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Abstract
An interplay between the sum of certain series related to harmonic numbers and
certain finite trigonometric sums is investigated. This allows us to express the sum of
these series in terms of the considered trigonometric sums, and permits us to find
sharp inequalities bounding these trigonometric sums. In particular, this answers
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1 Introduction
Many identities that evaluate trigonometric sums in closed form can be found in the lit-
erature. For example, in a solution to a problem in SIAM Review [], p., Fisher shows
that

p–∑

k=

sec
(

kπ

p

)
=



(
p – 

)
,

p–∑

k=

sec
(

kπ

p

)
=




(
p + p – 

)
.

General results giving closed forms for the power sums of secants
∑p–

k= secn( kπ
p ) and

∑p
k= secn( kπ

p+ ), for many values of the positive integer n, can be found in [] and [].
Also, in [] the author proves that

p∑

k=

sec

(
kπ

p + 

)
=

⎧
⎨

⎩
p if p is even,

–p –  if p is odd.

However, while there are many cases where closed forms for finite trigonometric sums
can be obtained, it seems that there are no such formulas for the sums we are interested
in.
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In this paper we study the trigonometric sums Ip and Jp defined for positive integers p
by the formulas

Ip =
p–∑

k=


sin(kπ/p)

=
p–∑

k=

csc

(
kπ

p

)
, (.)

Jp =
p–∑

k=

k cot

(
kπ

p

)
, (.)

with empty sums interpreted as .
To the best of the author’s knowledge there no closed form for Ip is known, and the

same can be said about the sum Jp. Therefore, we will look for asymptotic expansions for
these sums and will give some tight inequalities that bound Ip and Jp. This investigation
complements the work of Chen in [], Chapter , where it was asked, as an open problem,
whether the inequality

Ip ≤ p
π

(
ln p + γ – ln(π/)

)

holds true for p ≥  (here γ is the so-called the Euler-Mascheroni constant). In fact, it will
be proved that for every positive integer p and every nonnegative integer n, we have

Ip <
p
π

(
ln p + γ – ln(π/)

)
+

n∑

k=

(–)k (k – )b
k

k · (k)!

(
π

p

)k–

and

Ip >
p
π

(
ln p + γ – ln(π/)

)
+

n+∑

k=

(–)k (k – )b
k

k · (k)!

(
π

p

)k–

,

where the bk ’s are Bernoulli numbers (see Theorem .). The corresponding inequalities
for Jp are also proved (see Theorem .).

Harmonic numbers play an important role in this investigation. Recall that the nth har-
monic number Hn is defined by Hn =

∑n
k= /k (with the convention H = ). In this work,

a link between our trigonometric sums Ip and Jp and the sum of several series related to
harmonic numbers is uncovered. Indeed, the well-known fact that Hn = ln n + γ + 

n +
O( 

n ) proves the convergence of the numerical series,

Cp =
∞∑

n=

(
Hpn – ln(pn) – γ –


pn

)
,

Dp =
∞∑

n=

(–)n–(Hpn – ln(pn) – γ
)
,

Ep =
∞∑

n=

(–)n(Hp(n+) – Hpn),

for every positive integer p.
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An interplay between the considered trigonometric sums and the sum of these series
will allow us to prove sharp inequalities for Ip and Jp, and to find the expression of the
sums Cp, Dp, and Ep in terms of Ip and Jp.

The main tool will be the following formulation ([], Corollary .) of the Euler-
Maclaurin summation formula.

Theorem . Consider a positive integer m, and a function f that has a continuous (m –
)st derivative on [, ]. If f (m–) is decreasing, then

∫ 


f (t) dt =

f () + f ()


–
m–∑

k=

bk

(k)!
δf (k–) + (–)m+Rm

with

Rm =
∫ /



|Bm–(t)|
(m – )!

(
f (m–)(t) – f (m–)( – t)

)
dt

and

 ≤ Rm ≤ 
(π )m

(
f (m–)() – f (m–)()

)
,

where the bk ’s are Bernoulli numbers, Bm– is the Bernoulli polynomial of degree m – ,
and the notation δg for a function g : [, ] →C means g() – g().

For more information on the Bernoulli polynomials, Bernoulli numbers, and the Euler-
Maclaurin formula, the reader may refer to [–], and the references therein. This paper
is organized as follows. In Section  we find the asymptotic expansions of Cp and Dp for
large p. In Section , the inequalities the trigonometric sums Ip and Jp are proved.

2 Asymptotic expansions for the sum of certain series related to harmonic
numbers

In the next lemma, the asymptotic expansion of (Hn)n∈N is presented. It can be found
implicitly in Chapter  of []; we present a proof for convenience of the reader.

Lemma . For every positive integer n and nonnegative integer m, we have

Hn = ln n + γ +


n
–

m–∑

k=

bk

k
· 

nk + (–)mRn,m,

with

Rn,m =
∫ /



∣∣Bm–(t)
∣∣

∞∑

j=n

(


(j + t)m –


(j +  – t)m

)
dt.

Moreover,  < Rn,m < |bm|
m·nm .
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Proof Note that for j ≥  we have


j

– ln

(
 +


j

)
=

∫ 



(

j

–


j + t

)
dt =

∫ 



t
j(j + t)

dt.

Adding these equalities as j varies from  to n –  we conclude that

Hn – ln n –

n

=
∫ 



( n–∑

j=

t
j(j + t)

)
dt.

Thus, letting n tend to ∞, and using the monotone convergence theorem, we conclude

γ =
∫ 



( ∞∑

j=

t
j(j + t)

)
dt.

It follows that

γ + ln n – Hn +

n

=
∫ 



( ∞∑

j=n

t
j(j + t)

)
dt.

So, let us consider the function fn : [, ] −→R defined by

fn(t) =
∞∑

j=n

t
j(j + t)

.

Note that fn() = , fn() = /n, and that fn is infinitely continuously derivable with

f (k)
n (t)

k!
= (–)k+

∞∑

j=n


(j + t)k+ , for k ≥ .

In particular,

f (k–)
n (t)
(k – )!

=
∞∑

j=n


(j + t)k , for k ≥ .

So, f (m–)
n is decreasing on the interval [, ], and

δf (k–)
n

(k – )!
=

∞∑

j=n


(j + )k –

∞∑

j=n


jk = –


nk .

Applying Theorem . to fn, and using the above data, we get

γ + ln n – Hn +


n
=

m–∑

k=

bk

knk + (–)m+Rn,m

with

Rn,m =
∫ /



∣∣Bm–(t)
∣∣

∞∑

j=n

(


(j + t)m –


(j +  – t)m

)
dt
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and

 < Rn,m <
 · (m – )!
(π )mnm .

The important estimate is the lower bound, i.e. Rn,m > . In fact, considering separately
the cases m odd and m even, we obtain, for every nonnegative integer m′:

Hn < ln n + γ +


n
–

m′∑

k=

bk

k
· 

nk

and

Hn > ln n + γ +


n
–

m′+∑

k=

bk

k
· 

nk .

This yields the following more precise estimate for the error term:

 < (–)m

(
Hn – ln n – γ –


n

+
m–∑

k=

bk

k · nk

)
<

|bm|
m · nm ,

which is valid for every positive integer m. �

Now, consider the two sequences (cn)n≥ and (dn)n≥ defined by

cn = Hn – ln n – γ –


n
and dn = Hn – ln n – γ .

For a positive integer p, we know according to Lemma . that cpn = O( 
n ), it follows

that the series
∑∞

n= cpn is convergent. Similarly, since dpn = cpn + 
pn and the series

∑∞
n=(–)n–/n is convergent, we conclude that

∑∞
n=(–)n–dpn is also convergent. In the

following we aim to find asymptotic expansions (for large p) of the following sums:

Cp =
∞∑

n=

cpn =
∞∑

n=

(
Hpn – ln(pn) – γ –


pn

)
, (.)

Dp =
∞∑

n=

(–)n–dpn =
∞∑

n=

(–)n–(Hpn – ln(pn) – γ
)
, (.)

Ep =
∞∑

n=

(–)n(Hp(n+) – Hpn). (.)

Theorem . If p and m are positive integers and Cp is defined by (.), then

Cp = –
m–∑

k=

bkζ (k)
k · pk + (–)m ζ (m)

m · pm εp,m, with  < εp,m < |bm|,

where ζ is the well-known Riemann zeta function.
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Proof Indeed, we conclude from Lemma . that

Hpn – ln(pn) – γ –


pn
= –

m–∑

k=

bk

k · pk · 
nk +

(–)m

m · pm · rpn,m

nm ,

with  < rpn,m ≤ |bm|. It follows that

Cp = –
m–∑

k=

bk

kpk ·
( ∞∑

n=


nk

)
+

(–)m

m · pm · r̃p,m,

where r̃p,m =
∑∞

n=
rpn,m
nm .

Hence

 < r̃p,m =
∞∑

n=

rpn,m

nm < |bm|
∞∑

n=


nm = |bm|ζ (m)

and the desired conclusion follows with εp,m = r̃p,m/ζ (m). �

For example, taking m = , we obtain

∞∑

n=

(
Hpn – ln(pn) – γ –


pn

)
= –

π

p +
π

,p + O
(


p

)
.

In the next proposition we have the analogous result corresponding to Dp.

Theorem . If p and m are positive integers and Dp is defined by (.), then

Dp =
ln 
p

–
m–∑

k=

bkη(k)
k · pk + (–)m η(m)

m · pm ε′
p,m, with  < ε′

p,m < |bm|,

where η is the Dirichlet eta function [].

Proof Indeed, let us define an,m by the formula

an,m = Hn – ln n – γ –


n
+

m–∑

k=

bk

k · nk

with empty sum equal to . We have shown in the proof of Lemma . that

(–)man,m =
∫ /



∣∣Bm–(t)
∣∣gn,m(t) dt,

where gn,m is the positive decreasing function on [, /] defined by

gn,m(t) =
∞∑

j=n

(


(j + t)m –


(j +  – t)m

)
.
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Now, for every t ∈ [, /] the sequence (gnp,m(t))n≥ is positive and decreasing to . So,
using the alternating series criterion [], Theorem . and Corollary ., we see that, for
every N ≥  and t ∈ [, /],

∣∣∣∣∣

∞∑

n=N

(–)n–gnp,m(t)

∣∣∣∣∣ ≤ gNp,m(t) ≤ gNp,m() =


(Np)m .

This proves the uniform convergence on [, /] of the series

Gp,m(t) =
∞∑

n=

(–)n–gnp,m(t).

Consequently

(–)m
∞∑

n=

(–)n–apn,m =
∫ /



∣∣Bm–(t)
∣∣Gp,m(t) dt.

Now using the properties of an alternating series, we see that for t ∈ (, /) we have

 < Gp,m(t) < gp,m(t) < gp,m() =
∞∑

j=p

(


jm –


(j + )m

)
=


pm .

Thus,

∞∑

n=

(–)n–apn,m =
(–)m

pm ρp,m

with  < ρp,m <
∫ /

 |Bm–(t)|dt.
On the other hand we have

∞∑

n=

(–)n–apn,m = Dp –


p

∞∑

n=

(–)n–

n
+

m–∑

k=

bk

kpk

∞∑

n=

(–)n–

nk

= Dp –
ln 
p

+
m–∑

k=

bkη(k)
k · pk .

Thus

Dp =
ln 
p

–
m–∑

k=

bkη(k)
k · pk +

(–)m

pm ρp,m

Now, the important estimate for ρp,m is the lower bound, i.e. ρp,m > . In fact, considering
separately the cases m odd and m even, we obtain, for every nonnegative integer m′:

Dp <
ln 
p

–
m′∑

k=

bkη(k)
k · pk
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and

Dp >
ln 
p

–
m′+∑

k=

bkη(k)
k · pk .

This yields the following more precise estimate for the error term:

 < (–)m

(
Dp –

ln 
p

+
m–∑

k=

bkη(k)
kpk

)
<

|bm|η(m)
m · pm ,

and the desired conclusion follows. �

The case of Ep, which is the sum of another alternating series (.), is discussed in the
next lemma where it is shown that Ep can easily be expressed in terms of Dp.

Lemma . For a positive integer p, we have

Ep = ln p + γ – ln

(
π



)
+ Dp,

where Dp is the sum defined by (.).

Proof Indeed

Dp = dp +
∞∑

n=

(–)n–dpn +
∞∑

n=

(–)n–dpn

= dp +
∞∑

n=

(–)ndp(n+) +
∞∑

n=

(–)n–dpn

= dp +
∞∑

n=

(–)n–(dpn – dp(n+))

= dp +
∞∑

n=

(–)n(Hp(n+) – Hpn) +
∞∑

n=

(–)n– ln

(
n + 

n

)

= – ln p – γ +
∞∑

n=

(–)n(Hp(n+) – Hpn) +
∞∑

n=

(–)n– ln

(
n + 

n

)
.

Using the Wallis formula for π [], Formula ., we have

∞∑

n=

(–)n– ln

(
n + 

n

)
=

∞∑

n=

ln

(
n

n – 
· n

n + 

)

= – ln
∞∏

n=

(
 –


n

)
= ln

(
π



)

and the desired formula follows. �
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3 Inequalities for trigonometric sums
As we mentioned in the introduction, we are interested in the sum of cosecants Ip defined
by (.) and the sum of cotangents Jp defined by (.). Many other trigonometric sums can
be expressed in terms of Ip and Jp. The next lemma lists some of these identities.

Lemma . For a positive integer p let

Kp =
p–∑

k=

tan

(
kπ

p

)
, K̃p =

p–∑

k=

cot

(
kπ

p

)
,

Lp =
p–∑

k=

k
sin(kπ/p)

, Mp =
p∑

k=

(k – ) cot

(
(k – )π

p

)
.

Then:
(i) Kp = K̃p = Ip.

(ii) Lp = (p/)Ip.
(iii) Mp = (p/)Jp – Jp = –pIp.

Proof First, note that the change of summation variable k ← p – k proves that Kp = K̃p.
So, using the trigonometric identity tan θ + cot θ =  csc(θ ) we obtain (i) as follows:

Kp = Kp + K̃p =
p–∑

k=

(
tan

(
kπ

p

)
+ cot

(
kπ

p

))
= 

p–∑

k=

csc

(
kπ

p

)
= Ip.

Similarly, (ii) follows from the change of summation variable k ← p – k in Lp:

Lp =
p–∑

k=

p – k
sin(kπ/p)

= pIp – Lp.

Also,

Mp =
∑

≤k<p
k odd

k cot

(
kπ

p

)
=

p–∑

k=

k cot

(
kπ

p

)
–

∑

≤k<p
k even

k cot

(
kπ

p

)

=
p–∑

k=

k cot

(
kπ

p

)
– 

p–∑

k=

k cot

(
kπ

p

)
= Jp – Jp.

But

Jp =
p–∑

k=

k cot

(
kπ

p

)
+

p–∑

k=p+

k cot

(
kπ

p

)

=
p–∑

k=

k cot

(
kπ

p

)
–

p–∑

k=

(p – k) cot

(
kπ

p

)

= 
p–∑

k=

k cot

(
kπ

p

)
– pK̃p.
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Thus, using (i) and the trigonometric identity cot(θ/) – cot θ = csc θ we obtain

Mp = Jp – Jp = 
p–∑

k=

k
(

cot

(
kπ

p

)
– cot

(
kπ

p

))
– pIp

= 
p–∑

k=

k csc

(
kπ

p

)
– pIp = Lp – pIp = –pIp.

This concludes the proof of (iii). �

Proposition . For p ≥ , let Ip be the sum of cosecants defined by the (.). Then

Ip = –
 ln 

π
+

p
π

Ep

= –
 ln 

π
+

p
π

(
ln p + γ – ln(π/)

)
+

p
π

Dp,

where Dp and Ep are defined by Eqs. (.) and (.), respectively.

Proof Indeed, our starting point will be the ‘simple fraction’ expansion ([], Chapter ,
Section ) of the cosecant function:

π

sin(πα)
=

∑

n∈Z

(–)n

α – n
=


α

+
∞∑

n=

(–)n
(


α – n

+


α + n

)
,

which is valid for α ∈ C \ Z. Using this formula with α = k/p for k = , , . . . , p –  and
adding, we conclude that

π

p
Ip =

p–∑

k=


k

+
∞∑

n=

(–)n
p–∑

k=

(


k – np
+


k + np

)

=
p–∑

k=


k

+
∞∑

n=

(–)n

(
–

pn–∑

j=p(n–)+


j

+
p(n+)–∑

j=pn+


j

)
,

and this result can be expressed in terms of the harmonic numbers as follows:

π

p
Ip = Hp– +

∞∑

n=

(–)n(–Hpn– + Hp(n–) + Hp(n+)– – Hpn)

= Hp– +
∞∑

n=

(–)n(Hp(n+) – Hpn + Hp(n–)) +

p

∞∑

n=

(–)n
(


n

–


n + 

)

= Hp– +
∞∑

n=

(–)n(Hp(n+) – Hpn + Hp(n–)) +

p

( ∞∑

n=

(–)n

n
+

∞∑

n=

(–)n

n

)

= Hp +
∞∑

n=

(–)n(Hp(n+) – Hpn + Hp(n–)) –

p

∞∑

n=

(–)n– 
n

= Hp –
 ln 

p
+

∞∑

n=

(–)n(Hp(n+) – Hpn + Hp(n–)).
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Thus

π

p
Ip +

 ln 
p

= Hp +
∞∑

n=

(–)n(Hp(n+) – Hpn) +
∞∑

n=

(–)n(Hp(n–) – Hpn)

=
∞∑

n=

(–)n(Hp(n+) – Hpn) +
∞∑

n=

(–)n(Hp(n–) – Hpn)

= Ep + Ep = Ep,

and the desired formula follows according to Lemma .. �

Combining Proposition . and Theorem ., we obtain the following.

Proposition . For p ≥  and m ≥ , we have

πIp = p ln p + 
(
γ – ln(π/)

)
p –

m–∑

k=

bkη(k)
k · pk– + (–)m η(m)

m · pm– ε′
p,m

with  < ε′
p,m < |bm|.

Using the well-known result ([], [], Formula .):

η(k) =
(
 – –k)ζ (k) =

(k– – )πk(–)k–bk

(k)!
,

and considering separately the cases m even and m odd we obtain the following result.

Theorem . For every positive integer p and every nonnegative integer n, the sum of cose-
cants Ip defined by (.) satisfies the following inequalities:

Ip <
p
π

(
ln p + γ – ln(π/)

)
+

n∑

k=

(–)k (k – )b
k

k · (k)!

(
π

p

)k–

,

Ip >
p
π

(
ln p + γ – ln(π/)

)
+

n+∑

k=

(–)k (k – )b
k

k · (k)!

(
π

p

)k–

.

As an example, for n =  we obtain the following inequality, valid for every p ≥ :

p
π

(
ln p + γ – ln(π/)

)
–

π

p
< Ip <

p
π

(
ln p + γ – ln(π/)

)
.

This answers positively the open problem proposed in Section . of [].

Remark . The asymptotic expansion of Ip was proposed as an exercise in [], Exer-
cise , p., and it was attributed to Waldvogel, but the result there is less precise than
Theorem . because here we have inequalities valid in the whole range of p.

Now we turn our attention to the other trigonometric sum, Jp. The first step is to find an
analogous result to Proposition . for the trigonometric sum Jp, is the next lemma, where
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an asymptotic expansion for Jp is proved but it has a harmonic number as an undesired
term; later it will be removed.

Lemma . For every positive integers p, there is a real number θp ∈ (, ) such that

π Jp = –pHp + ln(π )p –
p


– θp.

Proof Indeed, let ϕ be the function defined by

ϕ(x) = πx cot(πx) +


 – x
.

According to the partial fraction expansion formula for the cotangent function ([],
Chapter , Section ) we know that

ϕ(x) =  +
x

x + 
+

∞∑

n=

(
x

x – n
+

x
x + n

)
.

Thus, ϕ is defined and analytic on the interval (–, ). Let us show that ϕ is concave on
this interval. Indeed, it is straightforward to check that, for – < x < , we have

ϕ′′(x) = –


( + x) – 
∞∑

n=

(
n

(n – x) +
n

(n + x)

)
< .

So, we can use Theorem . with m =  applied to the function x 	→ ϕ( x+k
p ) for  ≤ k < p to

get

 < p
∫ (k+)/p

k/p
ϕ(x) dx –




(
ϕ

(
k + 

p

)
+ ϕ

(
k
p

))
≤ 

pπ

(
ϕ′

(
k
p

)
– ϕ′

(
k + 

p

))
.

Adding these inequalities and noting that ϕ() = , ϕ′() = , ϕ() = , and ϕ′() = –π/,
we get

 < p
∫ 


ϕ(x) dx –

π

p
Jp – pHp –




≤  + π

πp
<


p

.

Also, for x ∈ [, ), we have
∫ x


ϕ(t) dt = – ln( – x) + x ln sin(πx) –

∫ x


ln sin(π t) dt,

and, letting x tend to  we obtain
∫ 


ϕ(t) dt = ln(π ) –

∫ 


ln sin(π t) dt = ln(π ),

where we used the fact
∫ 

 ln sin(π t) dt = – ln  (see [], . Formula ). So, we have
proved that

 < p ln(π ) –
π

p
Jp – pHp –




<

p

,

which is equivalent to the desired conclusion. �
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The next proposition gives an analogous result to Proposition . for the trigonometric
sum Jp.

Proposition . For a positive integer p, let Jp be the sum of cotangents defined by (.).
Then

π Jp = –p ln p +
(
ln(π ) – γ

)
p – p + pCp,

where Cp is given by (.).

Proof Recall that cn = Hn – ln n – γ – 
n satisfies cn = O(/n). Thus, the two series

Cp =
∞∑

n=

cpn and C̃p =
∞∑

n=

(–)n–cpn

are convergent. Further, we note that C̃p = Dp – ln 
p where Dp is defined by (.).

According to Proposition . we have

C̃p =
ln(π/) – γ – ln p


+

π

p
Ip. (.)

Now, noting that

Cp =
∑

n≥
n odd

cpn +
∑

n≥
n even

cpn =
∑

n≥
n odd

cpn +
∞∑

n=

cpn,

C̃p =
∑

n≥
n odd

cpn –
∑

n≥
n even

cpn =
∑

n≥
n odd

cpn –
∞∑

n=

cpn

we conclude that Cp – C̃p = Cp, or equivalently

Cp – Cp = C̃p. (.)

On the other hand, for a positive integer p let us define Fp by

Fp =
ln p + γ – ln(π )


+


p

+
π

p Jp. (.)

It is easy to check, using Lemma .(iii), that

Fp – Fp =
ln(π/) – ln p – γ


–

π

p (Jp – Jp)

=
ln(π/) – ln p – γ


+

π

p
Ip. (.)

We conclude from (.) and (.) that Cp – Cp = Fp – Fp, or equivalently

Cp – Fp = (Cp – Fp).
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Hence,

∀m ≥ , Cp – Fp = m(Cmp – Fmp). (.)

Now, using Lemma . to replace Hp in Lemma ., we obtain

π

p Jp = ln(π ) – Hp –


p
+ O

(


p

)

= ln(π ) – ln p – γ –

p

+ O
(


p

)
.

Thus Fp = O( 
p ). Similarly, from the fact that cn = O( 

n ) we conclude also that Cp = O( 
p ).

Consequently, there exists a constant κ such that, for large values of p, we have |Cp – Fp| ≤
κ/p. So, from (.), we see that for large values of m we have

|Cp – Fp| ≤ κ

mp

and letting m tend to +∞ we obtain Cp = Fp, which is equivalent to the announced result.
�

Combining Proposition . and Theorem ., we obtain the following.

Proposition . For p ≥  and m ≥ , we have

π Jp = –p ln p +
(
ln(π ) – γ

)
p – p –

m–∑

k=

bkζ (k)
k · pk– + (–)m ζ (m)

m · pm– εp,m,

with  < εp,m < |bm|, where ζ is the well-known Riemann zeta function.

Using the values of the ζ (k)’s [], Formula ., and considering separately the cases
m even and m odd, we obtain the next result.

Theorem . For every positive integer p and every nonnegative integer n, the sum of
cotangents Jp defined by (.) satisfies the following inequalities:

Jp <

π

(
–p ln p +

(
ln(π ) – γ

)
p – p

)
+ π

n∑

k=

(–)k b
k

k · (k)!

(
π

p

)k–

,

Jp >

π

(
–p ln p +

(
ln(π ) – γ

)
p – p

)
+ π

n+∑

k=

(–)k b
k

k · (k)!

(
π

p

)k–

.

As an example, for n =  we obtain the following double inequality, which is valid for
p ≥ :

 <

π

(
–p ln p +

(
ln(π ) – γ

)
p – p

)
– Jp <

π


.
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Remark . Note that we have proved the following results. For a positive integer p:

∞∑

n=

(–)n–(Hpn – ln(pn) – γ
)

=
ln(π/) – γ – ln p


+

ln 
p

+
π

p

p–∑

k=

csc

(
kπ

p

)
,

∞∑

n=

(–)n(Hp(n+) – Hpn) =
ln 
p

+
π

p

p–∑

k=

csc

(
kπ

p

)
,

∞∑

n=

(
Hpn – ln(pn) – γ –


pn

)
=

ln p + γ – ln(π )


+


p
+

π

p

p–∑

k=

k cot

(
kπ

p

)
.

These results are to be compared with those in []; see also [].
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