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Abstract
In this paper, we study a nonmatching grid finite element approximation of a class of
elliptic variational inequalities with nonlinear source terms in the context of the
Schwarz alternating domain decomposition. We show that the approximation
converges optimally in the maximum norm, on each subdomain, making use of a
Lipschitz continuous dependence with respect to both the boundary condition and
the source term.
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1 Introduction
This paper deals with the error analysis in the maximum norm, in the context of the non-
matching grids method, of the following variational inequalities with nonlinear source
terms: find u ∈ Kg such that

a(u, v – u) + c(u, v – u) ≥ (
f (u), v – u

)
, ∀v ∈ Kg , (.)

where a(u, v) =
∫
�

(∇u · ∇v) dx is the bilinear form defined in a bounded domain � of R

or R, c is a positive constant such that

c ≥ β > , (.)

where β is a positive constant, f is a nonlinear Lipschitz functional, Kg is a convex set
defined by

Kg =
{

v ∈ H(�) such that v = g on ∂� and v ≤ ψ on �
}

(.)

with ψ ∈ W ,∞(�) such that ψ ≥  on ∂� is the obstacle function, and g ∈ L∞(∂�) is the
boundary condition.
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The concept of the nonmatching finite elements grids used in this paper consists of de-
composing the whole domain � in two overlapping subdomains and to discretize each
subdomain by an independent finite element method. As the two discretizations are in-
dependent on the overlap region, the discrete analog of problem (.) cannot be defined,
and the alternating Schwarz method is then used to resolve the two discrete subproblems
arising from these nonmatching finite elements grids.

We refer to [–], and the references therein for the analysis of the Schwarz alternat-
ing method for elliptic obstacle problems and to the proceedings of the annual domain
decomposition conference beginning with [].

For results on maximum norm error analysis of overlapping nonmatching grids methods
for elliptic problems we refer, for example, to [–].

In this paper we consider the class of variational inequalities with nonlinear source terms
(.) [], where the main objective is to demonstrate that the approximation converges
optimally on each subdomain making use of the characterization of the discrete solution
as the upper bound of the set of discrete subsolutions [], a Lipschitz continuous depen-
dence with respect to both the boundary condition and the source term, and the standard
finite element L∞ error estimate for the elliptic obstacle problem [].

More precisely, if ui denotes the true solution and (un
hi

) the discrete Schwarz sequence
with respect to the triangulation with mesh size hi on �i, we show that

∥∥ui – un
hi

∥∥
L∞(�i)

≤ Ch| log h|, (.)

where h = max(h, h), C is a constant independent of n and h. This result coincides with
the optimal convergence order of elliptic variational inequalities of an obstacle type prob-
lem [].

2 Elliptic variational inequalities of obstacle type problem
In this section we begin by laying down some definitions and classical results related to
variational inequalities, then we prove a Lipschitz continuous and discrete dependence
with respect to both the boundary condition and the source term which will assume a
crucial role in the proof of the main result of this paper.

Let � be a bounded polyhedral domain of R or R with sufficiently smooth boundary
∂�. We consider the bilinear form

a(u, v) =
∫

�

(∇u · ∇v) dx, (.)

the linear form

(f , v) =
∫

�

f (x) · v(x) dx, (.)

the right-hand side

f ∈ L∞(�), (.)

the obstacle

ψ ∈ W ,∞(�) such that ψ ≥  on ∂�, (.)
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the boundary condition g ∈ L∞(∂�), and the nonempty convex set

Kg =
{

v ∈ H(�) such that v = g on ∂� and v ≤ ψ on �
}

. (.)

We consider the variational inequality (VI): find u ∈ Kg such that

a(u, v – u) + c(u, v – u) ≥ (f , v – u), ∀v ∈ Kg , (.)

where c ∈R and c >  such that

c ≥ β > , (.)

where β is a positive constant. Let τh be a triangulation of � with mesh size h, Vh be the
space of finite elements consisting of continuous piecewise linear functions v vanishing
on ∂�, and φs, s = , , . . . , m(h) be the basis functions of Vh.

The discrete counterpart of (.) consists of finding uh ∈ Kg
h such that

a(uh, v – uh) + c(uh, v – uh) ≥ (f , v – uh), ∀v ∈ Kg
h , (.)

where

Kg
h = {v ∈ Vh such that v = πhg on ∂� and v ≤ rhψ on �}, (.)

πh is an interpolation operator on ∂� and rh is the usual finite element restriction operator
on �.

Theorem  (see []) Under conditions (.) and (.), there exists a constant C indepen-
dent of h such that

‖ζ – ζh‖L∞(�) ≤ Ch| log h|. (.)

2.1 A Lipschitz continuous dependence with respect to both the boundary
condition and the source term

This subsection is devoted to the establishment of a Lipschitz continuous dependence
property of the solution with respect to the data whose proof is based on a monotonicity
property of the solution of (.) with respect to the source term and the boundary condi-
tion by which we first set out and demonstrate our result.

Proposition  Let (f ; g); (f̃ , g̃) be a pair of data and ζ = σ (f , g); ζ̃ = σ (f̃ , g̃) the correspond-
ing solutions to (.). If f ≤ f̃ in � and g ≤ g̃ on ∂� then ζ ≤ ζ̃ in �.

Proof According to [], ζ = max{ζ } where {ζ } is the set of all the subsolutions of ζ . Hence
∀ζ ∈ {ζ }, ζ satisfies

a(ζ , v) + c(ζ , v) ≤ (f , v), ∀v ≥ ,
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with

ζ ≤ g on ∂�.

Then the two inequalities f ≤ f̃ in � and g ≤ g̃ on ∂� imply

a(ζ , v) + c(ζ , v) ≤ (f , v) ≤ (f̃ , v), ∀v ≥ ,

with

ζ ≤ g ≤ g̃ on ∂�.

So, ζ is a subsolution of ζ̃ = σ (f̃ , g̃), that is, ζ ≤ ζ̃ . �

Proposition  Under the conditions of Proposition , we have

‖ζ – ζ̃‖L∞(�) ≤ max

{(

β

)
‖f – f̃ ‖L∞(�),‖g – g̃‖L∞(∂�)

}
. (.)

Proof First, set

� = max

{(

β

)
‖f – f̃ ‖L∞(�),‖g – g̃‖L∞(∂�)

}
. (.)

Then

f̃ ≤ f + ‖f – f̃ ‖L∞(�)

≤ f + ()‖f – f̃ ‖L∞(�)

≤ f +
(

c
β

)
‖f – f̃ ‖L∞(�)

≤ f + c max

{(

β

)
‖f – f̃ ‖L∞(�),‖g – g̃‖L∞(∂�)

}

≤ f + c�.

So,

f̃ ≤ f + c� in �. (.)

On the other hand, we have

ζ̃ = g̃ ≤ g + � on ∂�. (.)

Thus, making use of (.), (.), and Proposition , we obtain

ζ̃ ≤ σ (f + c�, g + �) in �. (.)
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Since ζ + � is a solution of the following VI:

a
(
ζ + �, (v + �) – (ζ + �)

)
+ c

(
ζ + �, (v + �) – (ζ + �)

) ≥ (
f + c�, (v + �) – (ζ + �)

)

with

v + �, ζ + � ∈ K (g+�),

we have

ζ + � = σ (f + c�, g + �). (.)

Equations (.) and (.) imply

ζ̃ ≤ ζ + � in �,

thus

ζ̃ – ζ ≤ � in �. (.)

Similarly, interchanging the roles of the couples (f ; g); (f̃ , g̃), we obtain

ζ – ζ̃ ≤ � in �, (.)

which completes the proof. �

2.2 A Lipschitz discrete dependence with respect to both the boundary condition
and the source term

Assuming that the discrete maximum principle (d.m.p.) is satisfied, i.e. the matrix resulting
from the finite element discretization is an M-matrix (see [, ]), we prove the Lipschitz
discrete dependence with respect to both the boundary condition and the source term
by a similar study to that undertaken previously for the Lipschitz continuous dependence
property.

Proposition  Let (f , g); (f̃ , g̃) be a pair of data and ζh = σh(f , g); ζ̃h = σh(f̃ , g̃) the corre-
sponding solutions to (.). If f ≥ f̃ in � and g ≥ g̃ on ∂� then ζh ≥ ζ̃h in �.

Proof The proof is similar to that of the continuous case. �

The proposition below establishes a Lipschitz discrete dependence of the solution with
respect to the data.

Proposition  Provided that the d.m.p. is verified, then under the conditions of Proposi-
tion , we have

‖ζh – ζ̃h‖L∞(�) ≤ max

{(

β

)
‖f – f̃ ‖L∞(�),‖g – g̃‖L∞(∂�)

}
. (.)

Proof The proof is similar to that of the continuous case. Indeed, as the basis functions φs

of the space Vh are positive, it suffices to use the discrete maximum principle. �
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3 Schwarz alternating methods for VI with nonlinear source terms
We consider the following variational inequality with nonlinear source term (.): Find
u ∈ Kg , a solution of

a(u, v – u) + c(u, v – u) ≥ (
f (u), v – u

)
, ∀v ∈ Kg , (.)

where

a(u, v) =
∫

�

(∇u∇v) dx, (.)

f (·) is a Lipschitz continuous nondecreasing nonlinear source term on R,

∣∣f (x) – f (y)
∣∣ ≤ k|x – y|, ∀x, y ∈R, (.)

with k satisfying

k < β , (.)

where β is defined in (.).

Theorem  (see []) Problem (.) has a unique solution.

We decompose � into two overlapping smooth subdomains � and � such that

� = � ∪ �. (.)

We denote by ∂�i the boundary of �i and �i = ∂�i ∩ �j. We assume that the intersection
of �i and �j, i �= j, is empty and we associate with problem (.) the following system: Find
(u, u) ∈ Kg

 × Kg
 , a solution of

{
ai(ui, v – ui) + c(ui, v – ui) ≥ (f (ui), v – ui), ∀v ∈ Kg

i ,
ui/�i = uj/�i , i, j = , , i �= j,

(.)

such that

Kg
i =

{
v ∈ H(�i) such that v = g on ∂� ∩ ∂�i and v ≤ ψ on �i

}
, (.)

ai(u, v) =
∫

�i

(∇u.∇v) dx, (.)

and

ui = u/�i, i = , . (.)

Let

bi(u, v) = ai(u, v) + c(u, v).
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3.1 The continuous Schwarz sequences
Let u

 be an initialization in � defined by

u
 = ψ/�. (.)

We, respectively, define the alternating Schwarz sequences (un+
 ) on � such that un+

 ∈
Kg

 solves

{
b(un+

 , v – un+
 ) ≥ (f (un+

 ), v – un+
 ), ∀v ∈ Kg

 ,
un+

 /� = un
/�,

(.)

and (un+
 ) on � such that un+

 ∈ Kg
 solves

{
b(un+

 , v – un+
 ) ≥ (f (un+

 ), v – un+
 ), ∀v ∈ Kg

 ,
un+

 /� = un+
 /�.

(.)

Theorem  (see []) The two sequences (.) and (.) converge uniformly to the solution
of (.).

3.2 Nonmatching grids discretization
For i = , , let τ hi be a standard regular and quasi-uniform finite element triangulation
in �i; hi being its mesh size. The two meshes being mutually independent on � ∩ � in
the sense that a triangle belonging to one triangulation does not necessarily belong to the
other one. We consider the following discrete spaces:

Vhi =
{

v ∈ C(�i) ∩ H(�i) such that v/T ∈P,∀T ∈ τ hi
}

, (.)

the convex sets

Kg
hi

= {v ∈ Vhi such that v = πhi g on ∂� ∩ ∂�i and v ≤ rhiψ}, (.)

where rhi denotes the restriction operator on the triangulation τ hi . Let also πhi denote the
interpolation operator on �i and φi

s, s = , , . . . , m(hi), be the basis functions of Vhi .

The discrete maximum principle (see [, ]) We assume that the respective matrices
resulting from the discretization of problems (.) and (.) are M-matrices. Note that,
as the two meshes h and h are independent over the overlapping subdomains, it is im-
possible to formulate a global approximate problem which would be the direct discrete
counterpart of problem (.).

3.3 The discrete Schwarz sequences
Now, we define the discrete counterparts of the continuous Schwarz sequences defined
in (.) and (.). Indeed, let u

h
be the discrete analog of u

 defined in (.) that is,
u

h
= πh (u

) = πh (ψ/�). We, respectively, define un+
h

∈ Kg
h

such that

{
b(un+

h
, v – un+

h
) ≥ (f (un+

h
), v – un+

h
), ∀v ∈ Kg

h
,

un+
h

/� = πh (un
h

/�),
(.)
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and un+
h

∈ Kg
h

such that

{
b(un+

h
, v – un+

h
) ≥ (f (un+

h
), v – un+

h
), ∀v ∈ Kg

h
,

un+
h

/� = πh (un+
h

/�).
(.)

4 Maximum norm error
This section is devoted to the proof of the main result of the present paper. To that end,
we begin by introducing two discrete auxiliary problems.

4.1 Two auxiliary problems
We define wh ∈ Kg

h
such that wh solves

{
b(wh , v – wh ) ≥ (f (u), v – wh ), ∀v ∈ Kg

h
,

wh /� = πh (u/�),
(.)

and wh ∈ Kg
h

such that wh solves

{
b(wh , v – wh ) ≥ (f (u), v – wh ), ∀v ∈ Kg

h
,

wh /� = πh (u/�).
(.)

It is then clear that wh and wh are the finite element approximations of u and u defined
in (.) thus, making use of (.), we get

‖ui – whi‖L∞(�i) ≤ Ch| log h|, (.)

where C is a constant independent of h.

Notation  From now on, we shall adopt the following notations:

| · | = ‖ · ‖L∞(�); | · | = ‖ · ‖L∞(�),

‖ · ‖ = ‖ · ‖L∞(�); ‖ · ‖ = ‖ · ‖L∞(�),

πh = πh = πh.

4.2 The main result
Theorem  Let h = max(h, h) and let ρ = k

β
<  then there exists a constant C indepen-

dent of both h and n such that

∥
∥ui – un+

hi

∥
∥

i ≤ 
( – ρ)

Ch| log h|, i = , , n ≥ . (.)

Proof The proof of (.) will be carried out by induction, where the cases ρ ∈ (, 
 ] and

ρ ∈ ( 
 , ) will be studied separately. Also, within each case, we will also discuss the two

following situations:

(A):
∥∥u – u

h

∥∥
 ≤ Ch| log h| (.)
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and

(B): Ch| log h| <
∥∥u – u

h

∥∥
, (.)

where u
h

= πh (u
) = πh (ψ/�). The basic idea of the proof is to define for each subdo-

main two approximations αhi and α̃hi in the L∞-norm of ui (a discrete subsolution and a
discrete supersolution of un

hi
, n ≥ ), such that

‖αhi – ui‖i ≤ 
( – ρ)

Ch| log h|

and

‖α̃hi – ui‖i ≤ 
( – ρ)

Ch| log h|.

Part : The first part of the proof deals with  < ρ ≤ 
 . So

ρ

 – ρ
≤ . (.)

For n = , in domain , the discrete analog wh of u defined in (.) considered as the upper
bound of the set of discrete subsolutions [], satisfies

b
(
wh ,ϕ

s
) ≤ (

f (u),ϕ
s
)
, ∀s ∈ {

, . . . , m(h)
}

,

wh = πh u on �.

Since the nonlinear functional is Lipschitz and according to (.), we get

f (u) – f (wh ) ≤ kCh| log h|.

Then

b
(
wh ,ϕ

s
) ≤ (

f (u),ϕ
s
) ≤ (

f (wh ) + kCh| log h|,ϕ
s
)
,

wh = πh u on �.

Let

Wh = σh

(
f (wh ) + kCh| log h|,πh u

)
; (.)

therefore, wh is a subsolution of Wh ,

wh ≤ Wh in �. (.)

By applying (.), we get

∥∥Wh – u
h

∥∥
 ≤ max

{(

β

)∥∥f (wh ) + kCh| log h| – f
(
u

h

)∥∥
;

∣∣u – u
h

∣∣


}

≤ max

{(

β

)∥
∥f (wh ) – f

(
u

h

)∥∥
 +

(
k
β

)
Ch| log h|;

∥
∥u – u

h

∥
∥



}
.
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So

∥
∥Wh – u

h

∥
∥

 ≤ max
{
ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|;
∥
∥u – u

h

∥
∥



}
. (.)

On the other hand, (.) generates two possibilities, that is,

(A):
∥
∥wh – u

h

∥
∥

 ≤ ∥
∥Wh – u

h

∥
∥



or

(A):
∥∥Wh – u

h

∥∥
 ≤ ∥∥wh – u

h

∥∥
.

Case (A) in conjunction with (.) implies that

∥∥wh – u
h

∥∥
 ≤ max

{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}
,

which lets us distinguish the following two cases:

: max
{
ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|;
∥
∥u – u

h

∥
∥



}

= ρ
∥∥wh – u

h

∥∥
 + ρCh| log h| (.)

and

: max
{
ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|;
∥
∥u – u

h

∥
∥



}
=

∥
∥u – u

h

∥
∥

. (.)

Equation (.) implies that

∥
∥wh – u

h

∥
∥

 ≤ ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|

and

∥∥u – u
h

∥∥
 ≤ ρ

∥∥wh – u
h

∥∥
 + ρCh| log h|.

Then

∥
∥wh – u

h

∥
∥

 ≤ ρ

 – ρ
Ch| log h|

and

∥∥u – u
h

∥∥
 ≤ ρ

 – ρ
Ch| log h| + ρCh| log h|

≤ ρ

 – ρ
Ch| log h| ≤ Ch| log h|,

which coincides with (.) and contradicts (.). So, (.) is only possible in situation (A).
Equation (.) implies that

∥∥wh – u
h

∥∥
 ≤ ∥∥u – u

h

∥∥
 (.)
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and

ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – u

h

∥
∥

.

So, by multiplying (.) by ρ and adding ρCh| log h|, we get

ρ
∥∥wh – u

h

∥∥
 + ρCh| log h| ≤ ρ

∥∥u – u
h

∥∥
 + ρCh| log h|.

Then ρ‖wh – u
h

‖ + ρCh| log h| is bounded by both ‖u – u
h

‖ and ρ‖u – u
h

‖ +
ρCh| log h|, so

(a):
∥
∥u – u

h

∥
∥

 ≤ ρ
∥
∥u – u

h

∥
∥

 + ρCh| log h|

or

(b): ρ
∥
∥u – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – u

h

∥
∥

.

That is,

∥∥u – u
h

∥∥
 ≤ ρ

 – ρ
Ch| log h|

or

ρ

 – ρ
Ch| log h| ≤ ∥

∥u – u
h

∥
∥

.

Thus

∥∥u – u
h

∥∥
 ≤ ρ

 – ρ
Ch| log h| ≤ Ch| log h|

or

ρ

 – ρ
Ch| log h| ≤ ∥

∥u – u
h

∥
∥

 ≤ Ch| log h|.

So, the two cases (a) and (b) are true because they both coincide with (.). Therefore,
there is either a contradiction and thus (.) is impossible or (.) is possible only if

∥
∥u – u

h

∥
∥

 =
ρ

 – ρ
Ch| log h|.

Then (.) in situation (A) implies

∥∥wh – u
h

∥∥
 ≤ ∥∥u – u

h

∥∥
 =

ρ

 – ρ
Ch| log h|,

while in situation (B) only (b) is true and leads to

∥∥wh – u
h

∥∥
 ≤ ∥∥u – u

h

∥∥
 and

ρ

 – ρ
Ch| log h| ≤ ∥∥u – u

h

∥∥
.
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Then

∥∥wh – u
h

∥∥
 ≤ ρ

 – ρ
Ch| log h| ≤ ∥∥u – u

h

∥∥


or

ρ

 – ρ
Ch| log h| ≤ ∥∥wh – u

h

∥∥
 ≤ ∥∥u – u

h

∥∥
.

We remark that both possibilities are true. There is either a contradiction and (.) is
impossible or (.) is possible only if

∥∥wh – u
h

∥∥
 =

ρ

( – ρ)
Ch| log h|.

So, in the two situations (A) and (B) and in the two cases (.) and (.) of situation (A),
we get

∥∥wh – u
h

∥∥
 ≤ ρ

( – ρ)
Ch| log h|, (.)

which implies

wh –
ρ

( – ρ)
Ch| log h| ≤ u

h ≤ wh +
ρ

( – ρ)
Ch| log h|.

Let us denote

αh = wh –
ρ

( – ρ)
Ch| log h| (.)

and

α̃h = wh +
ρ

( – ρ)
Ch| log h|. (.)

Then

αh ≤ u
h ≤ α̃h (.)

with

‖αh – u‖ =
∥∥∥
∥wh –

ρ

( – ρ)
Ch| log h| – u

∥∥∥
∥



≤ ‖wh – u‖ +
ρ

( – ρ)
Ch| log h|

≤ Ch| log h| +
ρ

( – ρ)
Ch| log h|

by virtue of (.). So

‖αh – u‖ ≤ 
( – ρ)

Ch| log h|. (.)
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By using the same reasoning we see that (.) implies

‖α̃h – u‖ ≤ 
( – ρ)

Ch| log h|. (.)

On the other hand, (.) implies

αh – u ≤ u
h – u ≤ α̃h – u (.)

so according to (.) and (.) we get

–


( – ρ)
Ch| log h| ≤ u

h – u ≤ 
( – ρ)

Ch| log h| (.)

thus

∥
∥u – u

h

∥
∥

 ≤ 
( – ρ)

Ch| log h|. (.)

Case (A) in conjunction with (.) implies that ‖Wh – u
h

‖ is bounded by the values
‖wh – u

h
‖ and max{ρ‖wh – u

h
‖ + ρCh| log h|;‖u – u

h
‖} which generates the two

situations

(c):
∥∥wh – u

h

∥∥
 ≤ max

{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}

or

(d): max
{
ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|;
∥
∥u – u

h

∥
∥



} ≤ ∥
∥wh – u

h

∥
∥

. (.)

It is clear that case (c) coincides with situation (A). Let us study case (d); as in case (A),
max{ρ‖wh – u

h
‖ + ρCh| log h|;‖u – u

h
‖} lets us distinguish the two cases (.) and

(.). Equation (.) in conjunction with (d) implies

∥∥u – u
h

∥∥
 ≤ ρ

∥∥wh – u
h

∥∥
 + ρCh| log h| ≤ ∥∥wh – u

h

∥∥


and (.) in conjunction with (d) implies

ρ
∥∥wh – u

h

∥∥
 + ρCh| log h| ≤ ∥∥u – u

h

∥∥
 ≤ ∥∥wh – u

h

∥∥
.

Then it is clear that in the two cases (.) and (.), we obtain

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – u

h

∥∥
 (.)

with

∥∥u – u
h

∥∥
 ≤ ∥∥wh – u

h

∥∥
. (.)
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Thus, ‖wh – u
h

‖ is bounded below by both ρ

(–ρ) Ch| log h| and ‖u – u
h

‖ so we dis-
tinguish the two following possibilities:

(e):
∥
∥u – u

h

∥
∥

 ≤ ρ

( – ρ)
Ch| log h| ≤ Ch| log h|

or

(f):
ρ

( – ρ)
Ch| log h| ≤ ∥∥u – u

h

∥∥
 ≤ Ch| log h|.

So, the two cases (e) and (f ) are true because they both coincide with (.). Therefore,
there is either a contradiction and thus cases (.) and (.) are impossible or the two
cases (.) and (.) are possible in situation (A) only if

∥∥u – u
h

∥∥
 =

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – u

h

∥∥
,

while in situation (B) only the case (f ) is true and leads to

ρ

( – ρ)
Ch| log h| ≤ ∥∥u – u

h

∥∥
 ≤ ∥∥wh – u

h

∥∥
.

In summary, in situation (A) and in the two cases (.) and (.) of situations (A) and
(B), we get

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – u

h

∥∥
. (.)

Let us decompose the subdomain � = �, ∪ �c
, such that

ρ

( – ρ)
Ch| log h| ≤ ∣

∣wh – u
h

∣
∣ on �, (.)

and

∣∣wh – u
h

∣∣ <
ρ

( – ρ)
Ch| log h| on �c

,. (.)

We begin with �,. If wh – u
h

≥  on �, then (.) implies u
h

≤ αh ; thus,

u
h – u ≤ αh – u ≤ 

( – ρ)
Ch| log h| (.)

by virtue of (.). On the other hand, (.) leads also to

–


( – ρ)
Ch| log h| ≤ αh – u.

So, αh – u is bounded below by both u
h

– u and – 
(–ρ) Ch| log h|, which lets us distin-

guish the two following possibilities:

u
h – u ≤ –


( – ρ)

Ch| log h|
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or

–


( – ρ)
Ch| log h| ≤ u

h – u.

Then

u
h – u ≤ –


( – ρ)

Ch| log h| ≤ wh – u

or

–


( – ρ)
Ch| log h| ≤ u

h – u ≤ wh – u.

So, both possibilities are true because they coincide with (.). So, there is either a con-
tradiction and (.) is impossible or (.) is possible and we must have

∥
∥u

h – u
∥
∥

L∞(�,) =


( – ρ)
Ch| log h|. (.)

The case wh – u
h

<  on �, is studied in a similar manner and leads to the same result
(.). Equation (.) is studied in the same way as that for case (A) and leads to

∥∥u
h – u

∥∥
L∞(�c

,) ≤ 
( – ρ)

Ch| log h|. (.)

Equations (.) and (.) imply

∥
∥u

h – u
∥
∥

 ≤ 
( – ρ)

Ch| log h|. (.)

Finally, in the two cases (A) and (A) and in the two situations (A) and (B), we get

∥∥u – u
h

∥∥
 ≤ 

( – ρ)
Ch| log h|. (.)

For n =  in domain , the discrete analog wh of u, defined in (.) and considered as the
upper bound of the set of discrete subsolutions [], satisfies

b
(
wh ,ϕ

s
) ≤ (

f (u),ϕ
s
)
, ∀s ∈ {

, . . . , m(h)
}

,

wh = πh u on �.

The nonlinear functional is Lipschitz and according to (.)

f (u) – f (wh ) ≤ kCh| log h|.

Then

b
(
wh ,ϕ

s
) ≤ (

f (u),ϕ
s
) ≤ (

f (wh ) + kCh| log h|,ϕ
s
)
,

wh = πh u on �.
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Let

Wh = σh

(
f (wh ) + kCh| log h|,πh u

)
; (.)

therefore, wh is a subsolution of Wh , so

wh ≤ Wh in �. (.)

By applying (.), we get

∥
∥Wh – u

h

∥
∥

 ≤ max

{(

β

)∥
∥f (wh ) + kCh| log h| – f

(
u

h

)∥∥
;

∣
∣u – u

h

∣
∣


}

≤ max

{(

β

)∥
∥f (wh ) – f

(
u

h

)∥∥
 +

(
k
β

)
Ch| log h|;

∥
∥u – u

h

∥
∥



}
.

So

∥∥Wh – u
h

∥∥
 ≤ max

{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}
. (.)

On the other hand, (.) generates two possibilities, that is,

(B):
∥∥wh – u

h

∥∥
 ≤ ∥∥Wh – u

h

∥∥


or

(B):
∥∥Wh – u

h

∥∥
 ≤ ∥∥wh – u

h

∥∥
.

Case (B) in conjunction with (.) implies that

∥∥wh – u
h

∥∥
 ≤ max

{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}
,

which lets us distinguish the following two cases:

: max
{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}

= ρ
∥∥wh – u

h

∥∥
 + ρCh| log h| (.)

and

: max
{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}
=

∥∥u – u
h

∥∥
. (.)

Equation (.) implies that

∥∥wh – u
h

∥∥
 ≤ ρ

∥∥wh – u
h

∥∥
 + ρCh| log h|

and

∥∥u – u
h

∥∥
 ≤ ρ

∥∥wh – u
h

∥∥
 + ρCh| log h|.
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Then

∥
∥wh – u

h

∥
∥

 ≤ ρ

 – ρ
Ch| log h|

and

∥∥u – u
h

∥∥
 ≤ ρ

 – ρ
Ch| log h| + ρCh| log h|

≤ ρ

 – ρ
Ch| log h| <


 – ρ

Ch| log h|,

which coincides with (.). Equation (.) implies that

∥
∥wh – u

h

∥
∥

 ≤ ∥
∥u – u

h

∥
∥

 (.)

and

ρ
∥∥wh – u

h

∥∥
 + ρCh| log h| ≤ ∥∥u – u

h

∥∥
.

So, by multiplying (.) by ρ and adding ρCh| log h| we get

ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h| ≤ ρ
∥
∥u – u

h

∥
∥

 + ρCh| log h|;

then ρ‖wh – u
h

‖ + ρCh| log h| is bounded above by ‖u – u
h

‖ and ρ‖u – u
h

‖ +
ρCh| log h|. So, either

(a):
∥∥u – u

h

∥∥
 ≤ ρ

∥∥u – u
h

∥∥
 + ρCh| log h|

or

(b): ρ
∥
∥u – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – u

h

∥
∥

,

that is,

∥
∥u – u

h

∥
∥

 ≤ ρ

 – ρ
Ch| log h| <


 – ρ

Ch| log h|

or

ρ

 – ρ
Ch| log h| ≤ ∥∥u – u

h

∥∥
 ≤ 

 – ρ
Ch| log h|.

So, the two cases (a) and (b) are true because they both coincide with (.). Therefore,
there is either a contradiction and thus (.) is impossible or (.) is possible only if

∥∥u – u
h

∥∥
 =

ρ

 – ρ
Ch| log h|

thus

∥∥wh – u
h

∥∥
 ≤ ∥∥u – u

h

∥∥
 =

ρ

 – ρ
Ch| log h|.
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In summary, in the two cases (.) and (.) of situation (B), we get

∥
∥wh – u

h

∥
∥

 ≤ ρ

( – ρ)
Ch| log h|

so

wh –
ρ

( – ρ)
Ch| log h| ≤ u

h ≤ wh +
ρ

( – ρ)
Ch| log h|.

Let us denote

αh = wh –
ρ

( – ρ)
Ch| log h| (.)

and

α̃h = wh +
ρ

( – ρ)
Ch| log h|; (.)

then

αh ≤ u
h ≤ α̃h . (.)

By using a same reasoning as adopted in subdomain � for (.) and (.), we get

‖αh – u‖ ≤ 
( – ρ)

Ch| log h| (.)

and

‖α̃h – u‖ ≤ 
( – ρ)

Ch| log h|. (.)

Equation (.) implies

αh – u ≤ u
h – u ≤ α̃h – u

and according to (.) and (.), we obtain

–


( – ρ)
Ch| log h| ≤ u

h – u ≤ 
( – ρ)

Ch| log h|, (.)

that is,

∥∥u – u
h

∥∥
 ≤ 

( – ρ)
Ch| log h|.

Case (B) in conjunction with (.) implies that ‖Wh – u
h

‖ is bounded by the values
‖wh – u

h
‖ and max{ρ‖wh – u

h
‖ + ρCh| log h|;‖u – u

h
‖}, which generates two

situations,

(c):
∥∥wh – u

h

∥∥
 ≤ max

{
ρ
∥∥wh – u

h

∥∥
 + ρCh| log h|;

∥∥u – u
h

∥∥


}
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or

(d): max
{
ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|;
∥
∥u – u

h

∥
∥



} ≤ ∥
∥wh – u

h

∥
∥

.

It is clear that case (c) coincides with case (B). Let us study case (d); as in case (B)
max{ρ‖wh – u

h
‖ + ρCh| log h|;‖u – u

h
‖} lets us distinguish the two cases (.)

and (.). Equation (.) in conjunction with (d) implies

∥
∥u – u

h

∥
∥

 ≤ ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥wh – u

h

∥
∥



and (.) in conjunction with (d) implies

ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – u

h

∥
∥

 ≤ ∥
∥wh – u

h

∥
∥

.

Then the two cases (.) and (.) imply

ρ

( – ρ)
Ch| log h| ≤ ∥

∥wh – u
h

∥
∥



and

∥
∥u – u

h

∥
∥

 ≤ ∥
∥wh – u

h

∥
∥

.

‖wh – u
h

‖ is bounded below by ρ

(–ρ) Ch| log h| and ‖u – u
h

‖ so we distinguish the
two following possibilities:

(e):
∥∥u – u

h

∥∥
 ≤ ρ

( – ρ)
Ch| log h| <


( – ρ)

Ch| log h|

or

(f):
ρ

( – ρ)
Ch| log h| ≤ ∥

∥u – u
h

∥
∥

 ≤ 
( – ρ)

Ch| log h|.

So, the two cases (e) and (f ) are true because they both coincide with (.). Therefore,
there is either a contradiction and thus cases (.) and (.) are impossible or the two
cases (.) and (.) are possible only if

∥∥u – u
h

∥∥
 =

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – u

h

∥∥
.

So, in the two cases (.) and (.) of situation (B), we get

ρ

( – ρ)
Ch| log h| ≤ ∥

∥wh – u
h

∥
∥

.

The remainder of the proof related to situation (B) rests on the same arguments used
in subdomain � for situation (A) that is, on a decomposition of � = �, ∪ �c

, and
showing that

∥∥u – u
h

∥∥
L∞(�,) ≤ 

( – ρ)
Ch| log h|
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and

∥∥u – u
h

∥∥
L∞(�c

,) ≤ 
( – ρ)

Ch| log h|.

Finally, in the two situations (B) and (B) we get

∥∥u – u
h

∥∥
 ≤ 

( – ρ)
Ch| log h|. (.)

Now, let us assume that

∥
∥u – un

h

∥
∥

 ≤ 
( – ρ)

Ch| log h|,

∥
∥u – un

h

∥
∥

 ≤ 
( – ρ)

Ch| log h|,
(.)

and prove that

∥∥u – un+
h

∥∥
 ≤ 

( – ρ)
Ch| log h|,

∥∥u – un+
h

∥∥
 ≤ 

( – ρ)
Ch| log h|.

(.)

By using the definition of Wh in (.) and by applying (.), we get

∥∥Wh – un+
h

∥∥
 ≤ max

{(

β

)∥∥f (wh ) + kCh| log h| – f
(
un+

h

)∥∥
;

∣∣u – un
h

∣∣


}

≤ max

{(

β

)∥∥f (wh ) – f
(
un+

h

)∥∥
 +

(
k
β

)
Ch| log h|;

∥∥u – un
h

∥∥


}

so

∥
∥Wh – un+

h

∥
∥

 ≤ max
{
ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h|;
∥
∥u – un

h

∥
∥



}
. (.)

On the other hand, (.) generates two possibilities, that is

(C):
∥∥wh – un+

h

∥∥
 ≤ ∥∥Wh – un+

h

∥∥


or

(C):
∥∥Wh – un+

h

∥∥
 ≤ ∥∥wh – un+

h

∥∥
.

Case (C) in conjunction with (.) implies that

∥
∥wh – un+

h

∥
∥

 ≤ max
{
ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h|;
∥
∥u – un

h

∥
∥



}
,

which lets us distinguish the following two cases:

: max
{
ρ
∥∥wh – un+

h

∥∥
 + ρCh| log h|;

∥∥u – un
h

∥∥


}

= ρ
∥∥wh – un+

h

∥∥
 + ρCh| log h| (.)
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and

: max
{
ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h|;
∥
∥u – un

h

∥
∥



}
=

∥
∥u – un

h

∥
∥

. (.)

Equation (.) implies that

∥
∥wh – un+

h

∥
∥

 ≤ ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h|

and

∥∥u – un
h

∥∥
 ≤ ρ

∥∥wh – un+
h

∥∥
 + ρCh| log h|.

Then

∥∥wh – un+
h

∥∥
 ≤ ρ

 – ρ
Ch| log h|

and

∥
∥u – un

h

∥
∥

 ≤ ρ

 – ρ
Ch| log h| <


 – ρ

Ch| log h|,

which coincides with (.). Equation (.) implies that

∥∥wh – un+
h

∥∥
 ≤ ∥∥u – un

h

∥∥
 (.)

and

ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – un

h

∥
∥

.

So, by multiplying (.) by ρ and adding ρCh| log h| we get

ρ
∥∥wh – un+

h

∥∥
 + ρCh| log h| ≤ ρ

∥∥u – un
h

∥∥
 + ρCh| log h|;

then ρ‖wh – un+
h

‖ + ρCh| log h| is bounded by both ‖u – un
h

‖ and ρ‖u – un
h

‖ +
ρCh| log h|. So

(a):
∥
∥u – un

h

∥
∥

 ≤ ρ
∥
∥u – un

h

∥
∥

 + ρCh| log h|

or

(b): ρ
∥
∥u – un

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – un

h

∥
∥

.

Thus

∥∥u – un
h

∥∥
 ≤ ρ

 – ρ
Ch| log h| <


 – ρ

Ch| log h|
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or

ρ

 – ρ
Ch| log h| ≤ ∥∥u – un

h

∥∥
 ≤ 

 – ρ
Ch| log h|.

So, the two cases (a) and (b) are true because they both coincide with (.). Therefore,
there is either a contradiction and thus (.) is impossible or (.) is possible only if

∥
∥u – un

h

∥
∥

 =
ρ

 – ρ
Ch| log h|.

Then (.) implies

∥∥wh – un+
h

∥∥
 ≤ ∥∥u – un

h

∥∥
 =

ρ

 – ρ
Ch| log h|.

Thus, in situation (C) and in the two cases (.) and (.), we get

∥∥wh – un+
h

∥∥
 ≤ ρ

( – ρ)
Ch| log h|

so

αh ≤ un+
h ≤ α̃h (.)

and

αh – u ≤ un+
h – u ≤ α̃h – u.

So, according to (.) and (.), we get

–


( – ρ)
Ch| log h| ≤ un+

h – u ≤ 
( – ρ)

Ch| log h|.

Thus

∥∥u – un+
h

∥∥
 ≤ 

( – ρ)
Ch| log h|.

Case (C) in conjunction with (.) implies that ‖Wh – un+
h

‖ is bounded by the values
‖wh – un+

h
‖ and max{ρ‖wh – un+

h
‖ + ρCh| log h|;‖u – un

h
‖}, which generates two

situations,

(c):
∥
∥wh – un+

h

∥
∥

 ≤ max
{
ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h|;
∥
∥u – un

h

∥
∥



}

or

(d): max
{
ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h|;
∥
∥u – un

h

∥
∥



} ≤ ∥
∥wh – un+

h

∥
∥

.

It is clear that case (c) coincides with case (C). Let us study case (d); as in case (C),
max{ρ‖wh – un+

h
‖ + ρCh| log h|;‖u – un

h
‖} lets us distinguish the two cases (.)
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and (.). Equation (.) in conjunction with (d) implies

∥
∥u – un

h

∥
∥

 ≤ ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h| ≤ ∥
∥wh – un+

h

∥
∥



and (.) in conjunction with (d) implies

ρ
∥
∥wh – un+

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – un

h

∥
∥

 ≤ ∥
∥wh – un+

h

∥
∥

.

Then in the two cases (.) and (.), we get

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – un+

h

∥∥


and

∥∥u – un
h

∥∥
 ≤ ∥∥wh – un+

h

∥∥
.

Hence, ‖wh – un+
h

‖ is bounded below by both ρ

(–ρ) Ch| log h| and ‖u – un
h

‖ so we
distinguish the two following possibilities:

(e):
∥
∥u – un

h

∥
∥

 ≤ ρ

( – ρ)
Ch| log h| <


( – ρ)

Ch| log h|

or

(f):
ρ

( – ρ)
Ch| log h| ≤ ∥∥u – un

h

∥∥
 ≤ 

( – ρ)
Ch| log h|.

So, the two cases (e) and (f ) are true because they both coincide with (.). Therefore,
there is either a contradiction and the two cases (.) and (.) are impossible or the
two cases (.) and (.) are possible only if

∥∥u – un
h

∥∥
 =

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – un+

h

∥∥
;

thus, in the two cases (.) and (.) of situation (C), we get

ρ

( – ρ)
Ch| log h| ≤ ∥

∥wh – un+
h

∥
∥

.

The remainder of the proof related to situation (C) rests on the same arguments used
in subdomain � for situation (A) at iteration n = , that is, on a decomposition of � =
�, ∪ �c

, and on showing that

∥∥u – un+
h

∥∥
L∞(�,) ≤ 

( – ρ)
Ch| log h|

and

∥∥u – un+
h

∥∥
L∞(�c

,) ≤ 
( – ρ)

Ch| log h|.



Harbi Journal of Inequalities and Applications  (2016) 2016:181 Page 24 of 27

Finally, in the two situations (C) and (C) we get the desired result,

∥∥u – un+
h

∥∥
 ≤ 

( – ρ)
Ch| log h|. (.)

Estimate (.) in domain  can be proved similarly using estimate (.).
Part : This second part of the proof is devoted to 

 < ρ < . So

ρ

 – ρ
> . (.)

For n = , in domain , like as in part , (.) generates two different situations (A) and
(A), which we study separately. According to (.), situation (A) in conjunction with
(.) implies

∥
∥wh – u

h

∥
∥

 ≤ ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h|

and

∥∥u – u
h

∥∥
 ≤ ρ

∥∥wh – u
h

∥∥
 + ρCh| log h|.

Then

∥∥wh – u
h

∥∥
 ≤ ρ

 – ρ
Ch| log h|

and

∥
∥u – u

h

∥
∥

 ≤ ρ

 – ρ
Ch| log h|.

So, we can write for (.)

∥
∥u – u

h

∥
∥

 ≤ Ch| log h| <
ρ

 – ρ
Ch| log h|

and for (.)

Ch| log h| <
∥∥u – u

h

∥∥
 ≤ ρ

 – ρ
Ch| log h|.

Equation (.) implies that

∥∥wh – u
h

∥∥
 ≤ ∥∥u – u

h

∥∥
 (.)

and

ρ
∥
∥wh – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – u

h

∥
∥

.

So, by multiplying (.) by ρ and adding ρCh| log h| we get

ρ
∥∥wh – u

h

∥∥
 + ρCh| log h| ≤ ρ

∥∥u – u
h

∥∥
 + ρCh| log h|.
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Then ρ‖wh – u
h

‖ + ρCh| log h| is bounded by ‖u – u
h

‖ and ρ‖u – u
h

‖ +
ρCh| log h|, so

(a):
∥
∥u – u

h

∥
∥

 ≤ ρ
∥
∥u – u

h

∥
∥

 + ρCh| log h|

or

(b): ρ
∥
∥u – u

h

∥
∥

 + ρCh| log h| ≤ ∥
∥u – u

h

∥
∥

,

that is,

∥∥u – u
h

∥∥
 ≤ Ch| log h| <

ρ

 – ρ
Ch| log h| (.)

or

ρ

 – ρ
Ch| log h| ≤ ∥∥u – u

h

∥∥
 ≤ Ch| log h|.

It is clear that only case (a) is possible because it coincides with (.). Equations (.) and
(.) imply

∥
∥wh – u

h

∥
∥

 ≤ ∥
∥u – u

h

∥
∥

 ≤ ρ

 – ρ
Ch| log h|,

while in (.) the two cases (a) and (b) are true with

Ch| log h| <
∥∥u – u

h

∥∥
 ≤ ρ

 – ρ
Ch| log h| (.)

or

Ch| log h| <
ρ

 – ρ
Ch| log h| ≤ ∥∥u – u

h

∥∥
,

which leads to the unique possibility

∥∥u – u
h

∥∥
 =

ρ

 – ρ
Ch| log h|.

In brief, in the two cases (.) and (.) of situation (A) and in the two situations (A)
and (B), we get

∥∥wh – u
h

∥∥
 ≤ ρ

( – ρ)
Ch| log h|.

The rest of the proof is similar to the part , situation (A), and leads to the result (.).
According to (.), situation (A) like in part  focuses on the study of the case (d) and in
the two cases (.) and (.), we get

ρ

( – ρ)
Ch| log h| ≤ ∥∥wh – u

h

∥∥
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with

∥
∥u – u

h

∥
∥

 ≤ ∥
∥wh – u

h

∥
∥

.

The rest of the proof related to situation (A) is similar to part , situation (A), and leads
to the result (.). That is, in the two situations (A) and (B) with 

 < ρ < , we get (.).
The remainder of the proof related to 

 < ρ <  is by induction and similar to part , by
which we obtain the desired result (.). �

5 Conclusion
In this paper an optimal convergence order for finite element Schwarz alternating method
for a class of VI with nonlinear source terms on two subdomains with nonmatching grids is
obtained. The approach rests on a discrete Lipschitz dependence with respect to the both
boundary condition and the source term. This approach offers practical perspectives in
that it enables us to control the error, on each subdomain between the discrete Schwarz
algorithm and the true solution.
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