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Abstract
In the article, we prove that the function r �→ E (r)/S9/2–p,p(1, r′) is strictly increasing on
(0, 1) for p ≤ 7/4 and strictly decreasing on (0, 1) for p ∈ [2, 9/4], where r′ =

√
1 – r2,

E (r) =
∫ π /2
0

√
1 – r2 sin2(t)dt is the complete elliptic integral of the second kind, and

Sp,q(a,b) = [q(ap – bp)/(p(aq – bq))]1/(p–q) is the Stolarsky mean of a and b. As
applications, we present several new bounds for E (r), the Toader mean
T (a,b) = (2/π )

∫ π /2
0

√
a2 cos2 t + b2 sin2 t dt, and the Toader-Qi mean

TQ(a,b) = (2/π )
∫ π /2
0 acos

2 θbsin
2 θdθ .
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1 Introduction
For r ∈ (, ), p, q ∈ R, and a, b > , the Stolarsky mean Sp,q(a, b) [] and the complete el-
liptic integral E(r) [] of the second kind are defined by

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ q(ap–bp)
p(aq–bq) ]/(p–q), a �= b, p �= q, pq �= ,

[ ap–bp

p(log a–log b) ]/p, a �= b, p �= , q = ,

[ aq–bq

q(log a–log b) ]/q, a �= b, p = , q �= ,

exp( ap log a–bp log b
ap–bp – 

p ), a �= b, p = q �= ,√
ab, p = q = ,

a, a = b,

(.)

E(r) =
∫ π/



√
 – r sin(t) dt, (.)

respectively.
It is well known that the Stolarsky mean Sp,q(a, b) is continuous on the domain

{(p, q; a, b)|p, q ∈ R; a, b > }, symmetric with respect to its parameters p and q or vari-
ables a and b, and strictly increasing with respect its parameter p or q and variable a
or b. Many classical bivariate means are special cases of the Stolarsky mean Sp,q(a, b), for
example,

S,(a, b) = (a – b)/(log a – log b) = L(a, b) is the logarithmic mean;
S,(a, b) = (/e)(aa/bb)/(a–b) = I(a, b) is the identic mean;
S,(a, b) = (a + b)/ = A(a, b) is the arithmetic mean;
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S/,/(a, b) = (a +
√

ab + b)/ = He(a, b) is the Heronian mean;
Sp,p(a, b) = [A(ap, bp)]/p = Ap(a, b) is the p-order arithmetic mean;
Sp/,p/(a, b) = [He(ap, bp)]/p = Hep(a, b) is the p-order Heronian mean;
Sp,(a, b) = [L(ap, bp)]/p = Lp(a, b) is the p-order logarithmic mean;
Sp,p(a, b) = [I(ap, bp)]/p = Ip(a, b) is the p-order identric mean.

The complete elliptic integral E(r) of the second kind can be expressed as

E(r) =
π


F
(

–



,



; ; r
)

=
π



∞∑

n=

(–/)n(/)n

(n!) rn,

where

F(a, b; c; x) =
∞∑

n=

(a)n(b)n

(c)n

xn

n!
(– < x < )

is the Gaussian hypergeometric function, (a)n = �(a + n)/�(a) and �(x) =
∫ ∞

 tx–e–t dt
(x > ) is the gamma function. It is well known that E(r) is strictly decreasing on (, ) and
satisfies

E
(
+)

=
π


, E

(
–)

= .

Recently, the bounds for the complete elliptic integral E(r) of the second kind have at-
tracted the interest of many researchers. In particular, many remarkable inequalities for
E(r) can be found in the literature [–].

Let r ∈ (, ) and r′ =
√

 – r. Then making use of (.) and (.) together with the power
series formulas we have


π
E(r) – Sp,q

(
, r′)

= –
p + q – /


r –

p + q – /


r

+
(p + q)(p + q – p – q – ) + ,

 ×  r + o
(
r). (.)

Let p + q = /, then (.) becomes


π
E(r) – S/–p,p

(
, r′) =

(p – )(p – )
 ×  r + o

(
r). (.)

Motivated by equation (.), we discuss the monotonicity of the function r �→
E(r)/S/–p,p(, r′) for certain p ∈ R, and present several new bounds for the complete el-
liptic integral of the second kind E(r) and the Toader mean

T(a, b) =

π

∫ π/



√
a cos t + b sin t dt.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion. Out of the next eight lemmas five were taken from other papers and the last three
are due to the authors.
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Lemma . (See [], Theorem ) Let r ∈ (, ) and r′ =
√

 – r. Then the function

F(r) =
 – E(r)/π

 – S/,(, r′)

is strictly increasing from (, ) onto (, (π – )/(π )).

Lemma . (See [], Theorem .) Let r ∈ (, ) and r′ =
√

 – r. Then the function

G(r) =
 – E(r)/π

 – S/,/(, r′)

is strictly decreasing from (, ) onto ((π – )/(π ), ).

Lemma . (See [], equation (.), [], Corollary .) Let c >  and a, b >  with a �= b.
Then the function p �→ Sc–p,p(a, b) is strictly increasing on (–∞, c] and strictly decreasing
on [c,∞).

Lemma . (See [], Corollary .) Let c > , p ∈ (, c), a, b >  with a �= b and θ (p, c) be
defined by

θ (p, c) = lim
r→+

Sc–p,p(, r) =

⎧
⎨

⎩

( c–p
p )/(p–c), p �= c,

e–/c, p = c.
(.)

Then the function p �→ Sc–p,p(a, b)/θ (p, c) is strictly decreasing on (, c] and strictly increas-
ing on [c, c).

Lemma . (See [], Theorem ) Let c >  and  < x < y < z. Then the function p �→
Sc–p,p(x, y)/Sc–p,p(x, z) is strictly decreasing on (–∞, c] and strictly increasing on [c,∞).

Lemma . Let r ∈ (, ) and r′ =
√

 – r. Then the function

r �→ E(r)/π
S/,/(, r′)

is strictly increasing from (, ) onto (, /π ).

Proof Let G(r) be defined by Lemma .. Then we clearly see that

E(r)/π
S/,/(, r′)

=  +
[ – G(r)][ – S/,/(, r′)]

S/,/(, r′)
, (.)

and both the functions r �→ –S/,/(, r′) and r �→ /S/,/(, r′) are positive and strictly
increasing on (, ). It follows from (.) and (.) together with Lemma . that

lim
r→+

E(r)/π
S/,/(, r′)

= , lim
r→–

E(r)/π
S/,/(, r′)

=

π

, (.)

and the function r �→  – G(r) is also positive and strictly increasing on (, ).
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Therefore, Lemma . follows from (.) and (.) together with the monotonicity and
positivity of the functions r �→  – S/,/(, r′), r �→ /S/,/(, r′), and r �→  – G(r) on
(, ). �

Lemma . Let r ∈ (, ) and r′ =
√

 – r. Then the function

r �→ E(r)/π
S/,(, r′)

is strictly decreasing from (, ) onto (/π , ).

Proof Let F(r) be defined by Lemma .. Then from (.) and (.) together with Lemma .
we clearly see that

lim
r→+

E(r)/π
S/,(, r′)

= , lim
r→–

E(r)/π
S/,(, r′)

=

π

, (.)

E(r)/π
S/,(, r′)

=  –
[F(r) – ][ – S/,(, r′)]

S/,(, r′)
, (.)

and all the functions r �→ F(r) – , r �→  – S/,(, r′), and r �→ /S/,(, r′) are positive
and strictly increasing on (, ).

Therefore, Lemma . follows easily from (.) and (.) together with the monotonicity
and positivity of the functions r �→ F(r) – , r �→  – S/,(, r′), and r �→ /S/,(, r′) on
(, ). �

Lemma . Let c > , r ∈ (, ), and r′ =
√

 – r. Then the function

r �→ Sc–p,p (, r′)
Sc–p,p(, r′)

is strictly increasing (decreasing) on (, ) if p < p ≤ c (p < p ≤ c).

Proof We clearly see that it suffices to prove that the function

r′ �→ Sc–p,p (, r′)
Sc–p,p(, r′)

is strictly decreasing (increasing) on (, ) if p < p ≤ c (p < p ≤ c).
Let r′

, r′
 ∈ (, ) with r′

 < r′
. Then  < /r′

 < /r′
 and Lemma . leads to

Sc–p,p (, /r′
)

Sc–p,p (, /r′
)

< (>)
Sc–p,p(, /r′

)
Sc–p,p(, /r′

)

or

Sc–p,p (, /r′
)

Sc–p,p(, /r′
)

< (>)
Sc–p,p (, /r′

)
Sc–p,p(, /r′

)
(.)

if p < p ≤ c (p < p ≤ c). The homogeneity of degree  for the Stolarsky mean and (.)
give the desired result. �
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3 Main results
Theorem . Let p ∈ (–∞, /], r ∈ (, ), r′ =

√
 – r, and

Rp(r) =
E(r)/π

S/–p,p(, r′)
. (.)

Then we have
() the function r �→ Rp(r) is strictly increasing on (, ) if and only if p ∈ (–∞, /];
() the function r �→ Rp(r) is strictly decreasing on (, ) if p ∈ [, /].

Proof () If the function r �→ Rp(r) is strictly increasing on (, ), then we clearly see that

lim
r→+

d(log Rp(r))/dr
r ≥ . (.)

From (.), (.), (.), and (.) one has

lim
r→+

S/–p,p
(
, r′) = lim

r→+


π
E(r) = lim

r→+
Rp(r) = , (.)


π
E(r) – S/–p,p

(
, r′) =

(p – /)(p – /)
 ×  r + o

(
r). (.)

It follows from (.), (.), (.), and L’Hôspital’s rule that

lim
r→+

d(log Rp(r))/dr
d(E(r)/π – S/–p,p(, r′))/dr

= lim
r→+

log Rp(r)
E(r)/π – S/–p,p(, r′)

= lim
r→+

log Rp(r)
(Rp(r) – )S/–p,p(, r′)

= , (.)

lim
r→+

d(E(r)/π – S/–p,p(, r′))/dr
r

= lim
r→+

E(r)/π – S/–p,p(, r′)
r

=
(p – /)(p – /)

 ×  . (.)

Note that

d(log Rp(r))/dr
r =

d(log Rp(r))/dr
d(E(r)/π – S/–p,p(, r′))/dr

× d(E(r)/π – S/–p,p(, r′))/dr
r . (.)

It follows from (.), (.)-(.) that

(

p –



)(

p –



)

≥ . (.)

Therefore, p ∈ (–∞, /] follows from p ∈ (–∞, /] and (.).
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Next, we prove that the function r �→ Rp(r) is strictly increasing on (, ) if p ∈ (–∞, /].
We divide the proof into two cases.

Case : p = /. Then the desired result follows directly from Lemma ..
Case : p < /. Then Rp(r) can be rewritten as

Rp(r) =
E(r)/π

S/–/,/(, r′)
× S/–/,/(, r′)

S/–p,p(, r′)

=
E(r)/π

S/,/(, r′)
× S/–/,/(, r′)

S/–p,p(, r′)
. (.)

Therefore, the function r �→ Rp(r) is strictly increasing on (, ) follows from Lemmas .
and . together with (.).

() If p ∈ [, /], then we divide the proof into two cases.
Case : p = . Then the desired result follows directly from Lemma ..
Case : p ∈ (, /]. Then Rp(r) can be expressed as

Rp(r) =
E(r)/π

S/–,(, r′)
× S/–,(, r′)

S/–p,p(, r′)

=
E(r)/π

S/,(, r′)
× S/–,(, r′)

S/–p,p(, r′)
. (.)

Therefore, the function r �→ Rp(r) is strictly decreasing on (, ) follows from Lem-
mas . and . together with (.). �

From (.), (.), and Theorem . we get Corollary . immediately.

Corollary . Let r ∈ (, ), r′ =
√

 – r, and θ (p, c) be defined by (.). Then the double
inequality

S/–p,p
(
, r′) <


π
E(r) <


πθ (p, /)

S/–p,p
(
, r′)

holds for all r ∈ (, ) and p ∈ (, /], and the double inequality


πθ (p, /)

S/–p,p
(
, r′) <


π
E(r) < S/–p,p

(
, r′)

holds for all r ∈ (, ) and p ∈ [, /].

Letting p = /, /, /; , / and making use of (.), Lemmas . and ., then Corol-
lary . leads to Corollary ..

Corollary . Let r ∈ (, ) and r′ =
√

 – r. Then the inequalities

He/
(
, r′) < A/

(
, r′) < S/,/

(
, r′) <


π
E(r)

<

π

S/,/
(
, r′) <

/

π
A/

(
, r′) <

 × /

π
He/

(
, r′)
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and

e/

π
I/

(
, r′) <


π

S/,
(
, r′) <


π
E(r) < S/,

(
, r′) < I/

(
, r′)

hold for all r ∈ (, ).

Corollary . Let p ∈ (–∞, /], r ∈ (, ) and r′ =
√

 – r. Then the inequality


π
E(r) > S/–p,p

(
, r′) (.)

holds for all r ∈ (, ) if and only if p ∈ (–∞, /], and inequality (.) is reversed if p ∈
[, /].

Proof From Lemma . and Corollary . we clearly see that inequality (.) holds for all
r ∈ (, ) if p ∈ (–∞, /], and inequality (.) is reversed if p ∈ [, /].

If inequality (.) holds for all r ∈ (, ), then (.) leads to the conclusion that p ∈
(–∞, /]. �

Let p = –/, –/, , /, /, /; , /. Then Lemma . and Corollary . lead to
Corollary ..

Corollary . Let r ∈ (, ) and r′ =
√

 – r. Then the inequalities

A/
/

(
, r′)G/(, r′) < G/(, r′)He/

/
(
, r′) < L/

(
, r′) < He/

(
, r′)

< A/
(
, r′) < S/,/

(
, r′) <


π
E(r) < S/,

(
, r′) < I/

(
, r′)

hold for all r ∈ (, ), where G(a, b) =
√

ab is the geometric mean of a and b.

The Toader mean T(a, b) [] of two positive real numbers a and b is defined by

T(a, b) =

π

∫ π/



√
a cos t + b sin t dt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


π
E(

√
 – ( b

a )), a > b,

π
E(

√
 – ( a

b )), a < b,

a, a = b.

(.)

From (.) we clearly see that all the results given in Corollaries .-. can be restated
by the Toader mean T(a, b).

Remark . Let θ (p, c) be defined by (.). Then the double inequality

S/–p,p(a, b) < T(a, b) <


πθ (p, /)
S/–p,p(a, b)

holds for all a, b >  with a �= b and p ∈ (, /], and the double inequality


πθ (p, /)

S/–p,p(a, b) < T(a, b) < S/–p,p(a, b)

holds for all a, b >  with a �= b and p ∈ [, /].
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Remark . The inequalities

He/(a, b) < A/(a, b) < S/,/(a, b) < T(a, b)

<

π

S/,/(a, b) <
/

π
A/(a, b) <

 × /

π
He/(a, b),

e/

π
I/(a, b) <


π

S/,(a, b) < T(a, b) < S/,(a, b) < I/(a, b),

A/
/(a, b)G/(a, b) < G/(a, b) He/

/(a, b) < L/(a, b) < He/(a, b)

< A/(a, b) < S/,/(a, b) < T(a, b) < S/,(a, b) < I/(a, b),

L/(a, b) < He/(a, b) < A/(a, b) < S/,/(a, b)

< T/(a, b) < S/,/(a, b) < I/(a, b) (.)

hold for all a, b >  with a �= b, where T/(a, b) = T(a/, b/).

Remark . Let p ∈ (–∞, /]. Then the inequality

T(a, b) > S/–p,p(a, b) (.)

holds for all a, b >  with a �= b if and only if p ∈ (–∞, /], and inequality (.) is reversed
if p ∈ [, /].

The Toader-Qi mean TQ(a, b) [, ] and Gauss arithmetic-geometric mean AGM(a, b)
[] of two positive real numbers a and b are, respectively, given by

TQ(a, b) =

π

∫ π/


acos θ bsin θ dθ

and

AGM(a, b) = lim
n→∞ an = lim

n→∞ bn,

where an and bn (n ≥ ) are defined by

a = a, b = b, an+ =
an + bn


, bn+ =

√
anbn.

For all a, b >  with a �= b, Yang et al. [] proved that

AGM(a, b) < L/(a, b)A/(a, b) < L/(a, b) <
√

L(a, b)I(a, b)

< He/(a, b) < A/(a, b) < I/(a, b), (.)

and the following inequalities can be found in Remark . of []:

L(a, b) < AGM(a, b) < L/(a, b)A/(a, b) < TQ(a, b)

< A/(a, b) < T/(a, b) < I/(a, b). (.)
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In [, ], the authors proved that the double inequality

L/(a, b) < TQ(a, b) <
√

L(a, b)I(a, b) (.)

holds for all a, b >  with a �= b.

Remark . It follows from (.) and (.)-(.) that

L(a, b) < AGM(a, b) < L/(a, b)A/(a, b) < L/(a, b)

< TQ(a, b) <
√

L(a, b)I(a, b) < He/(a, b) < A/(a, b)

< S/,/(a, b) < T/(a, b) < S/,/(a, b) < I/(a, b)

for all a, b >  with a �= b.

Remark . Unfortunately, in the article we cannot present the monotonicity conclusion
of the function r → Rp(r) given by (.) on the interval (,∞) for p ∈ (/, ) ∪ (/,∞),
we leave it as an open problem to the reader.
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