c), then




· lim sup
n→∞

‖An – α‖∗
X ≤ ‖LA‖χ ≤ lim sup

n→∞
‖An – α‖∗

X ,

where α = (αk) with αk = limn→∞ ank for all k ∈N.

Now, let A = (ank) be an infinite matrix and Ã = (ãnk) the associated matrix defined by
(.). Then, by combining Lemmas ., . and ., we have the following result.

Theorem . We have:
(a) If A ∈ (�p(r, s, t; B(m)),�∞), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

‖Ãn‖∗
�p (.)

and

LA is compact if lim
n→∞‖Ãn‖∗

�p = . (.)
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(b) If A ∈ (�p(r, s, t; B(m)), c), then

‖LA‖χ = lim sup
n→∞

‖Ãn‖∗
�p (.)

and

LA is compact if and only if lim
n→∞‖Ãn‖∗

�p = . (.)

(c) If A ∈ (�p(r, s, t; B(m)), c), then




· lim sup
n→∞

‖Ãn – α̃‖∗
�p ≤ ‖LA‖χ ≤ lim sup

n→∞
‖Ãn – α̃‖∗

�p (.)

and

LA is compact if and only if lim
n→∞‖Ãn – α̃‖∗

�p = , (.)

where α̃ = (α̃k) with α̃k = limn→∞ ãnk for all k ∈N.

Proof Note that parts (a) and (b) are proved in []. Further it is obvious that (.), (.)
and (.) are, respectively, obtained from (.), (.), and (.) by using (.). Thus, we have
to prove (.), (.) and (.).

Since �p(r, s, t; B(m)) is a BK space, we deduce by means of Lemma . that (.) and (.)
are immediate by parts (a) and (b) of Lemma ., respectively.

To prove (.), we have A ∈ (�p(r, s, t; B(m)), c) and hence Ã ∈ (X, c) by Lemma .. There-
fore, it follows by part (c) of Lemma . that




· lim sup
n→∞

‖Ãn – α̃‖∗
X ≤ ‖LÃ‖χ ≤ lim sup

n→∞
‖Ãn – α̃‖∗

X , (.)

where α̃ = (α̃k) and α̃k = limn→∞ ãnk for all k ∈N.
Now, let us write S = SX and S̄ = S�p(r,s,t;B(m)), for short. Then we obtain by (.) and

Lemma .

‖LA‖χ = χ
(
LA(S̄)

)
= χ (AS̄) (.)

and

‖LÃ‖χ = χ
(
LÃ(S)

)
= χ (ÃS). (.)

Further, we see that x ∈ S̄ if and only if x̄ ∈ S, and since Ax = Ãx̄ by Lemma ., we deduce
that AS̄ = ÃS. This leads us with (.) and (.) to the consequence that ‖LA‖χ = ‖LÃ‖χ .
Hence, we get (.) from (.). This completes the proof. �

It is worth mentioning that the condition in (.) is only a sufficient condition for the
operator LA to be compact, where A ∈ (�p(r, s, t; B(m)),�∞) and X is a BK space with AK
or X = �∞. More precisely, the following example will show that it is possible for LA to
be compact while limn→∞ ‖Ãn‖∗

X �= . Hence, in general, we have just ‘if ’ in (.) of Theo-
rem .(a).
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Example . Let us define the matrix A = (ank) by an = st/r and ank =  for k ≥ 
(n ∈ N). Let B(m) = I , the identity matrix. Then we have for every x = (xk) ∈ �p(r, s, t; B(m)),
Ax = (stx/r)e and hence A ∈ (�p(r, s, t; B(m)),�∞). Further, it is obvious that LA is of
finite rank and so LA is compact. On the other hand, by using (.), it can easily be seen
that Ãn = e() for all n ∈ N. Thus, we obtain by Lemma . that ‖Ãn‖∗

X =  for all n ∈ N,
which implies that limn→∞ ‖Ãn‖∗

X = .

Moreover, as an immediate consequence of Theorem ., we have the following corol-
lary.

Corollary . If either A ∈ (�∞(r, s, t; B(m)), c) or A ∈ (�∞(r, s, t; B(m)), c), then the operator
LA is compact.

Proof Let A ∈ (�̄∞, c). Then we have by Lemma . that Ã ∈ (�∞, c) which implies that
limn→∞(

∑∞
k= |ãnk|) = , that is, limn→∞ ‖Ãn‖∗

�∞ =  by Lemma .. This leads us with The-
orem .(b) to the consequence that LA is compact. Similarly, if A ∈ (�∞(r, s, t; B(m)), c) then
Ã ∈ (�∞, c) and hence limn→∞(

∑∞
k= |ãnk – α̃k|) = , which can be written as limn→∞ ‖Ãn –

α̃‖∗
�∞ = , where α̃ = (α̃k) and α̃k = limn→∞ ãnk for all k ∈ N. Therefore, we deduce from

Theorem .(c) that LA is compact. �

Throughout, let Fr (r ∈ N) be the subcollection of F consisting of all non-empty and
finite subsets of N with elements that are greater than r, that is,

Fr = {N ∈F : n > r for all n ∈ N} (r ∈N).

Then we have the following.

Lemma . (Theorem . in []) Let X ⊃ φ be a BK space. If A ∈ (X,�), then

lim
r→∞

(
sup

N∈Fr

∥∥∥∥∑
n∈N

An

∥∥∥∥
∗

X

)
≤ ‖LA‖χ ≤  · lim

r→∞

(
sup

N∈Fr

∥∥∥∥∑
n∈N

An

∥∥∥∥
∗

X

)
.

Theorem . If A ∈ (�p(r, s, t; B(m)),�), then

lim
r→∞‖A‖(r)

(�p(r,s,t;B(m)),�) ≤ ‖LA‖χ ≤  · lim
r→∞‖A‖(r)

(�p(r,s,t;B(m)),�) (.)

and

LA is compact if and only if lim
r→∞‖A‖(r)

(�p(r,s,t;B(m)),�) = , (.)

where

‖A‖(r)
(�p(r,s,t;B(m)),�) = sup

N∈Fr

∥∥∥∥∑
n∈N

Ãn

∥∥∥∥
∗

X
(r ∈ N).

Proof It is obvious that (.) is obtained by combining Lemmas . and .. Also, by using
(.), we get (.) from (.). �
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Corollary . Let  < p < ∞, q = p/(p – ). If A ∈ (�p(r, s, t; B(m)),�), then

lim
r→∞‖A‖(r)

(�p(r,s,t;B(m)),�) ≤ ‖LA‖χ ≤  · lim
r→∞‖A‖(r)

(�p(r,s,t;B(m)),�)

and

LA is compact if and only if lim
r→∞‖A‖(r)

(�p(r,s,t;B(m)),�) = ,

where

‖A‖(r)
(�p(r,s,t;B(m)),�) = sup

N∈Fr

( ∞∑
k=

∣∣∣∣∑
n∈N

ãnk

∣∣∣∣
q
)/q

(r ∈ N).

Now, we prove the following result.

Theorem . Let  ≤ p < ∞. If A ∈ (�(r, s, t; B(m)),�p), then

‖LA‖χ = lim
r→∞

(
sup

k

( ∞∑
n=r

|ãnk|p
)/p)

(.)

and

LA is compact if and only if lim
r→∞

(
sup

k

( ∞∑
n=r

|ãnk|p
))

= . (.)

Proof We write S̄ = S�̄ . Then we see by Lemma . that LA(S̄) = AS̄ ∈M�p . Thus, it follows
from (.) and Lemma . that

‖LA‖χ = χ (AS̄) = lim
r→∞

(
sup
x∈S̄

∥∥(I – Pr)(Ax)
∥∥

�p

)
, (.)

where Pr : �p → �p (r ∈ N) is the operator defined by Pr(x) = (x, x, . . . , xr , , , . . .) for all
x = (xk) ∈ �p and I is the identity operator on �p.

On the other hand, let x ∈ �(r, s, t; B(m)) be given. Then x̄ ∈ � and since A ∈ (�(r, s, t;
B(m)),�p), we obtain from Lemma . that Ã ∈ (�,�p) and Ax = Ãx̄. Thus, we have for
every r ∈N,

∥∥(I – Pr)(Ax)
∥∥

�p
=

∥∥(I – Pr)(Ãx̄)
∥∥

�p

=

( ∞∑
n=r+

∣∣Ãn(x̄)
∣∣p

)/p

=

( ∞∑
n=r+

∣∣∣∣∣
∞∑

k=

ãnkx̄k

∣∣∣∣∣
p)/p

≤
∞∑

k=

( ∞∑
n=r+

|ãnkx̄k|p
)/p
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≤ ‖x̄‖�

(
sup

k

( ∞∑
n=r+

|ãnk|p
)/p)

= ‖x‖�(r,s,t)

(
sup

k

( ∞∑
n=r+

|ãnk|p
)/p)

.

This yields

sup
x∈S̄

∥∥(I – Pr)(Ax)
∥∥

�p
≤ sup

k

( ∞∑
n=r+

|ãnk|p
)/p

(r ∈N).

Therefore, we deduce from (.) that

‖LA‖χ ≤ lim
r→∞

(
sup

k

( ∞∑
n=r+

|ãnk|p
)/p)

. (.)

To prove the converse inequality, let b(k) ∈ �(r, s, t; B(m)) be such that (Ā(r, s, t; B(m)))b(k) =
e(k) (k ∈ N), that is, e(k) is the sequence of generalized means of b(k) for each k ∈ N (see
Corollary . in []). Then we have by Lemma . that Ab(k) = Ãe(k) = (ãnk)∞n= for every
k ∈N.

Now, let B = {b(k) : k ∈N}. Then B ⊂ S̄ and hence AB ⊂ AS̄, which implies that χ (AB) ≤
χ (AS̄) = ‖LA‖χ .

Further, it follows by applying Lemma . that

χ (AB) = lim
r→∞

(
sup

k

( ∞∑
n=r+

∣∣An
(
b(k))∣∣p

)/p)

= lim
r→∞

(
sup

k

( ∞∑
n=r+

|ãnk|p
)/p)

.

Thus, we obtain

lim
r→∞

(
sup

k

( ∞∑
n=r+

|ãnk|p
)/p)

≤ ‖LA‖χ . (.)

Hence, we get (.) by combining (.) and (.). This completes the proof, since
(.) is immediate by (.) and (.). �

Finally, we end this section with the following example, which shows that the limit in
(.) may not be zero, that is, there exist matrix operators in the class B(�̄,�p) which are
not compact, where  ≤ p < ∞.

Example . Let A = (ank) be the infinite matrix defined by A = Ā(r, s, t; B(m)). Let B(m) =
I , the identity matrix. Since �(r, s, t; B(m)) is the matrix domain of A in �, we have A ∈
(�(r, s, t; B(m)),�) and hence A ∈ (�̄,�p) for  ≤ p < ∞. Further, it is trivial to see that the
associated matrix Ã is the identity matrix, that is, ãnn =  and ãnk =  for k �= n (n ∈ N).
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Now, let r ∈N be given. Then we have, for every k ∈N,

∞∑
n=r

|ãnk|p =

⎧⎨
⎩ (k ≥ r),

 (k < r).

This implies that

sup
k

( ∞∑
n=r

|ãnk|p
)/p

=  (r ∈N)

which leads us with (.) of Theorem . to the conclusion that ‖LA‖χ =  and hence LA

is not compact.

4 Geometric properties
Recently there has been a lot of interest in investigating geometric properties of sequence
spaces besides topological and some other usual properties. In the literature, there are
many papers concerning geometric properties of various Banach sequence spaces.

A Banach space X is said to be a Köthe sequence space (see [, ], and []) if X is a
subspace of w such that

(i) if x ∈ w, y ∈ X , and |x(i)| ≤ |y(i)| for all i ∈N, then x ∈ X and ‖x‖ ≤ ‖y‖;
(ii) there exists an element x ∈ X such that x(i) >  for all i ∈N.
A Köthe sequence space X is said to have the Fatou property if for any real sequence x

and any {xn} in X such that xn → x coordinatewise and supn ‖xn‖ < ∞, we have x ∈ X and
‖xn‖ → ‖x‖.

A Banach space X is said to have the Banach-Saks property if every bounded sequence
{xn} in X admits a subsequence {zn} such that the sequence {tk(z)} is convergent in X with
respect to the norm, where

tk(z) =

k

(z + z + · · · + zk) ∀k ∈N.

A Banach space X is said to have the weak Banach-Saks property whenever given any
weakly null sequence {xn} in X there exists its subsequence {zn} such that the sequence
{tk(z)} converges to zero strongly.

Given any p ∈ (,∞), we say that a Banach space (X,‖ · ‖) has the Banach-Saks property
of type p if there exists a constant c >  such that every weakly null sequence {xk} has a
subsequence {xk�

} such that (see [])

∥∥∥∥∥
n∑

�=

xk�

∥∥∥∥∥ ≤ cn

p ∀n ∈N.

The Banach-Saks property of type p ∈ (,∞) and weak Banach-Saks property for Cesàro
sequence spaces have been considered in [].

We say that a Banach space X has the weak fixed point property if every nonexpan-
sive self-mapping defined on a non-empty weakly compact convex subset of X has a fixed
point.
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In [], García-Falset introduced the following coefficient for a Banach space (X,‖ · ‖):

R(X) = sup
{

lim inf
n→∞ ‖xn – x‖ : x ∈ B(X), {xn} ⊂ B(X) and xn →  weakly

}

and he proved (see [, ]) that a Banach space X with R(X) <  has the weak fixed point
property.

A Köthe sequence space X is said to be order continuous if for any sequence {xn} and
any x in X+ (the positive cone in X) such that xn(i) ≤ x(i) as n → ∞ for all i, n ∈ N and
xn(i) →  for any i ∈N, we have ‖xn‖ →  as n → ∞.

Clarkson modulus of convexity of a normed space (X,‖ · ‖) is defined (see work by Clark-
son [] and Day []) by the formula

δX(ε) = inf

{
 –

‖x + y‖


; x, y ∈ S(X),‖x – y‖ = ε

}

for any ε ∈ [, ]. The inequality δX(ε) >  for all ε ∈ (, ] characterizes the uniform con-
vexity of X and the equality δX() =  characterizes strict convexity (= rotundity) of X.

The Gurarĭı modulus of convexity of a normed space X is defined (see []) by

βX(ε) = inf
{

 – inf
α∈[,]

∥∥αx + ( – α)y
∥∥; x, y ∈ δ(X),‖x – y‖ = ε

}

for any ε ∈ [, ]. It is obvious that δX(ε) ≤ βX(ε) for any Banach space X and any ε ∈ [, ].
It is also known that βX(ε) ≤ δX(ε) for any ε ∈ [, ] and that X is rotund if and only if
βX(ε) =  and X is uniformly convex if and only if βX(ε) >  for any ε ∈ [, ].

Theorem . The Banach-Saks type of the space �p(r, s, t; B(m)) is equal to p.

Proof Let (εn) be a sequence of positive numbers for which
∑∞

n= εn ≤ 
 . Let {xn} be a

weakly null sequence in �p(r, s, t; B(m)). Set t = x =  and t = xn = x. Then there exists
r ∈N such that

∥∥∥∥∥
∞∑

i=r+

t(i)e(i)

∥∥∥∥∥
�p(r,s,t;B(m))

< ε.

Since the fact that {xn} is a weakly null sequence implies that xn → , coordinatewise,
there is an n ∈ N such that

∥∥∥∥∥
r∑

i=

xn(i)e(i)

∥∥∥∥∥
�p(r,s,t;B(m))

< ε

for all n ≥ n. Set t = xn . Then there exists an r > r such that

∥∥∥∥∥
∞∑

i=r+

t(i)e(i)

∥∥∥∥∥
�p(r,s,t;B(m))

< ε.
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By using the fact that xn →  coordinatewise, there exists an n > n such that

∥∥∥∥∥
r∑

i=

xn(i)e(i)

∥∥∥∥∥
�p(r,s,t;B(m))

< ε

for all n ≥ n. Continuing this process, we can find by induction two increasing subse-
quences (ri) and (ni) such that

∥∥∥∥∥
rj∑

i=

xn(i)e(i)

∥∥∥∥∥
�p(r,s,t;B(m))

< εj

for all n ≥ nj+ and

∥∥∥∥∥
∞∑

i=rj+

tj(i)e(i)

∥∥∥∥∥
�p(r,s,t;B(m))

< εj,

where tj = xnj . Hence,

∥∥∥∥∥
n∑

j=

tj

∥∥∥∥∥
�p(r,s,t;B(m))

=

∥∥∥∥∥
n∑

j=

( rj–∑
i=

tj(i)e(i) +
rj∑

i=rj–+

tj(i)e(i) +
∞∑

i=rj+

tj(i)e(i)

)∥∥∥∥∥
�p(r,s,t;B(m))

≤
∥∥∥∥∥

n∑
j=

( rj∑
i=rj–+

tj(i)e(i)

)∥∥∥∥∥
�p(r,s,t;B(m))

+

∥∥∥∥∥
n∑

j=

( rj–∑
i=

tj(i)e(i)

)∥∥∥∥∥
�p(u,v)

+

∥∥∥∥∥
n∑

j=

( ∞∑
i=rj+

tj(i)e(i)

)∥∥∥∥∥
�p(r,s,t;B(m))

≤
∥∥∥∥∥

n∑
j=

( rj∑
i=rj–+

tj(i)e(i)

)∥∥∥∥∥
�p(r,s,t;B(m))

+ 
n∑

j=

εj

and

∥∥∥∥∥
n∑

j=

( rj∑
i=rj–+

tj(i)e(i)

)∥∥∥∥∥
p

�p(r,s,t;B(m))

=
n∑

j=

rj∑
i=rj–+

∣∣∣∣∣
i∑

k=

uivktj(k)

∣∣∣∣∣
p

≤
n∑

j=

∞∑
i=

∣∣∣∣∣
i∑

k=

uivktj(k)

∣∣∣∣∣
p

≤ (n + ).

Hence we obtain

∥∥∥∥∥
n∑

j=

( rj∑
i=rj–+

tj(i)e(i)

)∥∥∥∥∥ ≤
( n∑

j=



) 
p

= (n + )

p .
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By using the inequality  ≤ (n + )

p for all n ∈ N and  ≤ p < ∞, we have

∥∥∥∥∥
n∑

j=

tj

∥∥∥∥∥
�p(r,s,t;B(m))

≤ (n + )

p +  ≤ (n + )


p .

Therefore, the space �p(r, s, t; B(m)) has the Banach-Saks type p, which completes the proof
of the theorem. �

Theorem . The Gurariı̆ of modulus of convexity for the normed space �p(r, s, t; B(m))
satisfies the inequality

β�p(r,s,t;B(m))(ε) ≤  –
(

 –
(

ε



)p) 
p

for any  ≤ ε ≤ .

Proof Let x ∈ �p(r, s, t; B(m)). By using (.), we have

‖x‖�p(r,s,t;B(m)) =
∥∥(

Ā(r, s, t)·B(m))x
∥∥

�p
=

(∑
n

∣∣((Ā(r, s, t)·B(m))x
)

n

∣∣p
) 

p
.

Let  ≤ ε ≤  and using (.), let us consider the following sequences:

x = (xn) =
(

H
((

 –
(

ε



)p) 
p
)

, H
(

ε



)
, , , . . .

)
,

t = (tn) =
(

H
((

 –
(

ε



)p) 
p
)

, H
(

–
ε



)
, , , . . .

)
,

where H = (Ā(r, s, t) ·B(m))–
nk . Since yn = ((Ā(r, s, t) ·B(m))x)n and zn = ((Ā(r, s, t) ·B(m))t)n, we

have

y = (yn) =
((

 –
(

ε



)p) 
p

,
(

ε



)
, , , . . .

)
,

z = (zn) =
((

 –
(

ε



)p) 
p

,
(

–
ε



)
, , , . . .

)
.

By using the sequences given above, we obtain the following equalities:

‖x‖p
�p(r,s,t;B(m)) =

∥∥(
Ā(r, s, t) · B(m))x

∥∥p
�p

=
∣∣∣∣
(

 –
(

ε



)p) 
p
∣∣∣∣
p

+
∣∣∣∣ ε

∣∣∣∣
p

=  –
(

ε



)p

+
(

ε



)p

= ,

‖t‖p
�p(r,s,t;B(m)) =

∥∥(
Ā(r, s, t) · B(m))t

∥∥p
�p

=
∣∣∣∣
(

 –
(

ε



)p) 
p
∣∣∣∣
p

+
∣∣∣∣– ε



∣∣∣∣
p
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=  –
(

ε



)p

+
(

ε



)p

= ,

‖x – t‖�p(r,s,t;B(m)) =
∥∥(

Ā(r, s, t) · B(m))x –
(
Ā(r, s, t)·B(m))t

∥∥
�p

=
(∣∣∣∣

(
 –

(
ε



)p) 
p

–
(

 –
(

ε



)p) 
p
∣∣∣∣
p

+
∣∣∣∣ ε –

(
–

ε



)∣∣∣∣
p) 

p

= ε.

To complete the estimate of the Gurarĭı on the modulus of convexity, it remains to calcu-
late the infimum of ‖αx + ( – α)t‖p

�p(r,s,t;B(m)) for  ≤ α ≤ . We have

inf
≤α≤

∥∥αx + ( – α)t
∥∥

�p(r,s,t;B(m))

= inf
≤α≤

∥∥α
(
Ā(r, s, t) · B(m))x + ( – α)

(
Ā(r, s, t) · B(m))t

∥∥
�p

= inf
≤α≤

[∣∣∣∣α
(

 –
(

ε



)p) 
p

+ ( – α)
(

 –
(

ε



)p) 
p
∣∣∣∣
p

+
∣∣∣∣α

(
ε



)
+ ( – α)

(
–

ε



)∣∣∣∣
p] 

p

= inf
≤α≤

[
 –

(
ε



)p

+ |α – |p
(

ε



)p] 
p

=
(

 –
(

ε



)p) 
p

.

Consequently, we get for p ≥  the inequality

βlp(u,v)(ε) ≤  –
(

 –
(

ε



)p) 
p

,

which is the desired result. �

5 Conclusion
Recently the sequence space X(r, s, t; B(m)) for X ∈ {�∞, c, c} has been studied by Maji and
Srivastava [] which is obtained by combining the generalized means and the mth order
generalized difference operator B(m)(u, v). They characterized some compact operators on
the spaces X(r, s, t; B(m)) for X ∈ {�∞, c, c} by using the Hausdorff measure of noncompact-
ness. In this paper, we have derived some identities or estimates for the operator norms and
the Hausdorff measures of noncompactness of certain matrix operators on the sequence
space �p(r, s, t; B(m)). Further, by applying the Hausdorff measure of noncompactness, we
obtained the necessary and sufficient conditions for such operators to be compact. In the
last section, we have studied some geometric properties of this space, e.g. the property
Banach-Saks type and Gurarĭı modulus of convexity.
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4. Banaś, J, Mursaleen, M: Sequence Spaces and Measures of Noncompactness with Applications to Differential and

Integral Equations. Springer, New Delhi (2014)
5. Goldenštein, LS, Gohberg, IT, Markus, AS: Investigations of some properties of bounded linear operators with their
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13. Başarir, M, Kara, EE: On themth order difference sequence space of generalized weighted mean and compact

operators. Acta Math. Sci. 33(3), 797-813 (2013)
14. Clarkson, JA: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396-414 (1936)
15. Cui, YA, Hudzik, H: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Sci.

Math. 65, 179-187 (1999)
16. Day, MM: Uniform convexity in factor and conjugate spaces. Ann. Math. 45(2), 375-385 (1944)
17. Diestel, J: Sequences and Series in Banach Spaces. Graduate Texts in Math., vol. 92. Springer, Berlin (1984)
18. García-Falset, J: Stability and fixed points for nonexpansive mappings. Houst. J. Math. 20, 495-505 (1994)
19. García-Falset, J: The fixed point property in Banach spaces with NUS-property. J. Math. Anal. Appl. 215(2), 532-542

(1997)
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31. Banaś, J: Measures of noncompactness in the study of solutions of nonlinear differential and integral equations. Cent.

Eur. J. Math. 10(6), 2003-2011 (2012)
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