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Abstract
The spectral gradient method is one of the most effective methods for solving
large-scale systems of nonlinear equations. In this paper, we propose a new trust
region spectral method without gradient. The trust region technique is a
globalization strategy in our method. The global convergence of the proposed
algorithm is proved. The numerical results show that our new method is more
competitive than the spectral method of La Cruz et al. (Math. Comput.
75(255):1429-1448, 2006) for large-scale nonlinear equations.
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1 Introduction
In this paper we introduce a trust region spectral method for solving large-scale systems
of nonlinear equations

F(x) = , ()

where F : Rn → Rn is continuously differentiable and its Jacobian matrix J(x) ∈ Rn×n is
sparse, n is large. Large-scale systems of nonlinear equations have been widely applied in
many aspects, such as network-flow problems, discrete boundary value problems, etc.

Many algorithms have been presented for solving the large-scale problem (). Bouaricha
et al. [] proposed tensor methods. Bergamaschi et al. [] proposed inexact quasi-Newton
methods. The above methods need to calculate the Jacobian matrix or an approximation
of it at each iteration. La Cruz and Raydan [] introduced the spectral method for (). The
method uses the residual ±F(xk) as a search direction and the trial point at each iteration is
xk – λkF(xk), where λk is a spectral coefficient. λk satisfies the Grippo-Lampariello-Lucidi
(GLL) line search condition

f (xk + λkdk) ≤ max
≤j≤M–

f (xk–j) + αλk∇f (xk)T dk , ()

where f (x) = 
‖F(x)‖, M is a nonnegative integer, α is a small positive number and

dk = ±F(xk). This method also requires one to compute a directional derivative or a very
good approximation of it at every iteration. Later La Cruz et al. [] proposed a spectral
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method without gradient information, which uses a nonmonotone line search globaliza-
tion strategy

f (xk + λkdk) ≤ max
≤j≤M–

f (xk–j) + ηk – αλ
kf (xk), ()

where
∑

k ηk ≤ η < ∞. Meanwhile, conjugate gradient techniques have been developed for
solving large-scale nonlinear equations (see [–]). In fact, spectral gradient, BFGS quasi-
Newton, and conjugate gradient methods can solve large-scale optimization problems and
systems of nonlinear equations (see [–]). The advantage of spectral methods is that
the storage of certain matrices associated with the Hessian of objective functions can be
avoided.

The purpose of this paper is to extend the spectral method for solving large-scale sys-
tems of nonlinear equations by using the trust region technique. For the traditional trust
region methods [], at each iterative point xk , the trial step dk is obtained by solving the
following trust region subproblem:

min qk(d) such that ‖d‖ ≤ �k , ()

where qk(d) = 
‖F(xk) + J(xk)d‖.

The above trust region methods are particularly effective for small to medium-sized
systems of nonlinear equations; however, the computation and storage loads can greatly
increase with increased dimension.

For the large-scale problems of nonlinear equations, we use γkI as an approximation of
J(xk). At each iterative point xk in our method, the trial step dk is obtained by solving the
following subproblem:

min qk(d) =


‖Fk + γkd‖ such that ‖d‖ ≤ �k , ()

where γk is the spectral coefficient and Fk = F(xk). The classic quasi-Newton equation is

Bk+dk = yk . ()

In (), we left-multiply yT
k and set Bk+ = γk+I , it follows that

γk+ =
yT

k yk

yT
k dk

, ()

where dk = xk+ – xk and yk = Fk+ – Fk .
The paper is organized as follows. Section  introduces the new algorithm. The con-

vergence theory is presented in Section . Section  demonstrates preliminary numerical
results on test problems.

2 New algorithm
In this section, we give a trust region spectral method for solving large-scale systems of
nonlinear equations. Let dk be the solution of the trust region subproblem (). We define
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the actual reduction as

Aredk(dk) = f (xk) – f (xk + dk), ()

the predict reduction as

Predk(dk) = qk() – qk(dk). ()

Now we present our algorithm for solving (). The algorithm is given as follows.

Algorithm 

Step . Choose  < η < η < ,  < β <  < β, ε > . Initialize x,  < � < �̄. Set k := .
Step . Evaluate Fk , if ‖Fk‖ ≤ ε, then terminate.
Step . Solve the trust region subproblem () to obtain dk .
Step . Compute

rk =
Aredk(dk)
Predk(dk)

. ()

If rk < η, then �k = β�k , go to Step . Otherwise, go to Step .
Step . xk+ = xk + dk ;

�k+ =

⎧
⎨

⎩

min{β�k , �̄}, if rk ≥ η,

�k , otherwise.

Compute γk+ by (). Set k := k + , go to Step .

3 Convergence analysis
In this section, we prove the global convergence of Algorithm . The global convergence
of Algorithm  needs the following assumptions.

Assumption A
() The level set 	 = {x ∈ Rn|f (x) ≤ f (x)} is bounded.
() The following relation holds:

∥
∥[Jk – γkI]T Fk

∥
∥ = O

(‖dk‖
)
.

Then we get the following lemmas.

Lemma . |Aredk(dk) – Predk(dk)| = O(‖dk‖).

Proof By () and (), we have

∣
∣Aredk(dk) – Predk(dk)

∣
∣ =

∣
∣qk(dk) – f (xk + dk)

∣
∣

=


∣
∣‖Fk + γkdk‖ –

∥
∥Fk + Jkdk + O

(‖dk‖)∥∥∣∣

=
∣
∣γkFT

k dk – FT
k Jkdk + O

(‖dk‖) + O
(‖dk‖)∣∣
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≤ ∥
∥[γkI – Jk]T Fk

∥
∥‖dk‖ + O

(‖dk‖)

= O
(‖dk‖).

This completes the proof. �

Similar to Zhang and Wang [], or Yuan et al. [], we obtain the following result.

Lemma . If dk is a solution of (), then

Predk(dk) ≥ 

‖γkFk‖min

{

�k ,
‖Fk‖
|γk|

}

. ()

Proof Since dk is a solution of (), for any α ∈ [, ], it follows that

Predk(dk) =


(‖Fk‖ – ‖Fk + γkdk‖)

≥ 


(

‖Fk‖ –
∥
∥
∥
∥Fk – γk

α�k

‖γkFk‖γkFk

∥
∥
∥
∥

)

= α�k‖γkFk‖ –


α�

kγ

k . ()

Then we have

Predk(dk) ≥ max
≤α≤

[

α�k‖γkFk‖ –


α�

kγ

k

]

≥ 

‖γkFk‖min

{

�k ,
‖Fk‖
|γk|

}

. ()

The proof is complete. �

Lemma . Algorithm  does not circle between Step  and Step  infinitely.

Proof If Algorithm  circles between Step  and Step  infinitely, then for all i = , , . . . ,
we have xk+i = xk , and ‖Fk‖ > ε, which implies that rk < η, �k → .

By Lemmas . and ., we have

|rk – | =
|Aredk(dk) – Predk(dk)|

|Predk(dk)| ≤ O(‖dk‖)
�k‖γkFk‖ → . ()

Therefore, for k sufficiently large

rk ≥ η, ()

this contradicts the fact that rk < η. �

Lemma . Let Assumption A hold and {xk} be generated by Algorithm , then {xk} ⊂ 	.
Moreover, {f (xk)} converges.
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Proof By the definition of Algorithm , we have

rk ≥ η > . ()

This implies

f (xk+) ≤ f (xk) ≤ · · · ≤ f (x).

Therefore, {xk} ⊂ 	. According to f (xk) ≥ , we know that {f (xk)} converges. �

The following theorem shows that Algorithm  is global convergent under the conditions
of Assumption A.

Theorem . Let Assumption A hold, {xk} be generated by Algorithm . Then the algorithm
either stops finitely or generates an infinite sequence {xk} such that

lim
k→∞

‖Fk‖ = . ()

Proof Assume that Algorithm  does not stop after finite steps. Now we suppose that ()
does not hold, then there exist a constant ε >  and a subsequence {kj} satisfying

‖Fkj‖ ≥ ε. ()

Let K = {k|‖Fk‖ ≥ ε}.
Let S = {k|rk ≥ η}. Using Algorithm  and Lemma ., we have

∑

k∈S

[
f (xk) – f (xk+)

] ≥
∑

k∈S

η · Predk(dk) ≥
∑

k∈K

η · ε|γk|


min

{

�k ,
ε

|γk|
}

.

By Lemma ., we know that {f (xk)} is convergent, then

∑

k∈S

η · ε|γk|


min

{

�k ,
ε

|γk|
}

< ∞.

Thus, we have

∑

k∈S

�k < ∞. ()

From Steps - of Algorithm  it follows that

�k+ ≤ �k , ()

for all k /∈ S, thus () means

∑

k∈K

�k < ∞. ()
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Therefore there exists x∗ such that

lim
k→∞

xk = x∗. ()

By (), we have �k → , which implies

Predk(dk) ≥ ε|γk|


�k

for all sufficiently large k. The fact that |Aredk(dk) – Predk(dk)| = O(‖dk‖) indicates that

lim
k→∞

rk = ,

which shows that, for sufficiently large k and k ∈ K ,

�k+ ≥ �k .

The above inequality contradicts (). Thus, the conclusion follows. �

4 Numerical experiments
In this section, the recent spectral method in [] is called Algorithm . We report results
of some numerical experiments of Algorithms  and . We choose  test functions as
follows (see [, , ]).

Function  The trigonometric function

fi(x) = n –
n∑

j=

cos xj + i( – cos xi) – sin xi, i = , , . . . , n.

Initial guess: x = –( 
n , . . . , 

n )T .

Function  The discretized two-point boundary value problem

F(x) = Ax + �(x),

when A is the n × n tridiagonal matrix given by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 –
–  –

. . . . . . . . .
–  –

– 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and � = (�(x),�(x), . . . ,�n(x))T with �i(x) = sin xi – , i = , , . . . , n.
Initial guess: x = (, , . . . , , ).
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Function  The Broyden tridiagonal function

fi(x) = ( – xi)xi – xi– – xi+ + , i = , , . . . , n,

x = xn+ = .

Initial guess: x = (–, . . . , –)T .

Function  The Broyden banded function

fi(x) = xi
(
 + x

i
)

+  –
∑

j∈Ji

xj( + xj), i = , . . . , n,

Ji =
{

j : j �= i, max(, i – ml) ≤ j ≤ min(n, i + mu)
}

, ml = , ml = .

Initial guess: x = (–, . . . , –)T .

Function  The variable dimensioned function

fi(x) = xi – , i = , , . . . , n – ,

fn–(x) =
n–∑

j=

j(xj – ),

fn(x) =

( n–∑

j=

j(xj – )

)

.

Initial guess: x = ( – 
n ,  – 

n , . . . , )T .

Function  The discrete boundary value function

f(x) = x + .h(x + h + ) – x,

fi(x) = xi + .h(xi + ih + ) – xi– + xi+, i = , , . . . , n – ,

fn(x) = xn + .h(xn + nh + ) – xi–,

h =


n + 
.

Initial guess: x = (h(h – ), h(h – ), . . . , h(nh – ))T .

Function  The logarithmic function

fi(x) = ln(xi + ) –
xi

n
, i = , , , . . . , n.

Initial guess: x = (, , . . . , )T .

Function  The strictly convex function

fi(x) = exi – , i = , , , . . . , n.

Initial guess: x = ( 
n , 

n , . . . , )T .
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Function  The exponential function

f(x) = ex– – ,

fi(x) = i
(
exi– – xi

)
, i = , , . . . , n.

Initial guess: x = ( n
n– , n

n– , . . . , n
n– )T .

Function  The extended Rosenbrock function (n is even). For i = , , . . . , n/,

fi–(x) = 
(
xi – x

i–
)
,

fi(x) =  – xi–.

Initial guess: x = (–., , . . . , –., )T .

Function  The singular function

f(x) =



x
 +




x
,

fi(x) = –



x
i +

i


x
i +




x
i+, i = , , . . . , n – ,

fn(x) = –



x
n +

n


x
n.

Initial guess: x = (, , . . . , )T .

Function  The trigexp function

f(x) = x
 + x –  + sin(x – x) sin(x + x),

fi(x) = –xi–exi––xi + xi
(
 + x

i
)

+ xi+ + sin(xi – xi+) sin(xi + xi+) – ,

i = , , . . . , n – ,

fn(x) = –xn–exn––xn + xn – .

Initial guess: x = (, , . . . , )T .

Function  The extended Freudentein and Roth function (n is even). For i = , , . . . , n/,

fi–(x) = xi– +
(
( – xi)xi – 

)
xi – ,

fi(x) = xi– +
(
( + xi)xi – 

)
xi – .

Initial guess: x = (, , . . . , , )T .

Function  The Troech problem

f(x) = x + �h sin h(�x) – x,

fi(x) = xi + �h sin h(�xi) – xi– – xi+, i = , , . . . , n – ,
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Figure 1 Performance profiles of the total number of iterations of two algorithms (n = 100).

Figure 2 Performance profiles of the total number of iterations of two algorithms (n = 1,000).

fn(x) = xn + �h sin h(�xn) – xn–,

h =


n + 
, � = .

Initial guess: x = (, , . . . , )T .

In the experiments, the parameters are chosen as � = , �̄ = , ε = –, η = .,
η = ., β = ., β = ., M = , ηk = /(k + ), α = ., where ε is the stop criterion.
The program is also stopped if the iteration number is larger than ,. We obtain dk by
() from the Dogleg method in []. The program is coded in MATLAB a.
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Figure 3 Performance profiles of the total number of iterations of two algorithms (n = 10,000).

Figure 4 Performance profiles of the CPU time of two algorithms (n = 100).

To show the performance of two algorithms, we use the performance profile proposed by
Dolan and Moré []. The dimensions of  test functions are , ,, ,. Accord-
ing to the numerical results, we plot two figures based on the total number of iterations
and the CPU time, respectively.

Figure  shows that our algorithm is slightly better than Algorithm  on the total num-
ber of iterations for n = . Figures  and  indicate that two algorithms have no large
discrepancies on the total number of iterations for n = ,, ,. From Figures -,
it is easy to see that our algorithm performs better than Algorithm  does on the CPU
time for  test problems. Preliminary numerical results show that the performance of
our algorithm is notable.
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Figure 5 Performance profiles of the CPU time of two algorithms (n = 1,000).

Figure 6 Performance profiles of the CPU time of two algorithms (n = 10,000).
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