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1 Introduction
The setting for this paper is the Euclidean n-space Rn. Let Sn

o denote the set of star bodies
in R

n. Let Sn– denote the unit sphere in R
n. For the n-dimensional volume of body K , we

write V (K).
Intersection bodies first appeared in a paper by Busemann [] and were explicitly de-

fined and named by Lutwak in the important paper []. Intersection bodies have been
becoming the central notion in the dual Brunn Minkowski theory (see, e.g., [–]). In
, Ludwig [] characterized the intersection body operator, which is the only non-
trivial GL(n) contravariant radial valuation. Whereafter, Schuster [] introduced radial
Blaschke-Minkowski homomorphisms, which are more general intersection body opera-
tors:

Definition . A map � : Sn
o → Sn

o is called a radial Blaschke-Minkowski homomor-
phism if it satisfies the following conditions:

() � is continuous;
() for all K , L ∈ Sn

o , �(K +̃n–L) = �K +̃�L, that is, �K is a radial Blaschke-Minkowski
sum, where +̃n– and +̃ denote Ln– and L radial Minkowski addition, respectively;

() � intertwines rotations, that is, �(ϑK) = ϑ�K for all K ∈ Sn
o and all ϑ ∈ SO(n).

Further, Schuster [] showed that radial Blaschke-Minkowski homomorphisms sat-
isfy the geometric inequalities of the Aleksandrov-Fenchel, Minkowski, and Brunn-

© 2016 Zhou and Wang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1122-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1122-0&domain=pdf
mailto:wdwxh722@163.com


Zhou and Wang Journal of Inequalities and Applications  (2016) 2016:183 Page 2 of 11

Minkowski types and established the following Brunn-Minkowski inequality for radial
Blaschke-Minkowski homomorphisms of star bodies.

Theorem .A If K , L ∈ Sn
o , then

V
(

�(K +̃L)
) 

n(n–) ≤ V (�K)


n(n–) + V (�L)


n(n–)

with equality if and only if K and L are dilates.

In recent years, many inequalities for the radial Blaschke-Minkowski homomorphisms
were established (see, e.g., [–]). Later, by associating the Lq harmonic radial sum
with the Lq radial Blaschke sum of star bodies Wei et al. [] gave the following Brunn-
Minkowski type inequalities for radial Blaschke-Minkowski homomorphisms.

Theorem .B If K , L ∈ Sn
o and real q ≥ , then

V
(

�(K +̆qL)
)– q

n(n–) ≥ V (�K)– q
n(n–) + V (�L)– q

n(n–)

with equality if and only if K and L are dilates, where +̆q is the Lq harmonic radial sum.

Theorem .C If K , L ∈ Sn
o and real n > q ≥ , then

V
(

�(K +̂qL)
)

n–q
n(n–) ≤ V (�K)

n–q
n(n–) + V (�L)

n–q
n(n–)

with equality if and only if K and L are dilates, where +̂q is the Lq radial Blaschke sum.

In , Wang et al. [] introduced the concept of an Lp radial Blaschke-Minkowski
homomorphism.

Definition . Let K , L be star bodies, p ∈ R, p �= . A map �p : Sn
o → Sn

o is called an Lp

radial Blaschke-Minkowski homomorphism if it satisfies the following conditions:
() �p is continuous with respect to radial metric;
() For all K , L ∈ Sn

o , �p(K +̃n–pL) = �pK +̃p�pL, that is, �pK is an Lp radial
Blaschke-Minkowski sum, where +̃q denotes Lq radial Minkowski addition;

() �p is SO(n) equivariant, that is, �p(ϑK) = ϑ�pK for all K ∈ Sn
o and all ϑ ∈ SO(n).

Meanwhile, they [] studied the Busemann-Petty type problem for Lp radial Blaschke-
Minkowski homomorphisms. These results are generalized to a large class of Lp radial
valuations.

The main goal of this paper is to establish Brunn-Minkowski type inequalities for the
Lq radial Minkowski sum, Lq harmonic radial sum, Lq radial Blaschke sum, and Lq har-
monic Blaschke sum of Lp radial Blaschke-Minkowski homomorphisms. First, we obtain
the following Brunn-Minkowski type inequality for an Lq radial Minkowski sum.

Theorem . Let K , L ∈ Sn
o and p, q ∈R, p, q �= .
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(i) If p >  and  < q < n – p, then

V
(

�p(K +̃qL)
)

pq
n(n–p) ≤ V (�pK)

pq
n(n–p) + V (�pL)

pq
n(n–p) ; (.)

(ii) If q > n – p >  > p or q < n – p <  or q <  < n – p and p > , then

V
(

�p(K +̃qL)
)

pq
n(n–p) ≥ V (�pK)

pq
n(n–p) + V (�pL)

pq
n(n–p) . (.)

Equality holds in each inequality if and only if K and L are dilates.

Taking p = q =  in Theorem ., by (.) we obtain Theorem .A. As applications of
Theorem ., in Section , we give Brunn-Minkowski type inequalities for the Lq harmonic
radial sum and Lq radial Blaschke sum of Lp radial Blaschke-Minkowski homomorphisms,
that is, Theorem . and Theorem .. Taking p =  in Theorems . and ., we easily get
Theorems .B and .C, respectively.

Further, a Brunn-Minkowski type inequality for the Lq harmonic Blaschke sum of Lp

radial Blaschke-Minkowski homomorphisms can be given as follows.

Theorem . Let K , L ∈ Sn
o , p, q ∈R, p �= , q �= –n.

(i) If  < p < –q < n, then

V (�p(K ∓q L))
p(n+q)
n(n–p)

V (K ∓q L)
≤ V (�pK)

p(n+q)
n(n–p)

V (K)
+

V (�pL)
p(n+q)
n(n–p)

V (L)
; (.)

(ii) If –q < p < , then

V (�p(K ∓q L))
p(n+q)
n(n–p)

V (K ∓q L)
≥ V (�pK)

p(n+q)
n(n–p)

V (K)
+

V (�pL)
p(n+q)
n(n–p)

V (L)
. (.)

Equality holds in each inequality if and only if K and L are dilates.
Here K ∓q L denotes the Lq harmonic Blaschke sum of K and L.

In , Haberl and Ludwig [] defined the Lp-intersection bodies as follows: For K ∈
Sn

o , real p < , p �= , the Lp-intersection body IpK of K is the origin-symmetric star body
whose radial function is defined by

ρ
p
IpK (u) =

∫

K
|u · x|–p dx =


n – p

∫

Sn–
|u · v|–pρ

n–p
K (v) dS(v) (.)

for all u ∈ Sn–. For the studies of Lp-intersection bodies, also see [–].
According to Definition . and (.), we easily see that the Lp-intersection body operator

Ip is a particular Lp radial Blaschke-Minkowski homomorphism. So from Theorems .
and . we have the following results.

Corollary . For K , L ∈ Sn
o , p, q ∈R, q �= , p < , and p �= , we have:

(i) If p >  and  < q < n – p, then

V
(

Ip(K +̃qL)
)

pq
n(n–p) ≤ V (IpK)

pq
n(n–p) + V (IpL)

pq
n(n–p) ;
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(ii) If p <  and q > n – p, or p >  and q < , then

V
(

Ip(K +̃qL)
)

pq
n(n–p) ≥ V (IpK)

pq
n(n–p) + V (IpL)

pq
n(n–p) .

Equality holds in each inequality if and only if K and L are dilates.

Corollary . For K , L ∈ Sn
o , p, q ∈R, q �= –n, p < , p �= , we have:

(i) If  < p < –q, then

V (Ip(K ∓q L))
p(n+q)
n(n–p)

V (K ∓q L)
≤ V (IpK)

p(n+q)
n(n–p)

V (K)
+

V (IpL)
p(n+q)
n(n–p)

V (L)
;

(ii) If  > p > –q, then

V (Ip(K ∓q L))
p(n+q)
n(n–p)

V (K ∓q L)
≥ V (IpK)

p(n+q)
n(n–p)

V (K)
+

V (IpL)
p(n+q)
n(n–p)

V (L)
.

Equality holds in each inequality if and only if K and L are dilates.

The proofs of Theorems . and . are completed in Section . Besides, in Section , we
establish two monotonic inequalities for Lp radial Blaschke-Minkowski homomorphisms.

2 Background materials
If K is a compact star-shaped (about the origin) set in R

n, then its radial function ρK =
ρ(K , ·) : Rn\{} → [,∞) is defined as (see [])

ρ(K , u) = max{λ ≥  : λu ∈ K}

for all u ∈ Sn–. If ρ(K , ·) is positive and continuous, K is called a star body.

2.1 Lp radial Minkowski combination and Lp dual mixed volume
For K , L ∈ Sn

o , real p �= , and λ,μ ≥  (not both ), the Lp radial Minkowski combination
λ · K +̃pμ · L ∈ Sn

o of K and L is defined by (see [])

ρ(λ · K +̃pμ · L, ·)p = λρ(K , ·)p + μρ(L, ·)p. (.)

If p =  in (.), then λ · K +̃μ · L is called the radial Minkowski combination of K and L.
For K , L ∈ Sn

o , real p �= , and ε > , the Lp dual mixed volume ˜Vp(K , L) of K and L is
defined by (see [])

n
p

˜Vp(K , L) = lim
ε−→+

V (K +̃pε · L) – V (K)
ε

.

This definition and the polar coordinate formula for volume give the following integral
representation of the Lp dual mixed volume (see []):

˜Vp(K , L) =

n

∫

Sn–
ρ

n–p
K (u)ρp

L(u) du, (.)

where the integration is with respect to the spherical Lebesgue measure on Sn–.
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From (.) it follows immediately that, for each K ∈ Sn
o ,

˜Vp(K , K) =

n

∫

Sn–
ρn

K (u) du = V (K). (.)

As an application of the Hölder inequality, we get the Lp dual Minkowski inequality for
Lp dual mixed volume (see []).

Lemma . For K , L ∈ Sn
o , if  < p < n, then

˜Vp(K , L) ≤ V (K)
n–p

n V (L)
p
n ; (.)

if p <  or p > n, then

˜Vp(K , L) ≥ V (K)
n–p

n V (L)
p
n . (.)

Equality holds in each inequality if and only if K and L are dilates.

2.2 Lq harmonic radial sum, Lq radial Blaschke sum, and Lq harmonic
Blaschke sum

The notion of Lq harmonic radial sum can be introduced as follows: For K , L ∈ Sn
o , real

q ≥ , the Lq harmonic radial sum K +̆qL ∈ Sn
o of K and L is defined by (see [])

ρ(K +̆qL, ·)–q = ρ(K , ·)–q + ρ(L, ·)–q. (.)

If q = , then K +̆L is the harmonic radial sum of K and L (see []).
The notion of radial Blaschke sum was given by Lutwak []. For K , L ∈ Sn

o , n ≥ , the
radial Blaschke sum K +̂L ∈ Sn

o of K and L is defined by

ρ(K +̂L, ·)n– = ρ(K , ·)n– + ρ(L, ·)n–.

In , Wang and Wang [] introduced the notion of Lq radial Blaschke sum as follows:
For K , L ∈ Sn

o , q ∈ R, and n > q > , the Lq radial Blaschke sum K +̂qL ∈ Sn
o of K and L is

defined by

ρ(K +̂qL, ·)n–q = ρ(K , ·)n–q + ρ(L, ·)n–q. (.)

The harmonic Blaschke sum was introduced by Lutwak []. For K , L ∈ Sn
o , the har-

monic Blaschke sum K ∓ L ∈ Sn
o of K and L is defined by

ρ(K ∓ L, ·)n+

V (K ∓ L)
=

ρ(K , ·)n+

V (K)
+

ρ(L, ·)n+

V (L)
.

Based on this definition, Feng and Wang [] defined the Lq harmonic Blaschke sum as
follows: For K , L ∈ Sn

o and real q �= –n, the Lq harmonic Blaschke sum K ∓q L ∈ Sn
o of K

and L is given by

ρ(K ∓q L, ·)n+q

V (K ∓q L)
=

ρ(K , ·)n+q

V (K)
+

ρ(L, ·)n+q

V (L)
. (.)
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3 Brunn-Minkowski type inequalities for Lp radial Blaschke-Minkowski
homomorphisms

Theorems . and . show Brunn-Minkowski type inequalities for the Lq radial Minkowski
sum and Lq harmonic Blaschke sum of Lp radial Blaschke-Minkowski homomorphisms.
In this section, we prove Theorems . and .. As applications of Theorem ., we yet
give two Brunn-Minkowski type inequalities for both Lq harmonic radial sum and Lq ra-
dial Blaschke sum of Lp radial Blaschke-Minkowski homomorphisms. In order to prove
Theorem ., the following lemmas shall be needed.

Lemma . ([]) Let �p : Sn
o → Sn

o be an Lp radial Blaschke-Minkowski homomorphism
with real p �= . Then, for K , L ∈ Sn

o ,

˜Vp(K ,�pL) = ˜Vp(L,�pK). (.)

Lemma . Let K , L ∈ Sn
o , p, q ∈R, p, q �= .

(i) If n–p
q > , then, for any Q ∈ Sn

o ,

˜Vp(K +̃qL, Q)
q

n–p ≤ ˜Vp(K , Q)
q

n–p + ˜Vp(L, Q)
q

n–p . (.)

(ii) If n–p
q < , then, for any Q ∈ Sn

o ,

˜Vp(K +̃qL, Q)
q

n–p ≥ ˜Vp(K , Q)
q

n–p + ˜Vp(L, Q)
q

n–p . (.)

Equality holds in each inequality if and only if K and L are dilates.

Proof From (.) and the Minkowski integral inequality, which enforces the condition
n–p

q > , it follows that, for any Q ∈ Sn
o ,

˜Vp(K +̃qL, Q)
q

n–p =
[


n

∫

Sn–
ρ(K +̃qL, u)n–pρ(Q, u)p du

]
q

n–p

=
{


n

∫

Sn–

[

ρ(K , u)q + ρ(L, u)q]
n–p

q ρ(Q, u)p du
}

q
n–p

≤
[


n

∫

Sn–
ρ(K , u)n–pρ(Q, u)p du

]
q

n–p

+
[


n

∫

Sn–
ρ(L, u)n–pρ(Q, u)p du

]
q

n–p

= ˜Vp(K , Q)
q

n–p + ˜Vp(L, Q)
q

n–p ;

this is just (.). According to the condition of equality in the Minkowski integral inequal-
ity, we see that equality holds in (.) if and only if ρ(K , ·) and ρ(L, ·) are positively propor-
tional, that is, equality holds in (.) if and only if K and L are dilates.

Similarly, again using (.) and the Minkowski integral inequality, which now enforces
the condition n–p

q < , we obtain inequality (.) with the equality condition. �
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Proof of Theorem . (i) If p >  and  < q < n – p, then n–p
q >  and  < p < n. Thus, by (.),

(.), and (.) we have, for any N ∈ Sn
o ,

˜Vp
(

N ,�p(K +̃qL)
)

q
n–p = ˜Vp(K +̃qL,�pN)

q
n–p

≤ ˜Vp(K ,�pN)
q

n–p + ˜Vp(L,�pN)
q

n–p (.)

= ˜Vp(N ,�pK)
q

n–p + ˜Vp(N ,�pL)
q

n–p

≤ V (N)
q
n
[

V (�pK)
pq

n(n–p) + V (�pL)
pq

n(n–p)
]

. (.)

Setting N = �p(K +̃qL), by (.) we obtain

V
(

�p(K +̃qL)
)

pq
n(n–p) ≤ V (�pK)

pq
n(n–p) + V (�pL)

pq
n(n–p) .

This gives inequality (.).
By the equality conditions of (.) and (.) we know that equality in (.) holds if and

only if K , L, �pK , �pL, and �p(K +̃qL) all are dilates. But if K and L are dilates, then
�p(K +̃qL), �pK , and �pL all are dilates. Thus, equality in (.) holds if and only if K and
L are dilates.

(ii) For q > n – p >  > p or q < n – p < , we know that  < n–p
q < , p <  or p > n (for

q <  < n – p and p > , we get n–p
q <  and  < p < n). From this, using (.), (.), and (.)

(or (.)), we have, for any N ∈ Sn
o ,

˜Vp
(

N ,�p(K +̃qL)
)

q
n–p = ˜Vp(K +̃qL,�pN)

q
n–p

≥ ˜Vp(K ,�pN)
q

n–p + ˜Vp(L,�pN)
q

n–p

= ˜Vp(N ,�pK)
q

n–p + ˜Vp(N ,�pL)
q

n–p

≥ V (N)
q
n
[

V (�pK)
pq

n(n–p) + V (�pL)
pq

n(n–p)
]

.

Setting N = �p(K +̃qL) and using (.), we have

V
(

�p(K +̃qL)
)

pq
n(n–p) ≥ V (�pK)

pq
n(n–p) + V (�pL)

pq
n(n–p) .

This yields (.), and equality holds in (.) if and only if K and L are dilates. �

As an application of Theorem ., from the Lq harmonic radial sum (.) we obtain the
following:

Theorem . Let K , L ∈ Sn
o , p, q ∈R, p �= , q ≥ . If –q < n – p <  or  < p < n, then

V
(

�p(K +̆qL)
)– pq

n(n–p) ≥ V (�pK)– pq
n(n–p) + V (�pL)– pq

n(n–p) , (.)

where equality holds if and only if K and L are dilates.
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Proof By (.) and (.) we see that, for q ≥ , K +̆qL = K +̃–qL. Hence, if –q < n – p < , then
(.) is true by (.); if  < p < n, then since q ≥ , we have –q <  < n – p, which, together
with (.), shows that (.) also holds. �

Similarly, as another application of Theorem ., by the Lq radial Blaschke sum (.) we
have the following:

Theorem . Let K , L ∈ Sn
o , p, q ∈R, p �= ,  < q < n.

(i) If n > q > p>, then

V
(

�p(K +̂qL)
)

p(n–q)
n(n–p) ≤ V (�pK)

p(n–q)
n(n–p) + V (�pL)

p(n–q)
n(n–p) (.)

with equality if and only if K and L are dilates.

Proof From (.) and (.) we know that, for  < q < n, K +̂qL = K +̃n–qL. Thus, if n > q > p >
, then  < n – q < n – p and p > . This, together with (.), yields (.). �

The proof of Theorem . requires the following lemma.

Lemma . Let K , L ∈ Sn
o , p, q ∈R, p �= , q �= –n.

(i) If n–p
n+q > , then, for any Q ∈ Sn

o ,

˜Vp(K ∓q L, Q)
n+q
n–p

V (K ∓q L)
≤ ˜Vp(K , Q)

n+q
n–p

V (K)
+

˜Vp(L, Q)
n+q
n–p

V (L)
. (.)

(ii) If n–p
n+q < , then, for any Q ∈ Sn

o ,

˜Vp(K ∓q L, Q)
n+q
n–p

V (K ∓q L)
≥ ˜Vp(K , Q)

n+q
n–p

V (K)
+

˜Vp(L, Q)
n+q
n–p

V (L)
. (.)

Equality holds in each inequality if and only if K and L are dilates.

Proof By (.), (.), and the Minkowski integral inequality, which enforces the condition
n–p
n+q > , we have, for any Q ∈ Sn

o ,

˜Vp(K ∓q L, Q)
n+q
n–p

V (K ∓q L)
=

[ 
n
∫

Sn– ρ(K ∓q L, u)n–pρ(Q, u)p du]
n+q
n–p

V (K ∓q L)

=
[


n

∫

Sn–

(

ρ(K , u)n+q

V (K)
+

ρ(L, u)n+q

V (L)

)
n–p
n+q

ρ(Q, u)p du
]

n+q
n–p

≤ 
V (K)

[


n

∫

Sn–
ρ(K , u)n–pρ(Q, u)p du

]
n+q
n–p

+


V (L)

[


n

∫

Sn–
ρ(L, u)n–pρ(Q, u)p du

]
n+q
n–p

=
˜Vp(K , Q)

n+q
n–p

V (K)
+

˜Vp(L, Q)
n+q
n–p

V (L)

with equality if and only if K and L are dilates. This inequality gives (.).
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Similarly, again using (.) and the Minkowski integral inequality, which now enforces
the condition n–p

n+q < , we obtain inequality (.) with the equality condition. �

Proof of Theorem . (i) For K , L ∈ Sn
o , since q �= –n, if  < p < –q < n, then n–p

n+q >  and
 < p < n. So by (.), (.), and (.) we have, for any N ∈ Sn

o ,

˜Vp(N ,�p(K ∓q L))
n+q
n–p

V (K ∓q L)
=

˜Vp(K ∓q L,�pN)
n+q
n–p

V (K ∓q L)

≤ ˜Vp(K ,�pN)
n+q
n–p

V (K)
+

˜Vp(L,�pN)
n+q
n–p

V (L)

=
˜Vp(N ,�pK)

n+q
n–p

V (K)
+

˜Vp(N ,�pL)
n+q
n–p

V (L)

≤ V (N)
n+q

n

[

V (�pK)
p(n+q)
n(n–p)

V (K)
+

V (�pL)
p(n+q)
n(n–p)

V (L)

]

. (.)

Setting N = �p(K ∓q L) in (.), by (.) we get

V (�p(K ∓q L))
p(n+q)
n(n–p)

V (K ∓q L)
≤ V (�pK)

p(n+q)
n(n–p)

V (K)
+

V (�pL)
p(n+q)
n(n–p)

V (L)
,

and equality holds if and only if K and L are dilates. Therefore, inequality (.) is obtained.
(ii) If –q < p < , then  < n–p

n+q < . This, together with (.), (.), and (.), yields

V (�p(K ∓q L))
p(n+q)
n(n–p)

V (K ∓q L)
≥ V (�pK)

p(n+q)
n(n–p)

V (K)
+

V (�pL)
p(n+q)
n(n–p)

V (L)
,

and equality holds if and only if K and L are dilates. This is just inequality (.). �

4 Monotonic inequalities for the Lp radial Blaschke-Minkowski
homomorphisms

In this section, we establish monotonic inequalities for the Lp radial Blaschke-Minkowski
homomorphisms.

Theorem . Let �p : Sn
o → Sn

o be an Lp radial Blaschke-Minkowski homomorphism, p �=
, K , L ∈ Sn

o , and �pK ⊆ �pL. If p > , then, for any Q ∈ �pSn
o ,

˜Vp(K , Q) ≤ ˜Vp(L, Q); (.)

if p < , then, for any Q ∈ �pSn
o ,

˜Vp(K , Q) ≥ ˜Vp(L, Q). (.)

Equality holds in (.) or (.) if and only if �pK = �pL.

Proof Since �pK ⊆ �pL, by (.) we know that, for p >  and any N ∈ Sn
o ,

˜Vp(N ,�pK) ≤ ˜Vp(N ,�pL). (.)
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This, together with (.), gives

˜Vp(K ,�pN) ≤ ˜Vp(L,�pN).

Let Q = �pN . Then Q ∈ �pSn
o and ˜Vp(K , Q) ≤ ˜Vp(L, Q). From the equality condition for

(.), we see that equality holds in (.) if and only if �pK = �pL.
Similarly, if p <  and �pK ⊆ �pL, by (.) we easily obtain that, for any Q ∈ �pSn

o ,
˜Vp(K , Q) ≥ ˜Vp(L, Q), and equality holds if and only if �pK = �pL. �

For  < p < n, let K ∈ �pSn
o in (.) (for p > n, let L ∈ �pSn

o in (.); for p < , let K ∈
�pSn

o in (.)). Using inequality (.) (or inequality (.)), we may get a positive form
of Busemann-Petty type problem for the Lp radial Blaschke-Minkowski homomorphisms
given by Wang et al. [].

Corollary . Let �p : Sn
o → Sn

o be an Lp radial Blaschke-Minkowski homomorphism,
p �= , K , L ∈ Sn

o , and �pK ⊆ �pL. If n > p >  and K ∈ �pSn
o , then

�pK ⊆ �pL 
⇒ V (K) ≤ V (L),

and V (K) = V (L) if and only if K = L.
If p > n and L ∈ �pSn

o or p <  and K ∈ �pSn
o , then

�pK ⊆ �pL 
⇒ V (K) ≥ V (L),

and V (K) = V (L) if and only if K = L.

Theorem . Let �p : Sn
o → Sn

o be an Lp radial Blaschke-Minkowski homomorphism, p �=
. If K , L ∈ Sn

o , and for any Q ∈ Sn
o ,

˜Vp(K , Q) ≤ ˜Vp(L, Q), (.)

then, for p > ,

V (�pK) ≤ V (�pL), (.)

and, for p < ,

V (�pK) ≥ V (�pL). (.)

Equality holds in (.) or (.) only if K = L.

Proof For  < p < n, let Q = �p�pK in (.). Then

˜Vp(K ,�p�pK) ≤ ˜Vp(L,�p�pK).

Using inequality (.) and equalities (.) and (.), we have

V (�pK) = ˜Vp(�pK ,�pK) ≤ ˜Vp(�pK ,�pL) ≤ V (�pK)
n–p

n V (�pL)
p
n ,

which yields (.), and equality holds only if K = L.
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Similarly, for p > n (or p < ), let Q = �p�pL in (.). By inequality (.) and equalities
(.) and (.), we can obtain (.) (or (.)). �
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