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Abstract
This paper is concerned with the study of invariant subspace problems for nonlinear
operators on Banach spaces/algebras. Our study reveals that one faces
unprecedented challenges such as lack of vector space structure and unbounded
spectral sets when tackling invariant subspace problems for nonlinear operators via
spectral information. To bypass some of these challenges, we modified an eigenvalue
problem for nonlinear operators to cater for the structural properties of nonlinear
operators and then established that nonlinear operators of finite type on a complex
Banach algebra have nontrivial invariant subspaces.
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1 Introduction
The aim of this paper is to study invariant subspace problems for polynomial and multi-
linear operators on infinite dimensional Banach spaces.

Throughout this paper, we denote Banach spaces by E and F , and the dual space of E
by E′. A map T : E × · · · × E → F is m-linear if it is linear in each of the m-variables and
for this map, a map p : E → F : p(x) = T(x, . . . , x) for all x ∈ E is called an m-homogeneous
polynomial map. We denote the space of continuous multilinear and polynomial maps by
L(mE; F) and P(mE; F), respectively, see [, ]. The term operator will be restricted to the
elements of L(mE; E); notice -linear operators are just elements of L(E).

Definition . Let p ∈ P(mE; E) be associated to T ∈ L(mE; E). A closed linear subspace
M of E is invariant for p ∈ P(mE; E) if p(M) ⊆ M; it is invariant for T ∈ L(mE; E) if
p(M) ⊆M; it is strongly invariant for T ∈L(mE; E) if T(M, . . . ,M) ⊆M. The cases M =
{} and M = E are called trivial subspaces.

Remark . Let M be a closed linear subspace of E. Let p ∈ P(mE; E) be associated to
T ∈L(mE; E). The following are equivalent.

(i) M is invariant for p ∈P(mE; E).
(ii) M is invariant for T ∈L(mE; E).

Proof It is immediate from Definition .. �

© 2016 Emenyu. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1120-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1120-2&domain=pdf
http://orcid.org/0000-0001-8250-1746
mailto:jemenyu@must.ac.ug


Emenyu Journal of Inequalities and Applications  (2016) 2016:179 Page 2 of 11

Problems . and . are referred to, in the sequel, as invariant subspace problem (ISP)
and eigenvalue problem for multilinear operators, respectively.

Problem . Given a bounded operator p ∈ P(mE; E), does there exist a closed invariant
subspace M of E for p ∈P(mE; E) besides M = {} and M = E?

Problem . Given a bounded operator p ∈ P(mE; E), does there exist a nonzero vector
v ∈ E such that p(v) = λv for some λ ∈ k?

The notion of invariant subspaces introduced in [] provided a basis for extending the
underlying notion to nonlinear operators in a natural way; however, a natural entry point
to delve into the study of such notion in infinite dimensions is first to deal with ideals
of compact nonlinear maps generated by {TT . . . Tm : Tj ∈ L(E)} where m ∈ N is fixed.
These maps are known as maps of finite type and they inherit certain intrinsic properties
of linear maps such as approximability by finite dimensional maps and bounded point
spectra that are useful in the study of their associated ISPs. Notice T ∈ L(mE; F) is finite
dimensional if its multirange T(E, . . . , E) is contained in a finite dimensional subspace of F ;
see Section  in []. In general, structural properties of Tj ∈L(E) such as compactness were
key in the study of their ISP; see [, ]. On the one hand, the work of Bényi and Torres []
embodies different kinds of notions of compactness of a class of bilinear operators of finite
type. Indeed, separate compactness of each section map of a bilinear map of finite type
does not guarantee its compactness thus lending a study of Problem . a more general
and broader consideration rather than restricting it to only compact nonlinear operators.

In Section , we will give a review of nonlinear spectral theory and Section  contains a
review of techniques for tackling Problem ., the modified form of Problem . and some
tools such as Lemma . for establishing our results in Section . Section  stipulates
problems associated with tacking Problem . whereas Section  comprises our major
results.

2 An overview of nonlinear spectral theory
The study of Problem . via Problem . requires an in-depth knowledge of solvability
properties of the equation λz – p(z) = , hence, the structural properties of p ∈ P(mE; E);
namely, injectivity of λI – p and whether it maps some bounded neighborhood of  onto
a neighborhood of , continuity of (λI – p)–, boundedness and nontriviality of the nullset
N (λI – p). These underlying structural properties yielded several variants of spectra of
p ∈P(mE; E), each having different notions of eigenvalues; see Chapters - in []. Among
several others, the Furi-Martelli-Vignoli spectrum σFMV(p, I), see [], , and its mod-
ified form called Appell-Giorgieri-Väth spectrum σAGV(p, I), see [], p., account for
asymptotic properties of stably nonlinear solvable continuous operators; the Feng spec-
trum σF (p, I) accounts for global properties of epi and k-epi operators, see [], ; the
small Väth spectrum φ(p, I) and large Väth spectrum �(p, I) account for local properties
of strictly and properly epi operators, respectively, see [], . However, none of the
known nonlinear spectra adheres to the minimal requirements; specifically most of their
associated eigenvalue notions are incompatible with the general notion of the classical
eigenvalues [], Definitions  and . Further, these spectra may be disjoint from point
spectra, see Example . in [], [], are not discrete and unbounded even if their under-
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lying operators are bounded and compact, see Example . in [], Theorem . in [];
[] gives extensive and exhaustive literature on this topic.

3 An overview of invariant subspace techniques for nonlinear maps
An attempt of a de facto investigation of Problem . is by Donoghue, see Example  in
[] and [], which comprise a more systematic study via Problem . or more generally
via elementary invariant subspaces. The challenge to the underlying technique in [] is
the limitation in knowledge of topological degrees in infinite dimensions. Moreover, the
nondiscreteness and disjointness of nonlinear spectra from point spectra hinder the adap-
tation of linear approaches to Problem .. For instance, extending perturbation methods
[–] modeled on the assumption σ (T + K) ⊂ σ (T) is tantamount to the consideration
of solvability properties of the eigenvalue equation λz – p(z) =  for some λ ∈ k or alterna-
tively structural properties of p ∈ P(mE; E). This in turn is tantamount to the application
of σFMV(p, I), σAGV(p, I), σF (p, I) but due to the underlying problems they usually lead to
either unsuccessful or partial solutions to the Problem .; they are marginally successful
in very limited circumstances such as when p ∈P(mE; E) is epi, see Chapter  in [].

In general, any robust approach to the Problem . should reflect structural properties
of p ∈P(mE; E) such as unboundedness and lack of a vector space structure of N (λI – p),
noncommutativity of p ∈P(mE; E) with λI – p or generally lin{pn : n ∈N}, and the homo-
geneity degree of p ∈ P(mE; E), and one must cater for the classical notion of eigenvalues
in the sense of linear operators. The unboundedness of eigenvalues of the pair (p, I) arises
from their structural differences, particularly homogeneity degrees, and the nondiscrete-
ness of their spectrum is due to the lack of a Fredholm alternative or broadly an application
of Borsuk’s theorem for odd linear and nonlinear maps; see []. These pitfalls, except for
the unboundedness of N (λJm – p), in certain cases can be bypassed while preserving the
structure of p ∈ P(mE; E) by replacing the pair (p, I) with (p, Jm) where Jm is some well
behaved function in the sense that it allows the properties of the pair (p, Jm) to be made
compatible; Jm may be chosen to cater for the disparity in homogeneity degrees and dis-
creteness of the spectrum of the pair (p, Jm). Specifically, we will choose the function Jm to
be the homeomorphism defined by Jm(z) = ‖z‖m–z where m is the homogeneity degree of
p ∈P(mE; E), and we study Problem . via the modified eigenvalue Problem ..

Problem . Given a bounded p ∈P(mE; E), does there exist a nonzero vector z ∈ E such
that p(z) = λJm(z) for some λ ∈ k = C or R?

Remark . Problems . and . have negative answers if E is real. Consider the operator
p ∈ P(

R
;R) defined by p(x, x) = (–x

, x
 ). We need to determine whether the eigen-

value equation p(x) = λ|x|x, i.e., λ(x
 + x

)(x, x) = (–x
, x

 ) holds for x = (x, x) in R
 is

solvable for some λ ∈R. But this means

p(x) = λ|x|x ⇒
{

λx
 + λx

x = –x
,

λx
 x + λx

 = x
 .

(.)

Without loss of generality, let x 	=  so that

{
λx

 + λx
x = –x

,
λx

 x + λx
 = x


⇒

{
λy + λy +  = ,
λy + λ = y,

(.)
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where y = x
x

. Now write the second equation in equation (.) as λy = y – λ to get

λy + λy +  = y
(
λy) + λy +  = y

(
y – λ

)
+ λy +  = y + .

Therefore, the first equation in equation (.) simplifies to y +  =  whose roots are
± √

 ( + i),± √
 ( – i) /∈R. On the other hand, equation (.) can be simplified to

(
 + y)λ + yλ +  = . (.)

Now if x =  then y =  and equation (.) reduces to λ +  = , which cannot be solved

for λ ∈ R. Further, it is clear that if x 	=  then y 	=  and λ = –y±i
√

+y

(+y) cannot be real
valued so that Problems ., . have negative answers.

Remark . The choice Jm(z) = ‖z‖m–z is guided by the fundamental idea that any eigen-
value of a linear operator L ∈ L(E) associated to an eigenvector z is also an eigenvalue of
L ∈L(E) associated to an eigenvector y = ‖z‖–z.

Lemma . below is the modified form of Lemma . in [].

Lemma . Let p ∈ P(mE; E) be associated to the given bounded operator T ∈ L(mE; E)
where dim(E) ≥ . If for some λ ∈ k = C or R,  	= v ∈ E, and p(v) = λJm(v) then lin{v} is
invariant for p ∈P(mE; E).

Proof It suffices to show for any  	= v ∈ E satisfying the hypothesis of the underlying
lemma, then also p(u) ∈ lin{v} whenever u ∈ lin{v}. First, observe that lin{ v

‖v‖ } = lin{v}
and p(v) = λ‖v‖m–v if and only if p( v

‖v‖ ) = λ v
‖v‖ . So, the proof is straightforward since

if p ∈ P(mE; E) and u ∈ lin{ v
‖v‖ }, we have p(u) = p(γ v

‖v‖ ) = γ m

‖v‖m p(v) = γ m

‖v‖m λ‖v‖m–v =
γ mλ v

‖v‖ ∈ lin{ v
‖v‖ }. �

The modification of the pair (p, I) with the pair (p, Jm) for m ∈ {n –  : n ∈N} yields the
following particular form of Theorem  in [] (also see Theorem . in []).

Theorem . Let p ∈ P(mE; E) be compact and E be real. Then for m ∈ {n –  : n ∈ N},
σFMV(p, Jm) \ {} = σAGV(p, Jm) \ {} = σF (p, Jm) \ {} = �(p, Jm) \ {} = φ(p, Jm) \ {} =
σev(p, Jm) \ {} where σev(p, Jm) := {λ : N (λJm – p) 	= {}}.

In the situation of Theorem ., the spectrum and resolvent set of the pair (p, Jm) are
denoted by σ (p, Jm) and ρ(p, Jm) = C \ σ (p, Jm) respectively. In general, the spectral radius,
r(p, Jm) := sup{|λ| : N (λJm – p) 	= {}} and in our case, r(p, Jm) := sup{|λ| : λ ∈ σ (p, Jm)}. We
will say σev(p, Jm), the set of eigenvalues of the pair (p, Jm), is bounded if r(p, Jm) < ∞ and
T ∈L(mE; E) is quasinilpotent if r(p, Jm) = .

Theorem . is a consequence of Theorem .

Theorem . Let E be real and p ∈ P(mE; E) be compact. Then for m ∈ {n –  : n ∈ N},
every λ ∈ σ (p, Jm) \ {} is an eigenvalue of p ∈P(mE; E).

Theorem . demonstrates that certain choices of the pair (p, Jm) yield spectra with de-
sirable properties analogous to the classical spectra of linear maps. The reason for this
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nice behavior is that the local, asymptotic, and global properties of the pair (p, Jm) with
equal homogeneity degrees are the same.

Theorem . Let E be an infinite dimensional real Banach space and p ∈ P(mE; E) be
associated to the compact operator T ∈L(mE; E) for m ∈ {n +  : n ∈N}. If infx∈∂	 ‖p(x)‖ >
 and  is contained in an open subset 	 of E, then T ∈ L(mE; E) has nontrivial invariant
subspaces in E.

Proof By the Birkhoff-Kellogg theorem [], Theorem ., there is  	= λ ∈ σ (p, Jm). The
assertion follows from Theorem ., Lemma ., and Remark .. �

4 Challenges to tackling ISPs for nonlinear operators
The difficulties associated with Problem . are mainly structural and this section gives
their in-depth understanding by means of concrete examples. The ideal Pf (mE; E), gener-
ated by polynomials maps of the form p(z) = φ(z)nb where φ ∈ E′ and b ∈ E, is appropriate
for this purpose.

4.1 Lack of a linear vector space structure of a nullset of a nonlinear operator
Example . below shows the nullset N (λI – p) possesses properties that are entirely dif-
ferent from those of linear operators. For example, N (λI – p) is not always a closed linear
vector subspace of E; these present difficulties to the construction of particularly strongly
invariant subspaces for nonlinear operators.

Example . Let p ∈ P(
R

;R) be defined by p(x, y) = (p(x, y), p(x, y)): pi(x, y) = x –

 xy – 

 xy + y for i = , . Then clearly, (, ), (, ) ∈N (p) := {(x, y) ∈R
 : p(x, y) = } but

(, ) + (, ) /∈N (p). So N (p) is not a linear vector subspace of R.

4.2 Lack of eigenvalues
Theorem . illustrates the existence of quasinilpotent nonlinear operators even on com-
plex Banach spaces.

Theorem . Let E = C[, ]. The integral operator p ∈P(mE; E) defined by

(
p(f )

)
(t) :=

∫ t


f (s)m ds (.)

is quasinilpotent. Moreover, p ∈P(mE; E) does not have eigenvalues.

Proof We tacitly assume m ≥  since for m =  is the well-known Volterra map and besides
the proof for compactness of p ∈P(mE; E) follows the same arguments as for the Volterra
map; see [], p.. Consider the n-fold iterates of p ∈P(mE; E);

(
pn(f )

)
(t) =

∫ t



(∫ tn–


· · ·

(∫ t



(∫ t


f (r)m dr

)m

dt

)m

· · · dtn–

)m

dtn–,

∥∥(
pn(f )

)∥∥ ≤ ‖f ‖mn
∫ t



(∫ tn–


· · ·

(∫ t



(∫ t


dr

)m

dt

)m

· · · dtn–

)m

dtn–

=
t(mn+···+m+)‖f ‖mn

(m + )mn– (m + m + )mn– · · · (mn– + · · · + m + )

≤ ‖f ‖mn(
(m + )mn–(

m + m + 
)mn– · · · (mn– + · · · + 

))–.
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The eigenvalue equation p(f ) = λJm(f ) gives pn(f ) = λ
mn–
m– ‖f ‖mn–f and so

|λ| mn–
m– ≤ (

(m + )mn–(
m + m + 

)mn– · · · (mn– + · · · + m + 
))–.

Hence, |λ| ≤ lim supn→∞(mmn– mmn– · · ·mn–)– 
mn– →  since mmn → ∞ faster than

mn → ∞ as n → ∞. Therefore, r(p, Jm) := sup{|λ| : N (λJm – p) 	= {}} = .
Up to this end, we have shown p ∈ P(mE; E) is quasinilpotent. It now remains to show

 ∈ σev(p, Jm), i.e., p(f ) =  if and only if f ≡ . Now, if p(f ) =  then also its derivative
p(f )′ = . But, by equation (.), p(f )′ = f m = , i.e., f ≡ . �

Theorem . Let E = C[, ]. The integral operator T ∈L(mE; E),

T(f, . . . , fm)(t) =
∫ t


f(s) · · · fm(s) ds (.)

is quasinilpotent and has nontrivial strongly invariant subspaces in E.

Proof Observe the quasinilpotency of the given operator in equation (.) is an immediate
consequence of Theorem .. Further, consider the operator p ∈P(mE; E) defined in (.)
associated to the given integral operator in equation (.) and mimicking the proof of
Theorem  in [] then clearly p ∈P(mE; E) has nontrivial invariant subspaces of the form
Ma = {f ∈ C[, ] : f (s) = , s ∈ [, a] ⊂ [, ]} so that by equation (.), we easily conclude
T(Ma, . . . ,Ma) ⊆Ma. �

4.3 Unbounded or infinite spectral set
Example . Let p ∈P(
;
) be a positively -homogeneous polynomial where p(sk) �→
(s

k) on 
 is defined by (s, s, s, . . .) �→ (s
 , s

, s
, . . .). Write s = (s, s, . . .). The generalized

eigenvalue equation p(s) = λJ(s) gives

|λ| =

( ∞∑
i=

s
i

) 

( ∞∑

i=

s
i

)–

so that  < |λ| ≤ ; the case λ =  gives nen ∈N (J – p) where en = (, . . . , , , , . . .); clearly,
N (J – p) is an unbounded infinite set since ‖nen‖ → ∞ as n → ∞.

Remark . Example . is a representative of the general case; N (λJm – p) for all p ∈
P(mE; E) is trivially a cone, so it is unbounded/infinite unless it is {}.

Remark . Example ., Theorem . and Remark . exhibit certain extreme proper-
ties of σev(p, Jm) and N (λJm – p). Namely, σev(p, Jm) is bounded and N (λJm – p) is not a vec-
tor space; σev(p, Jm) is empty and N (λJm – p) is trivial; σev(p, Jm) is bounded and N (λJm – p)
is unbounded/infinite, respectively. Notice N (λJm – p) may be unbounded/infinite even
for J = I . This shows the bad behavior is not due to the difference in the homogeneity
degrees of the pair (p, Jm) but ingrained in the structure of p ∈P(mE; E).

The underlying extreme properties present different levels of difficulties as well as re-
flect unprecedented challenges that drastically limit the existing techniques to investigate
Problem . via Problem . or generally elementary invariant subspace. More precisely,
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Lemma . cannot be applied to certain nonlinear operators such as the one in Theo-
rem .. Moreover, the lack of a nonlinear analog of Gelfand’s formula for computing
spectral radius, see Examples ., . in [], coupled with the lack of the representation
of resolvent of the pair (p, Jm) further aggravates the problem. This arises from the gen-
eral fact that the construction of elementary invariant subspaces for p ∈ P(mE; E) faces
nontrivial difficulties since if p, p ∈ lin{pn : n ∈N} we might have p ◦ p /∈ lin{pn : n ∈N}.

Conjecture . Let p ∈ P(mE; E) be associated to T ∈ L(mE; E). The subspace lin{pn(x) :
n ∈ N} for a fixed x ∈ E is invariant for p ∈ P(mE; E) if and only if it is strongly invariant
for T ∈L(mE; E).

In general, Example ., Remark . and Theorem . demonstrate that T ∈ L(mE; E)
may not have nontrivial invariant subspaces in E if its associated operator p ∈P(mE; E) is
either homotopic to a scalar operator or if σev(p, Jm) is empty.

5 Results and discussion
In this section, we limit the study of Problem . via Problem . to the ideals of finite type
generated by {TT . . . Tm : Tj ∈L(A)} where m ∈N is fixed andA is a Banach algebra. This
ideal class is larger than Pf (mA;A) and the ideals coincide only if A has an rn-property,
see []; moreover, if Tj ∈ L(A) are linear endomorphisms then the nonlinear operators
they generate are known to preserve the structures of Banach algebras, a property most
suitable for our research framework.

The literature in [], Chapter VI and [], Chapters , , on Banach algebras is suf-
ficient for our purpose. A normed linear complex space (A,‖ · ‖) equipped with a mul-
tiplication (a, b) → ab from A × A into A is a normed algebra if it is an algebra and
‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. A normed algebra A is a Banach algebra if the normed
space (A,‖ · ‖) is a Banach space. A Banach algebra A is commutative if ab = ba for all
a, b ∈A; it is unital if there is  ∈A such that a = a = a for all a ∈A and such an element
is called a unit. Here, we take the unit  ∈A to have norm one. An element a ∈A is called
an idempotent if a = a.

A vector subspace B of A is a subalgebra if itself is an algebra with respect to the opera-
tions of A. A subalgebra U of an algebra A is a right ideal if UA = {ua : u ∈ U , a ∈A} ⊂A
and it is a left ideal if AU = {au : u ∈ U , a ∈ A} ⊂ A; it is a two-sided ideal if it is both
left and right ideal. A proper ideal M ⊂ A is called a maximal ideal if it is not properly
contained in any other proper ideal. In a commutative unital algebra every proper ideal is
contained in some maximal ideal and the same holds for noncommutative algebras with
the observation that left and right ideals should be treated separately (the correspond-
ing maximal ideals are also left or right); the proofs of these facts are premised on Zorn’s
lemma.

Definition . An operator T : A → A where A is a unital algebra is unital if T() = ,
otherwise, it is nonunital.

Remark . The Gelfand-Mazur theorem, see Chapter VI in [], Theorem ., is key in
understanding structural aspects of algebras and thus the study of Problem .. Indeed,
it is known that C is isomorphic to R

 and ISP for T ∈ L(m
R

;R) has been solved affir-
matively, see Theorems ., . in []. On the one hand, the existence of isomorphisms
between C and R

, C, and the algebra A whose every nonzero element is invertible allows



Emenyu Journal of Inequalities and Applications  (2016) 2016:179 Page 8 of 11

one to easily extend the known ISP results for T ∈ L(m
R

;R) to T ∈ L(mA;A), since an
isomorphism preserves invariant subspaces and is also key in developing techniques for
tackling Problem .; see Remark . in []. Therefore, what remains to be considered are
the algebras that are not isomorphic to C.

Notation . Hereafter, all operators will be assumed to be continuous. Let T ∈L(A) be
a bounded linear operator on a complex Banach algebra A and p ∈P(A;A) be associated
to Q ∈L(A;A). Let Ep := { 	= z ∈ E : p(z) = λJ(z) for some λ ∈ C} be the set of eigenvec-
tors of the pair (p, J) where J(z) = ‖z‖z and let ET := { 	= z ∈ E : T(z) = λz for some λ ∈C}
be the set of eigenvectors of T ∈L(A).

Theorem . Let A be a complex unital Banach algebra and T ∈ L(A) be a linear op-
erator. The bilinear operator Q ∈ L(A;A) defined by T(z, w) = zT(w) for all z, w ∈ A has
nontrivial invariant subspaces in A.

Proof We will tacitly assume that the algebra A is infinite dimensional since the result is
already known in finite dimensions; see []. Let p ∈P(A;A) be the polynomial operator
associated to the given bilinear operator Q ∈ L(A;A); this polynomial operator is de-
fined by p(z) = zT(z) for all z ∈ A. Now, if p ∈ P(A;A) is unital then the linear operator
T ∈ L(A) is also unital and so  ∈ Ep ∩ ET . Thus, by Lemma . in [], p ∈ P(A;A) and
T ∈ L(A) have at least a common nontrivial invariant subspace in A and subsequently
by Remark ., the given bilinear operator Q ∈ L(A;A) has at least a nontrivial strongly
invariant subspace in A.

On the other hand, suppose p ∈ P(A;A), hence T ∈ L(A), is nonunital. Now, pick a
noninvertible element  	= a ∈ A and fix it in A; this element, as a consequence of the
Gelfand-Mazur theorem, see Chapter VI in [], Theorem ., exists in A. Then to prove
the underlying theorem, it first suffices to show Ia, the closure of the ideal Ia := {ab : b ∈A},
is nontrivial and invariant for p ∈ P(A;A). First, by the noninvertibility of a ∈ A,  /∈ Ia

and, moreover, it is a known fact that the closure of a proper ideal of a unital algebra is
proper, see Corollary . in []; so, to ascertain that Ia and its closure Ia are proper in
A it is enough to show  /∈ Ia. Now, by way of contradiction, suppose  ∈ Ia. Then one
can find an element x ∈ Ia such that ‖ – x‖ ≤ 

 . But, by a Neumann series expansion, see
Theorem . in [], x = –(–x) is invertible so that  = x–x = xx– ∈ Ia, a contradiction.
It now remains to show that Ia, the closure of Ia, is invariant for p ∈P(A;A). Consider an
element y ∈ Ia (i.e., y := ab, b ∈ A). Then it is straightforward p(y) = p(ab) = abT(ab) ∈ Ia

and the fact that p : Ia → Ia follows from the known fact that a continuous map that maps
a subset of a metric (or a topological) space into another metric (topological) space maps
the closures of the underlying subsets from one into the other, see p., Theorem . in
[]. By Remark ., Q ∈L(A;A) has a nontrivial closed invariant subspace in A. �

Remark . Notice the polynomial operator defined in Theorem . can be viewed as a
pointwise product of an identity operator I ∈L(A) and a linear operator T ∈L(A); more-
over, I ∈ L(A) is an isomorphism. This observation leads to the following more general
situations embodied in Theorems ., . below.

Theorem . Let A be a complex unital Banach algebra and S, T ∈ L(A) be linear en-
domorphisms. The bilinear operator Q ∈ L(A;A) defined by Q(z, w) = S(z)T(w) for all
z, w ∈A has nontrivial invariant subspaces in A.
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Proof Let p ∈P(A;A) be the polynomial operator associated to the given bilinear opera-
tor Q ∈L(A;A); this polynomial operator is defined by p(z) = S(z)T(z) for all z ∈A. Now
if the operators S, T ∈ L(A) are unital then so is p ∈ P(A;A) so that  ∈ Ep ∩ ET ∩ ES .
Therefore, by Lemma ., S, T ∈L(A), and p ∈P(A;A) have at least a common nontriv-
ial invariant subspace in A and by Remark ., the given bilinear operator Q ∈ L(A;A)
has a nontrivial invariant subspace in A.

Assume the polynomial operator p ∈P(A;A) associated to the given bilinear operator
Q ∈ L(A;A) is nonunital. So, at least one of the linear operators say S ∈ L(A) is also
nonunital. Let X = S() and consider IX , the closure of the ideal IX := {Xb : b ∈ A} in A.
Notice the fact that S ∈ L(A) is an endomorphism shows that X = S() is an idempotent
so that it is noninvertible. Subsequently, all elements of IX are noninvertible so that  /∈A
and, as in Theorem ., both the ideal IX and its closure IX are proper in A. We will now
show IX is invariant for p ∈ P(A;A). Now, since X = S() is an idempotent, then, for all
Xb ∈ IX ,

p(Xb) = S(Xb)T(Xb) = S(Xb)T(Xb)

= S()S(Xb)T(Xb) = XS(Xb)T(Xb) ∈ IX .

Moreover, for the same reason as in Theorem ., it is clear p : IX → IX , i.e., the ideal IX

is nontrivial and invariant for p ∈ P(A;A). By Remark ., the given bilinear operator
Q ∈L(A;A) has a nontrivial invariant subspace in A. �

Theorem . Let A be a complex unital Banach algebra, S ∈ L(A) be a linear endomor-
phism and T ∈L(A) be a linear operator. If

(i) S ∈L(A) commutes with T ∈L(A) and
(ii) T() is an idempotent,

then the bilinear operator Q ∈ L(A;A) defined by Q(z, w) = S(z)T(w) for all z, w ∈ A has
nontrivial invariant subspaces in A.

Proof Let p ∈P(A;A) be associated to the given bilinear homomorphism Q ∈L(A;A).
Then by Theorem ., if T ∈ L(A) is a linear endomorphism, p ∈ P(A;A), and Q ∈
L(A;A) has nontrivial invariant subspaces in A. Therefore, assume T ∈ L(A) is not an
endomorphism. Now, if both S, T ∈ L(A) are unital then so is p ∈ P(A;A) so that all
these underlying operators have a common nontrivial invariant subspace in A. On the
other hand, if S ∈L(A) is nonunital, set V = S() and consider the ideal IV := {Vb : b ∈A};
the proof can then be fashioned in a similar manner as its analogous case in Theorem ..
Thus, it now suffices to prove only the case when T ∈ L(A) is nonunital and S ∈ L(A) is
unital. For this case, let W = T() and consider IW , the closure of IW := {Wb : b ∈A} in A.
Notice W is idempotent so that it is noninvertible and as in Theorem ., the ideal IW

and its closure IW are proper ideals in A. To accomplish the proof, it first suffices to show
p : IW → IW . But, by the problem statement,

p(Wb) = S(Wb)T(Wb) = S(W )S(b)T(Wb)

= S
(
T()

)
S(b)T(Wb) = T

(
S()

)
S(b)T(Wb)

= WS(b)T(Wb) ∈ IW
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for all Wb ∈ IW . Therefore, as in Theorem ., it is clear that p : IW → IW and by Re-
mark ., Q ∈L(A;A) has a nontrivial invariant subspace in A. �

5.1 General comments
The central point of our results, as envisaged in Theorems ., . and . is that structural
properties of operators and spaces are key in the development of techniques for tackling
nonlinear ISP. Indeed, an attempt to generalize the techniques [] to nonlinear invari-
ant subspace Problem . fails due to the lack of approximation step [], Statement II.
Besides, the application of the methods [, ] to nonlinear invariant subspace Problem
. is hampered by the challenges outlined in Remark .. More precisely, the unbound-
edness and non-vector space structure of the set N (λJm – p) devoid of the analogs [],
Lemma ., Theorem ., that are key to the techniques in []. Similarly, the application
of the method [] to nonlinear invariant subspace Problem . shows that quasinilpotent
compact multilinear operators have nontrivial invariant subset. Further, to determine in-
variant subspaces for T ∈L(mE; E) via the modified nonlinear eigenvalue Problem . gen-
erally requires determining common coincidence points of a family of commuting maps
{qi ∈P(mE; E) : qiqj = qjqi for all i, j ∈ N} with a homeomorphism Jm; this results into prob-
lems associated with σFMV(p, Jm) spectrum.
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