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Abstract
We investigate new results about Lyapunov-type inequalities by considering hybrid
fractional boundary value problems. We give necessary conditions for the existence
of nontrivial solutions for a class of hybrid boundary value problems involving
Riemann-Liouville fractional derivative of order 2 < α ≤ 3. The investigation is based
on a construction of Green’s functions and on finding its corresponding maximum
value. In order to illustrate the results, we provide numerical examples.
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1 Introduction and preliminaries
It is well known that various type integral inequalities play a dominant role in the study of
quantitative properties of solutions of differential and integral equations. One of them is
Lyapunov-type inequality which has been proved to be very useful in studying the zeros
of solutions of differential equations. The well-known Lyapunov result [] states that if the
boundary value problem

⎧
⎨

⎩

y′′(t) + q(t)y(t) = , a < t < b,

y(a) = y(b) = ,
(.)

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a

∣
∣q(s)

∣
∣ds >


b – a

. (.)

This result found many practical applications in differential equations (oscillation the-
ory, disconjugacy, eigenvalue problems, etc.); see, for instance, [–] and references
therein.

The search for Lyapunov-type inequalities in which the starting differential equation is
constructed via fractional differential operators has begun very recently. The first work
in this direction is due to Ferreira [], where he derived a Lyapunov-type inequality for
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Riemann-Liouville fractional boundary value problem

⎧
⎨

⎩

Dαy(t) + q(t)y(t) = , a < t < b,

y(a) = y(b) = ,
(.)

where Dα is the Riemann-Liouville fractional derivative of order  < α ≤  and q : [a, b] →
R is a continuous function. It has been proved that if (.) has a nontrivial solution then

∫ b

a

∣
∣q(s)

∣
∣ds > �(α)

(


b – a

)α–

. (.)

Clearly, if we let α =  in the above inequality, one obtains Lyapunov’s standard inequality.
Ferreira also in [], was obtained a Lyapunov-type inequality for the Caputo fractional
boundary value problem

⎧
⎨

⎩

CDαy(t) + q(t)y(t) = , a < t < b,

y(a) = y(b) = ,
(.)

where CDα is the Caputo fractional derivative of order  < α ≤ . It has been proved in []
that if (.) has a nontrivial solution then

∫ b

a

∣
∣q(s)

∣
∣ds >

�(α)αα

[(α – )(b – a)]α– . (.)

Similarly if we let α =  in (.), one obtains Lyapunov’s classical inequality (.).
In [], Jleli and Samet considered the fractional differential equation

CDαy(t) + q(t)y(t) = , a < t < b, (.)

with the mixed boundary conditions

y(a) =  = y′(b) (.)

or

y′(a) =  = y(b). (.)

For boundary conditions (.) and (.), two Lyapunov-type inequalities were established,
respectively, as follows:

∫ b

a
(b – s)α–∣∣q(s)

∣
∣ds >

�(α)
max{α – ,  – α}(b – a)

(.)

and

∫ b

a
(b – s)α–∣∣q(s)

∣
∣ds > �(α). (.)
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Recently Rong and Bai [] considered (.) under boundary condition

y(a) = , CDβy(t) = ,  < β ≤ , (.)

and established the following Lyapunov-type inequality:

∫ b

a
(b – s)α–β–∣∣q(s)

∣
∣ds >

(b – a)–β

max{ 
�(α) – �(–β)

�(α–β) , �(–β)
�(α–β) , –α

α– · �(–β)
�(α–β) }

. (.)

For other work on Lyapunov-type inequalities for fractional boundary value problems we
refer the reader to [–].

The aim of this manuscript is to establish some Lyapunov’s type inequalities for hybrid
fractional boundary value problem

⎧
⎨

⎩

Dα
a [ y(t)

f (t,y(t)) –
∑n

i= Iβ
a hi(t, y(t))] + g(t)y(t) = , t ∈ (a, b),

y(a) = y′(a) = y(b) = ,
(.)

where Dα
a denotes the Riemann-Liouville fractional derivative of order α ∈ (, ] starting

from a point a, the functions y ∈ C([a, b],R), g ∈ L((a, b],R), f ∈ C([a, b] × R,R \ {}),
hi ∈ C([a, b] ×R,R), ∀i = , , . . . , n, and Iβ

a is the Riemann-Liouville fractional integral of
order β ≥ α with the lower limit at a point a.

We recall the basic definitions, [–].

Definition . The fractional integral of order q with the lower limit a for a function f is
defined as

Iq
a f (t) =


�(q)

∫ t

a

f (s)
(t – s)–q ds, t > a, q > ,

provided the right-hand side is point-wise defined on [a,∞), where �(·) is the gamma
function, which is defined by �(q) =

∫ ∞
 tq–e–t dt.

Definition . The Riemann-Liouville fractional derivative with the lower limit a of order
q > , n –  < q < n, n ∈ N , is defined as

Dq
af (t) =


�(n – q)

(
d
dt

)n ∫ t

a
(t – s)n–q–f (s) ds,

where the function f has absolutely continuous derivative up to order (n – ).

2 Main results
We consider two cases: (I) hi = , i = , , . . . , n, and (II) hi 	= , i = , , . . . , n.

2.1 Case I: hi = 0, i = 1, 2, . . . , n
We consider problem (.) with hi(t, ·) =  for all t ∈ [a, b]. For α ∈ (, ], we first construct
a Green’s function for the following boundary value problem:

⎧
⎨

⎩

Dα
a [ y(t)

f (t,y(t)) ] + g(t)y(t) = , t ∈ (a, b),

y(a) = y′(a) = y(b) = ,
(.)
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with the assumption that f is continuously differentiable and f (t, y(t)) 	=  for all t ∈
[a, b].

Lemma . Let y ∈ AC([a, b],R) be a solution of problem (.). Then the function y satisfies
the following integral equation:

y = f (t, y)
∫ b

a
G(t, s)g(s)y(s) ds, (.)

where G(t, s) is the Green’s function defined by

G(t, s) =

⎧
⎨

⎩

(b–s)α–(t–a)α–

�(α)(b–a)α– , a ≤ t ≤ s ≤ b,
(b–s)α–(t–a)α–

�(α)(b–a)α– – (t–s)α–

�(α) , a ≤ s ≤ t ≤ b.
(.)

Proof Taking the Riemann-Liouville fractional integral of order α from a to t of both sides
of (.), we obtain

y(t)
f (t, y(t))

= c(t – a)α– + c(t – a)α– + c(t – a)α– – Iα
a g(t)y(t). (.)

Putting t = a in (.), we get a constant c = . Differentiating both sides of equation (.)
with respect to t, we have

f (t, y(t))y′(t) – y(t)ft(t, y(t))
f (t, y(t))

= c(α – )(t – a)α– + c(α – )(t – a)α– – Iα–
a g(t)y(t).

Applying the conditions of problem (.), the constant c is vanished. Replacing t by b
with c = c =  in (.) and using the last condition of (.), the constant c is obtained as
follows:

c =
Iα

a g(b)y(b)
(b – a)α– .

Hence a solution y of problem (.) satisfies the following integral equation:

y(t) = f
(
t, y(t)

)
[∫ b

a

(b – s)α–

�(α)
(t – a)α–

(b – a)α– g(s)y(s) ds –
∫ t

a

(t – s)α–

�(α)
g(s)y(s) ds

]

. (.)

By the definition of the Green’s function as in (.), equation (.) can be written in the
form of (.). The proof is completed. �

Lemma . The Green’s function defined in (.) satisfies:
(i) G(t, s) ≥ , ∀t, s ∈ [a, b].

(ii) G(t, s) ≤ H(s) := (b–s)α–

�(α–) .

(iii) maxs∈[a,b] H(s) = (b–a)α–

�(α–) .

Proof First of all, we define the following two functions:

g(t, s) =
(b – s)α–(t – a)α–

(b – a)α– , a ≤ t ≤ s ≤ b,
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g(t, s) =
(b – s)α–(t – a)α–

(b – a)α– – (t – s)α–, a ≤ s ≤ t ≤ b.

(i) It is obvious that g(t, s) ≥ . To show that g(t, s) ≥ , we use the following observation
of Ferreira in []:

a +
(s – a)(b – a)

t – a
≥ s is equivalent to s ≥ a.

Then we have

(t – s)α– = (t – a + a – s)α–

=
[

(t – a)
(

 +
a – s
t – a

)]α–

=
[

(b – a)
(

 +
a – s
t – a

)]α– (t – a)α–

(b – a)α–

=
[

b –
(

a +
(b – a)(s – a)

t – a

)]α– (t – a)α–

(b – a)α– , (.)

which leads to

g(t, s) =
(b – s)α–(t – a)α–

(b – a)α– – (t – s)α–

=
(b – s)α–(t – a)α–

(b – a)α– –
[

b –
(

a +
(b – a)(s – a)

t – a

)]α– (t – a)α–

(b – a)α–

≥ (b – s)α–(t – a)α–

(b – a)α– – (b – s)α– (t – a)α–

(b – a)α–

= .

Therefore, part (i) is proved.
(ii) For a ≤ s ≤ t ≤ b, we have

g(t, s) =
[

(b – s)(t – a)
b – a

]α–

– (t – s)α–

= (α – )
∫ [(b–s)(t–a)]/(b–a)

t–s
xα– dx

≤ (α – )
[

(b – s)(t – a)
b – a

]α–[ (b – s)(t – a)
b – a

– (t – s)
]

≤ (α – )
(b – s)α–(t – a)α–

(b – a)α–

≤ (α – )(b – s)α–,

and consequently

g(t, s)
�(α)

≤ (b – s)α–

�(α – )
.
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For a ≤ t ≤ s ≤ b, we have

g(t, s) =
[

(b – s)(t – a)
b – a

]α–

≤ (b – s)α–(s – a)α–

(b – a)α–

= (α – )
∫ [(b–s)(s–a)]/(b–a)


xα– dx

≤ (α – )
(b – s)α–(s – a)α–

(b – a)α–

[
(b – s)(s – a)

b – a

]

= (α – )
(b – s)α–(s – a)α–

(b – a)α–

≤ (α – )(b – s)α–,

which yields

g(t, s)
�(α)

≤ (b – s)α–

�(α – )
.

It follows that

G(t, s) ≤ H(s), ∀s, t ∈ [a, b],

which is the proof of part (ii).
(iii) This is obvious, since H ′(s) < . The proof is complete. �

Theorem . The necessary condition for the existence of a nontrivial solution for the
boundary value problem (.) is

�(α – )
‖f ‖ ≤

∫ b

a
(b – s)α–∣∣g(s)

∣
∣ds, (.)

where ‖f ‖ = supt∈[a,b],y∈R |f (t, y)|.

Proof From Lemma ., the solution of (.) satisfies the following integral equation:

y(t) = f
(
t, y(t)

)
(∫ b

a
G(t, s)g(s)y(s) ds

)

.

The continuity of functions y and f on their compact domains yield

‖y‖ ≤ ‖f ‖
(∫ b

a

∣
∣G(t, s)

∣
∣
∣
∣g(s)

∣
∣
∣
∣y(s)

∣
∣ds

)

.

Simplifying above inequality, we get

 ≤ ‖f ‖
(∫ b

a
H(s)

∣
∣g(s)

∣
∣ds

)

. (.)

Applying the result in Lemma ., the desired inequality in (.) is obtained. �



Sitho et al. Journal of Inequalities and Applications  (2016) 2016:170 Page 7 of 13

Corollary . The necessary condition for the existence of a nontrivial solution for the
boundary value problem (.) is

�(α – )
‖f ‖ (b – a)–α ≤ ‖g‖L . (.)

Corollary . Consider the fractional Sturm-Liouville problem given by

⎧
⎨

⎩

Dα
[ y(t)

f (t,y(t)) ] + λy(t) = , α ∈ (, ], t ∈ (, ),

y() = y′() = y() = ,
(.)

where f (t, y(t)) 	=  for all t ∈ [, ] and λ ∈ R. The necessary condition for the existence of
a nontrivial solution for the boundary value problem (.) is

|λ| ≥ α�(α – )
‖f ‖ . (.)

Proof From the Lyapunov-type inequality in Theorem . and replacing the values a = ,
b = , and g(t) ≡ λ for t ∈ [, ], the inequality (.) becomes

�(α – )
‖f ‖ ≤

∫ 


( – s)α–|λ|ds =


α

|λ|.

This completes the proof. �

Corollary . Consider the fractional Sturm-Liouville problem of the form

⎧
⎨

⎩

Dα
a [ y(t)

f (t,y(t)) ] + λy(t) = , α ∈ (, ], t ∈ (a, b),

y(a) = y′(a) = y(b) = ,
(.)

where f (t, y(t)) 	=  for all t ∈ [a, b] and λ ∈ R. The necessary condition for the existence of
a nontrivial solution for the boundary value problem (.) is

|λ| ≥ �(α – )
(b – a)α‖f ‖ . (.)

Proof From Corollary ., we get

�(α – )
‖f ‖ (b – a)–α ≤

∫ b

a
|λ|ds = (b – a)|λ|,

which is the inequality in (.). This completes the proof. �

Example . Consider the following boundary value problem of the hybrid fractional dif-
ferential equation:

⎧
⎪⎨

⎪⎩

D/
 [ y(t)

(t+)+ |y(t)|+
|y(t)|+

] + λy(t) = , t ∈ (, ),

y() = y′() = y() = .
(.)



Sitho et al. Journal of Inequalities and Applications  (2016) 2016:170 Page 8 of 13

Here α = /, a = , b = , f (t, y) = (t +)+(|y|+)/(|y|+). We find that ‖f ‖ = . Applying
Corollary ., we see that the necessary condition for the existence of a nontrivial solution
for the boundary value problem (.) is

|λ| ≥ ..

2.2 Case II: hi �= 0, i = 1, 2, . . . , n
In this section we will construct Lyapunov-type inequalities for the boundary value prob-
lem (.). We recall that f is continuously differentiable.

Lemma . Let y ∈ AC[a, b] be a solution of problem (.). Then the function y can be
written as

y(t) = f
(
t, y(t)

)
[∫ b

a
G(t, s)g(s)y(s) ds –

n∑

i=

∫ b

a
G∗(t, s)hi

(
s, y(s)

)
ds

]

, (.)

where G(t, s) is defined as in (.) and G∗(t, s) is defined by

G∗(t, s) =

⎧
⎨

⎩

(b–s)β–(t–a)α–

�(β)(b–a)α– – (t–s)β–

�(β) , a ≤ s ≤ t ≤ b,
(b–s)β–(t–a)α–

�(β)(b–a)α– , a ≤ t ≤ s ≤ b.
(.)

Proof The general solution of problem (.) is given by

y(t)
f (t, y(t))

–
n∑

i=

Iβ
a hi

(
t, y(t)

)

= –Iα
a g(t)y(t) + c(t – a)α– + c(t – a)α– + c(t – a)α–. (.)

By condition y(a) = , the constant c = . Differentiating equation (.), we get

f (t, y(t))y′(t) – y(t)ft(t, y(t))
f (t, y(t))

–
n∑

i=

Iβ–
a hi

(
t, y(t)

)

= –Iα–
a g(t)y(t) + c(α – )(t – a)α– + c(α – )(t – a)α–.

Replacing t by a to the above equation, we have c = . Equation (.) becomes

y(t) = f
(
t, y(t)

)
[

–Iα
a g(t)y(t) + c(t – a)α– +

n∑

i=

Iβ
a hi

(
t, y(t)

)
]

. (.)

Since y(b) = , we have

c = (b – a)–α

(

Iα
a g(b)y(b) –

n∑

i=

Iβ
a hi

(
b, y(b)

)
)

.
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Substituting the constant c into equation (.), the solution of problem (.) is in the
form

y(t) = f
(
t, y(t)

)
[

–Iα
a g(t)y(t) +

(
t – a
b – a

)α–
(

Iα
a g(b)y(b) –

n∑

i=

Iβ
a hi

(
b, y(b)

)
)

+
n∑

i=

Iβ
a hi

(
t, y(t)

)
]

= f
(
t, y(t)

)
[

–
∫ t

a

(t – s)α–

�(α)
g(s)y(s) ds

+
(

t – a
b – a

)α–
(∫ b

a

(b – s)α–

�(α)
g(s)y(s) ds

–
n∑

i=

∫ b

a

(b – s)β–

�(β)
hi

(
s, y(s)

)
ds

)

+
n∑

i=

∫ t

a

(t – s)β–

�(β)
hi

(
s, y(s)

)
ds

]

= f
(
t, y(t)

)
[∫ b

a
G(t, s)g(s)y(s) ds –

n∑

i=

∫ b

a
G∗(t, s)hi

(
s, y(s)

)
ds

]

,

where the Green’s functions G(t, s) and G∗(t, s) are defined by (.) and (.), respectively.
The proof is completed. �

Lemma . The Green’s function G∗(t, s), which is given by (.), satisfies the following
inequalities:

(i) G∗(t, s) ≥ , ∀t, s ∈ [a, b];
(ii) G∗(t, s) ≤ J(s) := (α–)(b–s)β–

�(β) .
Also we have

(iii) maxs∈[a,b] J(s) = (α–)(b–a)β–

�(β) .

Proof From Lemma ., we define

g(t, s) =
(b – s)β–(t – a)α–

(b – a)α– – (t – s)β–, a ≤ s ≤ t ≤ b,

g(t, s) =
(b – s)β–(t – a)α–

(b – a)α– , a ≤ t ≤ s ≤ b.

It is obvious that g(t, s) ≥ . By using (.) with replacing α by β , we have

g(t, s) =
(b – s)β–(t – a)α–

(b – a)α– – (t – s)β–

≥ (b – s)β–(t – a)α–

(b – a)α– –
(b – s)β–(t – a)β–

(b – a)β–

= (b – s)β–
[(

t – a
b – a

)α–

–
(

t – a
b – a

)β–]

.

As β ≥ α, we deduce that g(t, s) ≥ . Therefore, we have G∗(t, s) ≥  for all t, s ∈ [a, b].
We omit the proofs of (ii) and (iii), since these are similar to that for the Green’s function

G(t, s) in Lemma .. �
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In the following results will be used the following condition:
(H) |hi(t, y(t))| ≤ |xi(t)||y(t)| where xi ∈ C([a, b],R), i = , , . . . , n.

Theorem . Assume that the condition (H) holds with [a, b] = [, ]. The necessary con-
dition for the existence of a nontrivial solution for problem (.) on [, ] is

�(α – )

(


‖f ‖ –
(α – )

�(β + )

n∑

i=

‖xi‖
)

≤
∫ 


( – s)α–∣∣g(s)

∣
∣ds. (.)

Proof From Lemma ., the solution of problem (.) on [, ] is given by

y(t) = f
(
t, y(t)

)
[∫ 


G(t, s)g(s)y(s) ds –

n∑

i=

∫ 


G∗hi

(
s, y(s)

)
ds

]

.

Since y ∈ C([, ],R) and f ∈ C([, ] ×R,R \ {}), we get

∣
∣y(s)

∣
∣ ≤ ‖f ‖

[∫ 



∣
∣G(t, s)

∣
∣
∣
∣g(s)

∣
∣
∣
∣y(s)

∣
∣ds +

n∑

i=

∫ 



∣
∣G∗(t, s)

∣
∣
∣
∣hi

(
s, y(s)

)∣
∣ds

]

≤ ‖f ‖
[∫ 


H(s)

∣
∣g(s)

∣
∣
∣
∣y(s)

∣
∣ds +

n∑

i=

∫ 


J(s)

∣
∣xi(s)

∣
∣
∣
∣y(s)

∣
∣ds

]

≤ ‖f ‖
[∫ 



( – s)α–

�(α – )
∣
∣g(s)

∣
∣
∣
∣y(s)

∣
∣ds

+
(α – )
�(β)

n∑

i=

∫ 


( – s)β–∣∣xi(s)

∣
∣
∣
∣y(s)

∣
∣ds

]

,

which leads to

‖y‖ ≤ ‖f ‖
[

‖y‖
�(α – )

∫ 


( – s)α–|g(s)|ds +

(α – )‖y‖
�(β + )

n∑

i=

‖xi‖
]

.

Therefore, we deduce that the inequality in (.) holds. �

Corollary . Assume that the condition (H) holds with [a, b] = [, ]. Consider the prob-
lem

⎧
⎨

⎩

Dα
[ y(t)

f (t,y(t)) –
∑n

i= Iβ
 hi(t, y(t))] + λy(t) = , α ∈ (, ], t ∈ (, ),

y() = y′() = y() = .
(.)

The necessary condition for the existence of a nontrivial solution for problem (.) on [, ]
is

α�(α – )

(


‖f ‖ –
(α – )

�(β + )

n∑

i=

‖xi‖
)

≤ |λ|. (.)
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Proof Setting the function g(t) ≡ λ for t ∈ [, ] and applying Theorem ., we obtain the
following inequality:

�(α – )

(


‖f ‖ –
(α – )

�(β + )

n∑

i=

‖xi‖
)

≤
∫ 


( – s)α–|λ|ds =


α

|λ|,

from which the result in (.) is proved. �

Theorem . Suppose that the condition (H) holds. The necessary condition for the exis-
tence of a nontrivial solution for problem (.) on [a, b], is

‖g‖L ≥ �(α – )
(b – a)α–

(


‖f ‖ – (α – )
(b – a)β–

�(β)

n∑

i=

‖xi‖L

)

. (.)

Proof From Lemmas . and ., we have

∣
∣y(s)

∣
∣ ≤ ‖f ‖

[∫ b

a

∣
∣G(t, s)

∣
∣
∣
∣g(s)

∣
∣
∣
∣y(s)

∣
∣ds +

n∑

i=

∫ b

a

∣
∣G∗(t, s)

∣
∣
∣
∣hi

(
s, y(s)

)∣
∣ds

]

≤ ‖f ‖
[∫ b

a
H(s)

∣
∣g(s)

∣
∣
∣
∣y(s)

∣
∣ds +

n∑

i=

∫ b

a
J(s)

∣
∣xi(s)

∣
∣
∣
∣y(s)

∣
∣ds

]

.

Consequently the above inequality becomes

‖y‖ ≤ ‖f ‖
[

(b – a)α–‖y‖
�(α – )

∫ b

a
|g(s)|ds +

(α – )(b – a)β–‖y‖
�(β)

n∑

i=

∫ b

a

∣
∣xi(s)

∣
∣ds

]

,

which leads to

 ≤ ‖f ‖
[

(b – a)α–

�(α – )
‖g‖L +

(α – )(b – a)β–

�(β)

n∑

i=

‖xi‖L

]

.

Then the estimate in (.) holds. �

Corollary . Let the condition (H) holds. Consider the fractional boundary value prob-
lem given by

⎧
⎨

⎩

Dα
a [ y(t)

f (t,y(t)) –
∑n

i= Iβ
a hi(t, y(t))] + λy(t) = , α ∈ (, ], t ∈ (a, b),

y(a) = y′(a) = y(b) = .
(.)

The necessary condition for the existence of a nontrivial solution for problem (.) on [a, b]
is

|λ| ≥ �(α – )
(b – a)α

(


‖f ‖ –
(α – )(b – a)β–

�(β)

n∑

i=

‖xi‖L

)

. (.)
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Proof Applying the inequality in (.) with g(s) = λ, s ∈ [a, b], it follows that

∫ b

a
|λ|ds ≥ �(α – )

(b – a)α–

(


‖f ‖ –
(α – )(b – a)β–

�(β)

n∑

i=

‖xi‖L

)

,

which implies the inequality in (.). �

Example . Consider the following boundary value problem of the hybrid fractional
differential equation:

⎧
⎪⎨

⎪⎩

D/
 [ y(t)

(t+)+ |y(t)|+
|y(t)|+

–
∑

i= I/


t(i+)/(i+)y(t)
+|y(t)| ] + λy(t) = , t ∈ (, 

 ),

y() = y′() = y( 
 ) = .

(.)

Here α = /, β = /, a = , b = /, n = , hi(t, y) = (t(i+)/(i+)y)/( + |y|), i = , , ,
f (t, y) = (t + ) + (|y| + )/(|y| + ). We find that ‖f ‖ = /, and |hi(t, y)| ≤ |t(i+)/(i+)||y|.
Setting xi(t) = t(i+)/(i+), i = , , , we have ‖x‖L = ., ‖x‖L = .,
and ‖x‖L = .. Applying Corollary ., we see that the necessary condition
for the existence of a nontrivial solution for the boundary value problem (.) is

|λ| ≥ ..

Remark . The boundary value problem (.) can be rewritten by

⎧
⎨

⎩

Dα
a [ y(t)

f (t,y(t)) ] + g(t)y(t) =
∑n

i= Iβ–α
a hi(t, y(t)), t ∈ (a, b),

y(a) = y′(a) = y(b) = ,
(.)

which is a hybrid fractional integro-differential equation with boundary conditions.
Therefore, all results can be applied.
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