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Abstract
This paper is concerned with the generalization of the homogeneous approximation
property (HAP) for a continuous shearlet transform to higher dimensions. First, we
give a pointwise convergence result on the inverse shearlet transform in higher
dimensions. Second, we show that every pair of admissible shearlets possess the HAP
in the sense of L2(Rd). Third, we give a sufficient condition for the pointwise HAP to
hold, which depends on both shearlets and functions to be reconstructed.
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1 Introduction
Modern technology allows for easy creation, transmission, and storage of huge amounts
of higher-dimensional data. Nowadays, the key problem is to extract the relevant informa-
tion from these huge amounts of higher-dimensional data. In this context, one particular
problem which is currently in the center of interest is the analysis of directional infor-
mation in higher dimensions. Due to traditional wavelets’ limited directional sensitivity,
traditional wavelets are not very efficient in dealing with distributed discontinuities such
as the edges occurring in natural images or the boundaries of solid bodies. Hence new
direction representation systems have to be developed, such as ridgelets [], curvelets [],
contourlets [], shearlets [, ], and many others. Among all these approaches, the shear-
let transform stands out because it is related to group theory, and it has a flexible enough
extension to precisely detect the position and orientation of singularities and to provide
optimally sparse representations.

In this paper, we study the homogeneous approximation property (HAP) for the shear-
let transform in higher dimensions. The HAP is useful in practice, since it means that
the approximation rate in a reconstruction of f is invariant under time-scale shifts. The
HAP was introduced by Ramanathan and Steger in []. Then it was studied for continu-
ous wavelet systems and their discretization introduced by Sun [–], and for irregular
wavelet frames introduced by Heil and Kutyniok in [], and for Gabor systems in [].

In the discrete shearlet system case, the HAP for irregular shearlet frames has been
studied in [, ]. Although the HAP is well understood for Gabor, wavelet, and discrete
irregular shearlet frames, it is not very clear for continuous shearlet systems in higher
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dimensions. Due to the HAP being particularly useful in both theoretical and numerical
applications, and the urgent need for analyzing higher-dimensional data, there is an urgent
need for studying the HAP for continuous shearlet systems in higher dimensions. This is
exactly the concern of this paper.

The aim of this paper is threefold.
(i) We give a pointwise convergence result on the inverse shearlet transform in higher

dimensions.
(ii) We show that every pair of admissible shearlets possess the HAP in the sense of

L(Rd).
(iii) We give a sufficient condition for the pointwise HAP to hold, which depends on

both shearlets and functions to be reconstructed in higher dimensions.
This paper is organized as follows. In Section , we collect some basic notations and def-

initions. Then, in Section , we give a pointwise convergence result on the inverse shear-
let transform in higher dimensions. In Section , we show that every pair of admissible
shearlets possess the HAP in the sense of L(Rd). Finally, in Section , we give a sufficient
condition for the pointwise HAP to hold, which depends on both shearlets and functions
to be reconstructed in higher dimensions.

2 Notation
The shearlet group G = {(a, s, t), a ∈ R+, s ∈ Rd–, t ∈ Rd} equipped with group multiplica-
tion by

(a, s, t)
(
a′, s′, t′) =

(
aa′, s + a

d–
d s′, t + SsAat′),

where s = (s, . . . , sd–)T , and

Aa =

[
a 
 a


d Id–

]

, Ss =

[
 sT

 Id–

]

.

We have the mapping σ : G → U (L(Rd)), where U (L(Rd)) denotes the group of unitary
operators on L(Rd), and it is a unitary representation of the shearlet group. The shearlet
transform of f ∈ L(Rd) with respect to ψ ∈ L(Rd) is defined in the following way:

SHψ f (a, s, t) = 〈f ,ψa,s,t〉 =
〈
f ,σ (a, s, t)ψ

〉
=

∫

Rd
f (x)σ (a, s, t)ψ(x) dx,

where

σ (a, s, t)ψ(x) = a– d–
d ψ

(
A–

a S–
s (x – t)

)
.

For A > A >  and B > , denote

QA,A;B =
(
[–A, –A] ∪ [A, A]

) × [–B, B]d– × [–B, B]d

for every (p, q, r) ∈ G, its (A, A; B)-neighborhood is defined by

(p, q, r)QA,A;B =
{

(p, q, r)(a, s, t) =
(
pa, q + p

d–
d s, r + SqApt

)
:

a ∈ [–A, –A] ∪ [A, A], s ∈ [–B, B]d–, t ∈ [–B, B]d}.



Su et al. Journal of Inequalities and Applications  (2016) 2016:177 Page 3 of 13

The Fourier transform of f ∈ L(Rd) ∩ L(Rd) is defined by

f̂ (ω) =
∫

Rd
f (x)e–π i〈x,ω〉 dx.

In [], we call a function ψ ∈ L(Rd) admissible if

Cψ =
∫

Rd

|ψ̂(ω)|
|ω|d dω < ∞.

We need the condition of deformation of admissibility as follows:

Cψ =
∫

Rd–

∫ ∞



∣∣ψ̂
(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

< ∞,

it being independent of ω (up to a zero measured set) and Cψ 
= .
In fact, by using a similar method to [], we have

∫

Rd–

∫

R+

|ψ̂(AT
a ST

s ω)|
a

d–d+
d

da ds

=
∫

R
· · ·

∫

R

∫

R+

|ψ̂(aω, a

d (sω + ω), . . . , a


d (sd–ω + ωd))T |

a
d–d+

d

da ds · · · dsd–

=
∫

R
· · ·

∫

R

∫

R+

|ψ̂(aω, a

d (sω + ω), . . . , a


d (sd–ω + ωd–),νd)T |

a
d–d+

d

da ds · · · dsd–
dνd–

a

d ω

=
∫

R
· · ·

∫

R

∫

R

|ψ̂(ν,ν, . . . ,νd)T |
a

d–d+
d



a
d–

d ωd–


da dν · · · dνd

=
∫

R
· · ·

∫

R

∫

R

|ψ̂(ν,ν, . . . ,νd)T |ω
d–d+

d


ν
d–d+

d

ω
d–

d


ωd
 ν

d–
d



dν dν · · · dνd

=
∫

Rd

|ψ̂(ν)|
νd dν = Cψ .

In [], we call a pair of functions (ψ,ψ) admissible if both ψ and ψ are admissible
and

Cψ,ψ =
∫

Rd–

∫ ∞


ψ̂

(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

< ∞

is independent of ω (up to a zero measured set) and Cψ,ψ 
= .

3 Pointwise convergence of the inverse shearlet transforms
In this section, we give a pointwise convergence result on the inverse shearlet transform.
We show that f ∈ L(Rd) and the admissibility of (ψ,ψ) are enough to guarantee the
pointwise convergence. We would like to mention that our ideas in this section are inspired
by Liu and Sun [].

We begin with a useful theorem.
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Theorem . Let ψ, ψ be a pair of admissible shearlets with Cψ,ψ 
= . For any f ∈
L(Rd) and A > A > , define

fA,A (x) = C–
ψ,ψ

∫ A

A

da
∫

Rd–
ds

∫

Rd

〈
f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+ .

Then we have

f̂A,A (ω) = C–
ψ,ψ f̂ (ω)

∫

Rd–

∫ A

A

ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

. ()

Proof First, we show that fA,A is well defined on Rd . For any x ∈ Rd , we get

∫ A

A

da
ad+

∫

Rd–
ds

∫

Rd

∣
∣〈f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

∣
∣dt

≤
∫ A

A

da
ad+

(∫

Rd

∫

Rd–

∣
∣〈f ,σ (a, s, t)ψ

〉∣∣ ds dt
) 


(∫

Rd

∫

Rd–

∣
∣σ (a, s, t)ψ(x)

∣
∣ ds dt

) 


=
(∫ A

A

da
ad+

) 

(∫ A

A

da
ad+

∫

Rd

∫

R

∣
∣〈f ,σ (a, s, t)ψ

〉∣∣ ds dt
) 

 ∥
∥ψ(x)

∥
∥



= C


ψ

‖f ‖
∥
∥ψ(x)

∥
∥



(∫ A

A

da
ad+

) 


= d– 
 C



ψ

‖f ‖
∥∥ψ(x)

∥∥


(
A–d

 – A–d


) 


< ∞. ()

Hence, fA,A is well defined on Rd .
Second, we show that fA,A is uniformly continuous on Rd . For any x, x′ ∈ Rd , we have

∣∣fA,A (x) – fA,A

(
x′)∣∣

=
∣∣∣
∣C

–
ψ,ψ

∫ A

A

da
∫

Rd–
ds

∫

Rd

〈
f ,σ (a, s, t)ψ

〉(
σ (a, s, t)ψ(x) – σ (a, s, t)ψ

(
x′)) dt

ad+

∣∣∣
∣

≤ ∣
∣C–

ψ,ψ

∣
∣
(∫

Rd

∫

Rd–

∫ A

A

∣
∣f̂ (ω)

∣
∣∣∣ψ̂

(
AT

a ST
s ω

)∣∣ da ds dω

a
d–d+

d

) 


×
(∫

Rd

∫

Rd–

∫ A

A

∣∣a– d–
d ψ

(
A–

a S–
s (x – t)

)

– a– d–
d ψ

(
A–

a S–
s

(
x′ – t

))∣∣ da ds dt
ad+

) 


≤ ∣
∣C–

ψ,ψ

∣
∣C



ψ

‖f̂ ‖

(∫

Rd–

∫ A

A

∥
∥ψ

(
A–

a S–
s x – ·) – ψ

(
A–

a S–
s x′ – ·)∥∥


da ds
ad+

) 


.

Hence

lim
‖x–x′‖→

∣
∣fA,A (x) – fA,A

(
x′)∣∣ = .

So, fA,A is uniformly continuous on Rd .
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Third, we prove (). By (), for any g ∈ L ∩ L(Rd),

∫

Rd

∣
∣g(x)

∣
∣dx

∫ A

A

da
ad+

∫

Rd–
ds

∫

Rd

∣
∣〈f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

∣
∣dt < ∞.

We generalized the formula in [],

〈
f , a– d–

d ψ
(
A–

a S–
s (x – t)

)〉
=

〈
f ,σ (a, s, )ψ(x – t)

〉

= f ∗ σ (a, s, )ψ∗(t). ()

By using (), we have

〈fA,A , g〉 = C–
ψ,ψ

∫ A

A

da
∫

Rd–
ds

∫

Rd

〈
f ,σ (a, s, t)ψ

〉〈
σ (a, s, t)ψ(x), g

〉 dt
ad+

= C–
ψ,ψ

∫ A

A

da
ad+

∫

Rd–
ds

∫

Rd
f ∗ σ (a, s, )ψ∗

 (t)g ∗ σ (a, s, )ψ∗
 (t) dt

= C–
ψ,ψ

∫ A

A

da
ad+

∫

Rd–
ds

∫

Rd
f̂ (ω)σ (a, s, )ψ̂(ω)σ (a, s, )ψ̂(ω)ĝ(ω) dω

= C–
ψ,ψ

∫

Rd
f̂ (ω)ĝ(ω) dω

∫

Rd–

∫ A

A

σ (a, s, )ψ̂(ω)σ (a, s, )ψ̂(ω)
da ds
ad+

= C–
ψ,ψ

∫

Rd
f̂ (ω)ĝ(ω) dω

∫

Rd–

∫ A

A

ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

.

Since g ∈ L ∩ L(Rd), we get

f̂A,A (ω) = C–
ψ,ψ f̂ (ω)

∫

Rd–

∫ A

A

ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

. �

We can see that when d = , this result is suitable for the two dimensional case, so our
result covers the bidimension case.

Next we give a convergence result on the inverse shearlet transform. Because only the
admissibility is invoked, the following theorem improves Theorem ..

Theorem . Let (ψ,ψ) be a pair of admissible shearlets, and Cψ,ψ 
= .
(i) For any f ∈ L(Rd), we have

lim
A→

A→∞
‖f – fA,A‖ = .

(ii) For any f̂ ∈ L(Rd), we have

lim
A→

A→∞
‖f – fA,A‖∞ = .

Proof We only prove the second part, the first part can be proved similarly.
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By using Theorem ., we have

‖f – fA,A‖∞ ≤ ‖f̂ – f̂A,A‖

=
∫

Rd

∣
∣f̂ (ω)

∣
∣ ·

∣∣
∣∣ – C–

ψ,ψ

∫

Rd–

∫ A

A

ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣∣
∣∣dω.

Because both ψ and ψ are admissible, we have

∣∣
∣∣

∫

Rd–

∫ A

A

ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣∣
∣∣

≤
∣∣
∣∣

∫

Rd–

∫ ∞


ψ̂

(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣∣
∣∣

≤
(∫

Rd–

∫ ∞



∣∣ψ̂
(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 

(∫

Rd–

∫ ∞



∣∣ψ̂
(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


= C


ψ

C


ψ

< ∞

and

lim
A→

A→∞

∣
∣∣∣ – C–

ψ,ψ

∫

Rd–

∫ A

A

ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣
∣∣∣ = .

By using the dominated convergence theorem, we have the conclusion. �

We can see that when d = , this result is suitable for the two dimensional case, so our
result covers the bidimension case.

4 Homogeneous approximation property for continuous shearlet transforms
in L2(Rd)

In this section, we study the HAP for continuous shearlet transforms in L(Rd).

Theorem . If ψ,ψ ∈ L(Rd) are a pair of admissible shearlets and Cψ,ψ 
= , f ∈
L(Rd), and f̂ ∈ L(Rd), then, for any ε > , there exist some A > A > , such that, for any
(p, q, r) ∈ G with any  < A′

 ≤ A and A ≤ A′
, we have

∥∥
∥∥σ (p, q, r)f – C–

ψ,ψ

∫∫∫

(a,s,t)∈(p,q,r)QA′
,A′

;B′

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ
da ds dt

ad+

∥∥
∥∥




< ε.

Proof In fact, we have

∥
∥∥
∥σ (p, q, r)f – C–

ψ,ψ

∫∫∫

(a,s,t)∈(p,q,r)QA′
,A′

;B′

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ
da ds dt

ad+

∥
∥∥
∥
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= sup
‖g‖=

∣∣
∣∣

〈
σ (p, q, r)f – C–

ψ,ψ

∫∫∫

(a,s,t)∈(p,q,r)QA′
,A′

;B′

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ
da ds dt

ad+ , g
〉∣∣
∣∣



= sup
‖g‖=

∣∣
∣∣C

–
ψ,ψ

∫∫∫

(a,s,t) /∈(p,q,r)QA′
,A′

;B′

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉〈
σ (a, s, t)ψ, g

〉da ds dt
ad+

∣∣
∣∣



≤ ∣∣C–
ψ,ψ

∣∣
∫∫∫

(a,s,t) /∈(p,q,r)QA′
,A′

;B′

∣∣〈σ (p, q, r)f ,σ (a, s, t)ψ
〉∣∣ da ds dt

ad+

× sup
‖g‖=

∫∫∫

G

∣
∣〈g,σ (a, s, t)ψ

〉∣∣ da ds dt
ad+

= Cψ

∣∣C–
ψ,ψ

∣∣
∫∫∫

(a,s,t) /∈(p,q,r)QA′
,A′

;B′

∣∣〈σ (p, q, r)f ,σ (a, s, t)ψ
〉∣∣ da ds dt

ad+

= Cψ

∣
∣C–

ψ,ψ

∣
∣
∫∫∫

(a,s,t) /∈QA′
,A′

;B′

∣
∣〈f ,σ (a, s, t)ψ

〉∣∣ da ds dt
ad+

≤ Cψ

∣∣C–
ψ,ψ

∣∣
∫∫∫

(a,s,t) /∈QA,A;B

∣∣〈f ,σ (a, s, t)ψ
〉∣∣ da ds dt

ad+

:= EA,A;B.

We can make EA,A;B arbitrarily small by choosing A small enough and A and B large
enough. This completes the proof. �

We can see that when d = , this result is suitable for the two dimensional case, so our
result covers the bidimension case.

5 Homogeneous approximation property for continuous shearlet transforms
in L∞(Rd)

In this section, we study the HAP for continuous shearlet transforms in L∞(Rd). We show
that the pointwise HAP depends on both the shearlets and the functions to be recon-
structed, which is quite different from the case of L(Rd).

Theorem . is very different from the univariate continuous wavelet transform case [],
it is only a sufficient but not necessary condition for the pointwise HAP for a continuous
shearlet transform to hold in L∞(Rd).

Theorem . If ψ,ψ ∈ L(Rd) are a pair of admissible shearlets and Cψ,ψ 
= , f ∈
L(Rd), and f̂ ∈ L(Rd), then, for any ε, p > , there exist some A > A >  such that, for
any (p, q, r) ∈ G with  < p ≤ p and any  < A′

 ≤ A and A ≤ A′
, we have

∥∥
∥∥σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+

∥
∥∥
∥∞

≤ ε.
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Proof By using Theorem ., we have

∥∥
∥∥σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+

∥
∥∥
∥∞

≤ ∣∣C–
ψ,ψ

∣∣
∣
∣∣
∣

∫ A′
p


da

∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+

∣
∣∣
∣

+
∣∣C–

ψ,ψ

∣∣
∣∣∣
∣

∫ +∞

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+

∣∣∣
∣

≤ ∣
∣C–

ψ,ψ

∣
∣
∫

Rd

∣
∣p

d–
d f

(
AT

p ST
q ω

)∣∣
∣∣
∣∣

∫

Rd–

∫ A′
p


ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣∣
∣∣dω

+
∣
∣C–

ψ,ψ

∣
∣
∫

Rd

∣
∣p

d–
d f

(
AT

p ST
q ω

)∣∣
∣∣
∣∣

∫

Rd–

∫ +∞

A′
p

ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣∣
∣∣dω

≤ ∣∣C–
ψ,ψ

∣∣|p|– d–
d

∫

Rd

∣∣f (ω)
∣∣
(∫

Rd–

∫ A′




∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


dω

+
∣∣C–

ψ,ψ

∣∣|p|– d–
d

∫

Rd

∣∣f (ω)
∣∣

×
(∫

Rd–

∫ +∞

A′


∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


dω

= I + II.

Because both ψ and ψ are admissible, we have

(∫

Rd–

∫ A′




∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 
 ≤ C



ψ

C


ψ

< ∞ ()

and

(∫

Rd–

∫ +∞

A′


∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 
 ≤ C



ψ

C


ψ

< ∞. ()

First, for (), we have

lim
A′

→

(∫

Rd–

∫ A′




∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


= .

Second, for (),

∫

Rd–

∫ A′




∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

+
∫

Rd–

∫ +∞

A′


∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d
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=
∫

Rd–

∫ ∞



∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

≤ Cψ Cψ < ∞. ()

Hence, for any ε > , there exists M > , such that, for A′
 > M, we have

∣
∣∣
∣

∫

Rd–

∫ A′




∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

–
∫

Rd–

∫ ∞



∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

∣
∣∣
∣ < ε

so we get

lim
A′

→∞

∫

Rd–

∫ A′




∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

=
∫

Rd–

∫ ∞



∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

. ()

Putting () in (), we have

lim
A′

→+∞

(∫

Rd–

∫ +∞

A′


∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


= .

By the dominated convergence theorem, we have

lim
A′

→

∫

Rd

∣
∣f (ω)

∣
∣
(∫

Rd–

∫ A′




∣
∣ψ

(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


dω = ,

lim
A′

→∞

∫

Rd

∣∣f (ω)
∣∣
(∫

Rd–

∫ +∞

A′


∣∣ψ
(
AT

a ST
s ω

)
ψ

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

) 


dω = .

Hence, we can choose some  < A ≤ A such that, for any  < p ≤ p, and any  < A′
 ≤ A

and A ≤ A′
, we have

I ≤ ε


, ()

II ≤ ε


. ()

Putting () and () together, we get the conclusion. �

Theorem . If ψ,ψ ∈ L(Rd) are a pair of admissible shearlets and Cψ,ψ 
= , f ∈
L(Rd), and f̂ ∈ L(Rd), then the following assertions are equivalent.

(i) There is some x ∈ Rd such that, for any ε > , there exist  < A < A and any
(p, q, r) ∈ G, A ≤ A′

,  < A′
 ≤ A, such that

∣
∣∣∣σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+

∣∣
∣∣ ≤ ε. ()
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(ii) For any ε >  and x ∈ Rd , there exist  < A < A and any (p, q, r) ∈ G, A ≤ A′
,

 < A′
 ≤ A, such that

∣
∣∣
∣σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+

∣
∣∣∣ ≤ ε.

(iii) There exist  < A < A and any x ∈ Rd , A ≤ A′
,  < A′

 ≤ A, such that

f (x) = C–
ψ,ψ

∫ A′


A′


da
∫

Rd–
ds

∫

Rd

〈
f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+ .

(iv) There exist  < A < A, A ≤ A′
 and  < A′

 ≤ A, such that

Cψ,ψ =
∫

Rd–

∫ A′


A′


ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

.

(v) There exist  < A < A and any (p, q, r) ∈ G, A ≤ A′
,  < A′

 ≤ A, such that

σ (p, q, r)f (x)

= C–
ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+ .

Proof For any  < A < A, we have

fA,A (x) = C–
ψ,ψ

∫ A

A

da
∫

Rd–
ds

∫

Rd

〈
f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+ .

Then, for any (p, q, r) ∈ G, we have

σ (p, q, r)fA,A (x)

= C–
ψ,ψ

∫ Ap

Ap
da

∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+ .

(i) ⇒ (ii): Assume that (i) holds, by substituting r + x – x for r in (), we get

∣∣
∣∣σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r + x – x)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+

∣
∣∣
∣ ≤ ε.
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On the other hand, by a change of variable of the form t → t + x – x, we get

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r + x – x)f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+

=
∫ A′

p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+ .

Hence (ii) holds.
(ii) ⇒ (iii):

∣∣f (x) – fA′
,A′


(x)

∣∣

= |p| d–
d

∣∣σ (p, q, r)f (x) – σ (p, q, r)fA′
,A′


(x)

∣∣

= |p| d–
d

∣
∣∣
∣σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉

× σ (a, s, t)ψ(x)
dt

ad+

∣
∣∣∣

< |p| d–
d ε.

Since p is arbitrary, for any x ∈ Rd , A ≤ A′
,  < A′

 ≤ A, such that

f (x) = fA′
,A′


(x)

= C–
ψ,ψ

∫ A′


A′


da
∫

Rd–
ds

∫

Rd

〈
f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+ .

(iii) ⇒ (iv): For any  < A′
 ≤ A and A ≤ A′



∣
∣∣
∣Cψ,ψ –

∫

Rd–

∫ A′


A′


ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣
∣∣
∣

≤ |Cψ,ψ | +
∫

Rd–

∫ A′


A′


∣∣ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

)∣∣ da ds

a
d–d+

d

≤ |Cψ,ψ | + C


ψ

C


ψ

< ∞.

Let ĝ(ω) = f̂ (ω)(Cψ,ψ –
∫

Rd–
∫ A′


A′


ψ̂(AT

a ST
s ω)ψ̂(AT

a ST
s ω) da ds

a
d–d+

d
), then we have g ∈ L(Rd).

We have

〈f – fA′
,A′


, g〉

= C–
ψ,ψ

∫

Rd
f̂ (ω)ĝ(ω)

(
Cψ,ψ –

∫

Rd–

∫ A′


A′


ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

)
dω

= C–
ψ,ψ

∫

Rd

∣∣f̂ (ω)
∣∣

∣
∣∣
∣Cψ,ψ –

∫

Rd–

∫ A′


A′


ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

∣
∣∣
∣



dω.
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But f (x) = fA′
,A′


(x), hence

Cψ,ψ –
∫

Rd–

∫ A′


A′


ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

= , ω ∈ suup f̂ .

Since
∫

Rd–
∫ A′


A′


ψ̂(AT

a ST
s ω)ψ̂(AT

a ST
s ω) da ds

a
d–d+

d
is a continuous function on Rd with respect

to ω, we get

Cψ,ψ =
∫

Rd–

∫ A′


A′


ψ̂
(
AT

a ST
s ω

)
ψ̂

(
AT

a ST
s ω

) da ds

a
d–d+

d

, ω ∈ suup f̂ .

(iv) ⇒ (v):

∣∣
∣∣σ (p, q, r)f (x) – C–

ψ,ψ

∫ A′
p

A′
p

da
∫

Rd–
ds

∫

Rd

〈
σ (p, q, r)f ,σ (a, s, t)ψ

〉
σ (a, s, t)ψ(x)

dt
ad+

∣∣
∣∣

=
∣∣σ (p, q, r)f (x) – σ (p, q, r)fA′

,A′

(x)

∣∣

= |p|– d–
d

∣
∣f (x) – fA′

,A′

(x)

∣
∣

= .

(v) ⇒ (ii), and (ii) ⇒ (i) are obvious. �

6 Conclusions and future work
The results in this paper set the foundation for the study of a number of questions related
to the continuous shearlet transform, including the following:

. A pointwise convergence result on the inverse shearlet transform in arbitrary
dimensions.

. Every pair of admissible shearlets possess the HAP in the sense of L(Rd).
. A sufficient condition for the pointwise HAP to hold, which depends on both

shearlets and functions to be reconstructed in arbitrary dimensions.
The study of these issues will be the focus of future investigations. In future work, the

obtained results can further be generalized to a continuous Toeplitz shearlet transform,
and also can be generalized to a continuous generalized shearlet transform.
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