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Abstract
We present a new class of nonsingular tensors (p-norm strictly diagonally dominant
tensors), which is a subclass of strongH-tensors. As applications of the results, we
give a new eigenvalue inclusion set, which is tighter than those provided by Li et al.
(Linear Multilinear Algebra 64:727-736, 2016) in some case. Based on this set, we give
a checkable sufficient condition for the positive (semi)definiteness of an even-order
symmetric tensor.
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1 Introduction
LetC(R) denote the set of all complex (real) numbers, and [n] := {, , . . . , n}. An mth-order
n-dimensional complex (real) tensor, denoted by A ∈C

[m,n](R[m,n]), is a multidimensional
array of nm elements of the form

A = (aii···im ), ai···im ∈C(R), ij ∈ [n], j ∈ [m].

When m = , A is an n-by-n matrix. A tensor A = (ai···im ) ∈R
[m,n] is called nonnegative if

each its entry is nonnegative, and it is called symmetric [, ] if

ai···im = aπ (i···im), ∀π ∈ �m,

where �m is the permutation group of m indices. Moreover, an mth-order n-dimensional
tensor I = (δii···im ) is called the identity tensor [] if

δii···im =

{
 if i = i = · · · = im,
 otherwise.

For an n-dimensional vector x = (x, x, . . . , xn)T , real or complex, we define the n-dimen-
sional vector

Axm– :=
( ∑

i,...,im∈[n]

aii···im xi · · ·xim

)
≤i≤n

,
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and the n-dimensional vector

x[m–] :=
(
xm–

i
)

≤i≤n.

The following definition related to eigenvalues of tensors was first introduced and stud-
ied by Qi [] and Lim [].

Definition  [, ] Let A = (aii···im ) ∈ C
[m,n]. A pair (λ, x) ∈ C × (Cn \ {}) is called an

eigenvalue-eigenvector (or simply eigenpair) of A if satisfies the equation

Axm– = λx[m–]. ()

We call (λ, x) an H-eigenpair if they are both real.

In addition, the spectral radius of a tensor A is defined as

ρ(A) = max
{|λ| : λ is an eigenvalue of A

}
.

Definition  A tensor A ∈ C
[m,n] is said to be nonsingular if zero is not an eigenvalue

of A. Otherwise, it is called singular.

Tensor eigenvalue problems have gained special attention in the realm of numerical
multilinear algebra, and they have a wide range in practice; see [, , –]. For in-
stance, we can use the smallest H-eigenvalues of tensors to determine their positive
(semi)definiteness, that is, for an even-order real symmetric tensor A, if its smallest H-
eigenvalue is positive (nonnegative), then A is positive (semi)definite; consequently, the
multivariate homogeneous polynomial f (x) determined by A is positive (semi)definite [].

Most often, it is difficult to compute the smallest H-eigenvalue. Therefore, we always
try to give a distribution range of eigenvalues of a given tensor in the complex plane. In
particular, if this range is in the right-half complex plane, which means that the smallest
H-eigenvalue is positive, then the corresponding tensor is positive definite.

Qi [] generalized the Geršgorin eigenvalue inclusion theorem from matrices to real
symmetric tensors, which can be easily extended to generic tensors; see [, ].

Theorem  Let A = (aii···im ) ∈C
[m,n]. Then

σ (A) ⊆ �(A) =
⋃
i∈[n]

�i(A),

where σ (A) is the set of all the eigenvalues of A, and

�i(A) =
{

z ∈C : |z – aii···i| ≤ ri(A)
}

, ri(A) =
∑

i,...,im∈[n],
δii ···im =

|aii···im |.

Recently, as an extension of the theory in [], Li et al. [, , ] proposed three new
Brauer-type eigenvalue localization sets for tensors and showed tighter bounds than �(A)
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of Theorem . We list the latest Brauer-type eigenvalue localization set as follows. For
convenience, we denote

	i =
{

(i, i, . . . , im) : ij = i for some j ∈ {, , . . . , m}, where i, i, . . . , im ∈ [n]
}

,

	i =
{

(i, i, . . . , im) : ij �= i for any j ∈ {, , . . . , m}, where i, i, . . . , im ∈ [n]
}

,

and

r	i
i (A) =

∑
(i,...,im)∈	i ,
δii ···im =

|aii···im |, r	i
i (A) =

∑
(i,...,im)∈	i

|aii···im |.

Theorem  [] Let A = (aii···im ) ∈C
[m,n]. Then

σ (A) ⊆ 
(A) =
(⋃

i∈[n]


̂i(A)
)

∪
( ⋃

i,j∈[n],
i�=j

(

̂i,j(A) ∩ �i(A)

))
,

where


̂i(A) =
{

z ∈C : |z – ai···i| ≤ r	i
i (A)

}

and


̂i,j(A) =
{

z ∈ C :
(|z – ai···i| – r	i

i (A)
)(|z – aj···j| – r	i

j (A)
) ≤ r	i

i (A)r	i
j (A)

}
.

Li et al. [] proved that the set 
(A) in Theorem  is tighter than �(A) in [] and K(A)
in []; for details, see Theorem . in [].

In this paper, we continue this research on the eigenvalue localization problem for ten-
sors. A class of strictly diagonally dominant tensors that involve a parameter p in the in-
terval [,∞], denoted by p-norm SDD tensor, is introduced in Section . In Section ,
we discuss the relationships between p-norm SDD tensors and strong H-tensors. A new
eigenvalue inclusion set for tensors based on p-norm SDD tensors is obtained in Sec-
tion , and numerical results show that the new set is tighter than 
(A) in Theorem  in
some case. Finally, in Section , we give a checkable sufficient condition for the positive
(semi)definiteness of even-order symmetric tensors.

2 p-Norm SDD tensors
In this section, we propose a new class of nonsingular tensors, namely p-norm strictly
diagonally dominant tensors. First, some notation and the definition of strictly diagonally
dominant tensors are given.

Given a tensor A = (aii···im ) ∈C
[m,n] and a real number p ∈ [,∞], denote

rp
i (A) :=

( ∑
i,...,im∈[n],
δii ···im =

|aii···im |p
) 

p
for all i ∈ [n].
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In particular, if p = , then r
i (A) = ri(A) for all i ∈ [n]. If p = ∞, then r∞

i (A) =
maxi,...,im∈[n],

δii···im=
|aii···im | for all i ∈ [n]. For a vector x = (x, x, . . . , xn)T ∈ Cn, the lq-norm on

C
n is

‖x‖q :=
(∑

i∈[n]

|xi|q
) 

q
.

Definition  [] A tensor A = (aii···im ) ∈C
[m,n] is diagonally dominant if

|aii···i| ≥ ri(A) for all i ∈ [n], ()

and A is strictly diagonally dominant if the strict inequality holds in () for all i.

Remark  A = (aii···im ) ∈C
[m,n] is strictly diagonally dominant if and only if

max
i∈[n]

ri(A)
|aii···i| < .

It is well known that strictly diagonally dominant tensors are nonsingular. An interesting
problem arises: for a tensor A = (aii···im ) ∈C

[m,n] satisfying

max
i∈[n]

rp
i (A)

|aii···i| < ,

is A nonsingular or not? Certainly, when p = , A is a strictly diagonally dominant tensor,
which means that A is nonsingular, but when p > , A may be singular as the following
simple example shows.

Example  Let A = (aijk) ∈R
[,], where

a = a = –, and the remaining aijk = .

Then, since Ae = , where e = (, , )T , this implies  ∈ σ (A). However, for every p > ,
we have

max
i∈[]

rp
i (A)
|aiii| = 

–p
p < .

Therefore, something needs to be added in order to obtain a nonsingular A for a real
number p ∈ (,∞]. We provide an answer further, but we first introduce a class of strictly
diagonally dominant tensors that involve a parameter p in the interval [,∞].

Definition  Let A = (aii···im ) ∈C
[m,n] and p ∈ [,∞], A is called a p-norm strictly diag-

onally dominant tensor (or, shortly, p-norm SDD tensor) if

∥∥δp(A)
∥∥

q < , ()
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where

δp(A) := (δ, δ, . . . , δn)T , δi :=
(

rp
i (A)
|ai···i|

) 
m–

for all i ∈ [n],

and q is Hölder’s complement of p, that is, 
p + 

q = .

Remark  Definition  extends the concept of SDD(p) matrix given in [] to tensors.
Clearly, the SDD(p) matrix is a nd-order p-norm SDD tensor.

Remark  Taking p = , A is a -norm SDD tensor if and only if

∥∥δ(A)
∥∥∞ = max

i∈[n]

(
ri(A)
|aii···i|

) 
m–

< ,

that is,

max
i∈[n]

ri(A)
|aii···i| < ,

which is equivalent to the fact that A is a strictly diagonally dominant tensor. The other
extreme case is p = ∞. A is a ∞-norm SDD tensor if and only if

∥∥δ∞(A)
∥∥

 =
∑
i∈[n]

(maxi,...,im∈[n],
δii ···im =

|aii···im |
|aii···i|

) 
m–

< .

The p-norm SDD tensors can also be characterized in the following way.

Proposition  Let A ∈C
[m,n] and p ∈ [,∞]. Then A is a p-norm SDD tensor if and only if

there exists an entrywise positive vector x = (x, x, . . . , xn)T ∈ R
n such that ‖x‖q ≤ , where

q is Hölder’s complement of p such that

xm–
i |ai···i| > rp

i (A) for all i ∈ [n]. ()

Proof Necessity. Suppose that A is a p-norm SDD tensor. It follows from inequality () of
Definition  that there exists a sufficiently small ε >  such that, for xi := δi + ε > , where
i ∈ [n], ‖x‖q ≤ . Thus, xm–

i > δm–
i = rp

i (A)
|ai···i| , which implies inequality ().

Sufficiency. Suppose that there exists an entrywise positive vector x >  such that ‖x‖q ≤
 and inequality () holds. By inequality () we have

xm–
i >

rp
i (A)
|ai···i| = δm–

i for all i ∈ [n],

which implies xi > δi for all i ∈ [n], which, together with ‖x‖q ≤ , yields

∥∥δp(A)
∥∥

q < ‖x‖q ≤ .

Thus, A is a p-norm SDD tensor. The proof is completed. �

The following result proves the nonsingular of p-norm SDD tensors.
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Theorem  Let A ∈C
[m,n] be a p-norm SDD tensor. Then A is nonsingular.

Proof Suppose that A is singular, that is,  ∈ σ (A). It follows from equality () that there
exists y ∈C

n \ {}, such that

Aym– = . ()

Without the loss of generality, we can assume that ‖y‖q = . Then, equality () yields

ai···iym–
i = –

∑
i,...,im∈[n],
δii ···im =

aii···im yi · · · yim for all i ∈ [n],

which implies that

|ai···i||yi|m– =
∣∣∣∣ ∑
i,...,im∈[n],
δii ···im =

aii···im yi · · · yim

∣∣∣∣ for all i ∈ [n]. ()

Then, applying the Hölder inequality to the right-hand side of equality (), we obtain

|ai···i||yi|m– ≤
( ∑

i,...,im∈[n],
δii ···im =

|aii···im |p
) 

p
( ∑

i,...,im∈[n],
δii ···im =

|yi · · · yim |q
) 

q

= rp
i (A)

[( n∑
j=

|yj|q
)m–

– |yi|(m–)q

] 
q

= rp
i (A)

(‖y‖(m–)q
q – |yi|(m–)q) 

q

≤ rp
i (A)‖y‖m–

q

= rp
i (A) for all i ∈ [n]. ()

Since A is a p-norm SDD tenor, there exists an entrywise positive vector x >  such that
‖x‖q ≤  and inequality () holds. Combining inequality () with (), we obtain

|ai···i||yi|m– ≤ rp
i (A) < xm–

i |ai···i| for all i ∈ [n],

which means that

|yi| < xi for all i ∈ [n].

Thus, ‖x‖q > ‖y‖q = , which contradicts ‖x‖q ≤ . The proof is completed. �

3 Relationships between p-norm SDD tensors and strong H-tensors
The following lemma shows that the strong H-tensors play an important role in identify-
ing the positive definiteness of even-order real symmetric tensors.

Lemma  [] Let A = (ai···im ) ∈R[m,n] be an even-order real symmetric tensor with ai···i >
 for all i ∈ [n]. If A is a strong H-tensor, then A is positive definite.
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It is known that the strictly diagonally dominant tensors are a subclass of strong
H-tensors. An interesting problem arises: whether the class of p-norm SDD tensors is
a subclass of strong H-tensors for an arbitrary p ∈ [,∞]. In this section, we discuss this
problem. We first recall the definition of strong H-tensors.

Definition  [] A tenor A = (aii···im ) ∈ R
[m,n] is called an M-tensor if there exist a

nonnegative tensor B and a positive real number η ≥ ρ(B) such thatA = ηI-B. If η > ρ(B),
then A is called a strong M-tensor.

Definition  [] Let A = (aii···im ) ∈C
[m,n]. We call another tensor M(A) = (mii···im ) the

comparison tensor of A if

mii···im =

{
+|aii···im | if (i, i, . . . , im) = (i, i, . . . , i),
–|aii···im | if (i, i, . . . , im) �= (i, i, . . . , i).

Definition  [] We call a tensor an H-tensor if its comparison tensor is an M-tensor.
We call it a strong H-tensor if its comparison tensor is a strong M-tensor.

Note that Li et al. [] also provided an equivalent definition of strong H-tensors; for
details, see [].

In [], the multiplication of matrices has been extended to tensors. In the following,
we state these results for reference.

Definition  [] Let A = (aii···im ) and B = (bii···ik ) be n-dimensional tensors of orders
m ≥  and k ≥ , respectively. The product AB is the following n-dimensional tensor C of
order (m – )(k – ) +  with entries

ciαα···αm– =
∑

i,...,im∈[n]

aii···im biα · · ·bimαm– ,

where i ∈ [n] and α, . . . ,αm– ∈ {jj · · · jk : jl ∈ [n], l = , , . . . , k}.

Remark  When m =  and A = (aij) is a matrix of dimension n, then AB is an mth-order
n-dimensional tensor, and we have

(AB)ii···im =
∑

l∈[n]

ail bli···im , ij ∈ [n], j ∈ [m].

In particular, the product of a diagonal matrix X = diag(x, x, . . . , xn) and the tensor A is
given by

(XA)ii···im = xi aii···im , ij ∈ [n], j ∈ [m].

Remark  Given an n-by-n matrix X and two mth order n-dimensional tensors A, B, we
have the right distributive law for tensors [], that is,

X ·A + X ·B = X · (A + B).
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Based on this multiplication of tensors, Kannan, Shaked-Monderer, and Berman []
established a necessary and sufficient condition for a tensor to be a strong H-tensor.

Lemma  [] Let A ∈ C
[m,n]. Then A is a strong H-tensor if and only if ai···i �=  for all

i ∈ [n] and

ρ
(
I – D–

M(A)M(A)
)

< ,

where DM(A) is the diagonal matrix with the same diagonal entries as M(A).

The following lemma is given by Qi [].

Lemma  [] Let A ∈C
[m,n] and B = a(A + bI), where a and b are two complex numbers.

Then μ is an eigenvalue of B if and only if μ = a(λ + b) and λ is an eigenvalue of A. In this
case, they have the same eigenvectors.

Next, we present an equivalence condition for singular tensors.

Lemma  Let A ∈ C
[m,n]. Then A is singular if and only if DA is singular, where D =

diag(d, d, . . . , dn) is a positive diagonal matrix.

Proof Suppose that DA is singular, that is,  ∈ σ (DA). Then there exists a vector x =
(x, x, . . . , xn)T �=  such that

∑
i,...,im∈[n]

diaii···im xi · · ·xim =  for all i ∈ [n],

which is equivalent to

∑
i,...,im∈[n]

aii···im xi · · ·xim =  for all i ∈ [n],

which implies  ∈ σ (A), that is, A is singular. The proof is completed. �

By applying Lemmas , , and , we can now reveal the relationship of p-norm SDD
tensors and strong H-tensors.

Theorem  Let A ∈C
[m,n]. If A is a p-norm SDD tensor, then A is a strong H-tensor.

Proof By Lemma  the theorem will be proved if we can show that ρ(I–D–
M(A)M(A)) < .

Assume, on the contrary, that there exists λ ∈ σ (I – D–
M(A)M(A)) such that |λ| ≥ . Then,

by Lemma ,

 ∈ σ
(
λI – I + D–

M(A)M(A)
)
.

According to the right distributive law for tensors, we have

λI – I + D–
M(A)M(A) = D–

M(A)
(
(λ – )DM(A)I + M(A)

)
,
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which, together with Lemma , yields

 ∈ σ
(
(λ – )DM(A)I + M(A)

)
. ()

However, there exists an entrywise positive vector x >  such that ‖x‖q ≤ , and inequality
() holds because A is a p-norm SDD tensor. By inequality () we have

xm–
i

∣∣(λ – )|ai···i| + |ai···i|
∣∣ = xm–

i |λ||ai···i|
≥ xm–

i |ai···i|
> rp

i (A)

= rp
i
(
(λ – )DM(A)I + M(A)

)
,

which implies that (λ– )DM(A)I +M(A) is a p-norm SDD tensor. By Theorem  we have

 /∈ σ
(
(λ – )DM(A)I + M(A)

)
,

which contradicts (). The proof is completed. �

4 Eigenvalue localization
Similarly to matrices, a nonsingular class of tensors can lead to an eigenvalue localization
result. In this section, we illustrate this fact with the class of p-norm SDD tensors.

Theorem  Let A ∈C
[m,n] and p ∈ [,∞]. Then

σ (A) ⊆ �p(A).

When p = , �(A) = �(A). When p > ,

�p(A) =
{

z ∈C :
∑
i∈[n]

[
rp

i (A)
|z – ai···i|

] p
(m–)(p–) ≥ 

}
.

Proof Clearly, if p = , σ (A) ⊆ �(A) can be easily obtained from Theorem . If p > , sup-
pose that there exists λ ∈ σ (A) such that λ /∈ �p(A), that is,

∑
i∈[n]

[
rp

i (A)
|λ – ai···i|

] p
(m–)(p–)

< . ()

Let B := λI – A = (bii···im ). Since λ ∈ σ (A), this, together with Lemma , yields that B
is surely singular. On the other hand, by the definition of B we obtain rp

i (B) = rp
i (A) and

|bi···i| = |λ – ai···i| for all i ∈ [n], so that () becomes

∑
i∈[n]

[
rp

i (B)
|bi···i|

] p
(m–)(p–)

< ,
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which implies

∥∥δp(B)
∥∥

q < ,

where q is Hölder’s complement of p, which means that B is a p-norm SDD tensor. By
Theorem , B is nonsingular. This leads to a contradiction. �

Remark  When m = , Theorem  reduces to the result of [].

Remark  In particular, taking p = ∞, we have

�∞(A) =
{

z ∈ C :
∑
i∈[n]

[maxi,...,im∈[n],
δii ···im =

|aii···im |
|z – ai···i|

] 
(m–) ≥ 

}
.

It follows from Theorem  that

σ (A) ⊆ �p(A),

but since this conclusion holds for any p ∈ [,∞], we immediately have the following the-
orem.

Theorem  Let A ∈C
[m,n]. Then

σ (A) ⊆
⋂

p∈[,∞]

�p(A),

where �p(A) is defined as in Theorem .

The following example shows that �∞(A) is tighter than 
(A) in some case.

Example  Let A = (aijk) ∈R
[,] and B = (bijk) ∈R

[,] with elements defined as follows:

a = ., a = , and the remaining aijk = ,

b = , b = , and the remaining bijk = ,

respectively. The eigenvalue inclusion regions 
(A) (
(B)), �∞(A) (�∞(B)) and the ex-
act eigenvalues of A (B) are drawn in Figure A (Figure B), where 
(A) (
(B)), �∞(A)
(�∞(B)) and the exact eigenvalues of A (B) are respectively denoted by the blue area, the
green area, and red asterisks. In addition, by Corollary . in [] we have

σ (A) = {., ., . + .i, . – .i}

and

σ (B) = {., ., . + .i, . – .i}.

It is easy to see that �∞(A) ⊆ 
(A), but 
(B) ⊆ �∞(B).
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Figure 1 The eigenvalue inclusion sets of tensors
A and B for Example 2.

5 Determining the positive (semi)definiteness for an even-order real
symmetric tensor

By applying the results obtained in Sections  and  we give a sufficient condition for the
positive (semi)definiteness of an even-order real symmetric tensor.

Theorem  Let A = (aii···im ) ∈R[m,n] be an even-order symmetric tensor with ai···i >  for
all i ∈ [n]. If A is a p-norm SDD tensor, then A is positive definite.

Proof The theorem follows immediately from Lemma  and Theorem . �

Theorem  Let A = (aii···im ) ∈R
[m,n] be an even-order symmetric tensor with ai···i >  for

all i ∈ [n], and p ∈ [,∞]. If

∥∥δp(A)
∥∥

q ≤ ,

where q is Hölder’s complement of p. Then A is positive semidefinite.

Proof If p = , then

∥∥δ(A)
∥∥∞ = max

i∈[n]

(
ri(A)
|aii···i|

) 
m– ≤ ,

which implies that A is diagonally dominant. By Theorem  of [] it follows that A is
positive semidefinite.

If p > , then let λ be an H-eigenvalue of A, and λ < . By Theorem  we have λ ∈ �p(A),
which implies that

∑
i∈[n]

[
rp

i (A)
|λ – ai···i|

] p
(m–)(p–) ≥ .

However, it follows from aii···i >  for all i ∈ [n] that

∑
i∈[n]

[
rp

i (A)
|ai···i|

] p
(m–)(p–)

>
∑
i∈[n]

[
rp

i (A)
|λ – ai···i|

] p
(m–)(p–) ≥ ,
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which implies

∥∥δp(A)
∥∥

q > ,

which contradicts ‖δp(A)‖q ≤ . This completes the proof. �

Example  Let A ∈ R
[,] be a symmetric tensor with elements defined as follows:

a = , a = a = a = a = –, a = ,

and the remaining aiiii = . By computation,

|a| =  <  = r	
 (A) =

∑
(i,i,i)∈	,
δii i =

|aiii |,

which means that the statement (I) of Proposition . in [] does not hold, and hence we
cannot use Proposition . in [] to determine the positive definiteness of A. However, it
is easy to verify that A is a ∞-norm SDD tensor. By Theorem , A is positive definite.

6 Conclusions
In this paper, we proposed a new class of nonsingular tensors (p-norm SDD tensors) and
proved that the class of p-norm SDD tensors is a subclass of strong H-tensors. Further-
more, we presented a new eigenvalue inclusion set, which is tighter than those provided
by Li et al.[] in some case. Based on this set, we presented a checkable sufficient condition
for the positive (semi)definiteness of an even-order symmetric tensor.
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