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Abstract
We prove new inequalities for general 2× 2 operator matrices. These inequalities,
which are based on classical convexity inequalities, generalize earlier inequalities for
sums of operators. Some other related results are also presented. Also, we prove a
numerical radius equality for a 5× 5 tridiagonal operator matrix.
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1 Introduction
Let LB(H) denote the C∗-algebra of all linear bounded operators on a complex separable
Hilbert space H with inner product 〈·, ·〉. For M ∈ LB(H), let ω(M) = sup{|〈Mx, x〉| : x ∈
H and ‖x‖ = } and ‖M‖ = sup{|〈Mx, y〉| : x, y ∈ H and ‖x‖ = ‖y‖ = } denote the numerical
radius and the usual operator norm of M, respectively. It is well known that ω(·) defines
a norm on LB(H), which is equivalent to the usual operator norm ‖ · ‖. In fact, for every
M ∈ LB(H),



‖M‖ ≤ ω(M) ≤ ‖M‖. (.)

Here, the first inequality in (.) becomes an equality if M = . Also, the second inequal-
ity becomes an equality if M is normal. The property of the numerical radius norm which
is important is its weak unitary invariance, that is, for M ∈ LB(H),

ω
(
UMU∗) = ω(M) (.)

for any unitary U ∈ LB(H).
Also

ω
(
M∗) = ω(M)

for all M ∈ LB(H).
For more basic properties of the numerical radius, see [] and []. Kittaneh in [] and

[] improved the inequalities in (.). It has been shown in [] and [], respectively, that if
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M ∈ LB(H), then

ω(M) ≤ 

∥∥|M| +

∣∣M∗∣∣∥∥ ≤ 

(‖M‖ +

∥∥M∥∥


)
, (.)

where |M| = (M∗M) 
 means the absolute value of M, and




∥
∥M∗M + MM∗∥∥ ≤ ω(M) ≤ 


∥
∥M∗M + MM∗∥∥. (.)

In [] El-Haddad and Kittaneh generalized some inequalities for powers of the usual op-
erator norm and a related numerical radius for sum of two operators. It has been shown
that if M, N ∈ LB(H),  < α < , and r ≥ , then

‖M + N‖r ≤ r–(∥∥|M|rα + |N |rα∥
∥ +

∥
∥
∣
∣M∗∣∣r(–α) +

∣
∣N∗∣∣r(–α)∥∥)

(.)

and

ωr(M + N) ≤ r–∥∥|M|rα +
∣∣M∗∣∣r(–α) + |N |rα +

∣∣N∗∣∣r(–α)∥∥. (.)

In Section , we generalize the inequalities (.) and (.) using some operator inequalities
and some classical inequalities for nonnegative real numbers. In Section , we establish a
numerical radius equality for  ×  tridiagonal operator matrices.

2 Generalization of inequalities (1.5) and (1.6) to general 2 × 2 operator
matrices

In this section we generalize the inequalities (.) and (.). To prove our generalized the-
orem, we need several well-known lemmas. The first lemma is important and it has been
proved by Kittaneh [].

Lemma . Let M ∈ LB(H) and let f and g be nonnegative functions on [,∞) which are
continuous and satisfy the relation f (s)g(s) = s for all s ∈ [,∞). Then

∣
∣〈Mx, y〉∣∣ ≤ ∥

∥f
(|M|)x

∥
∥
∥
∥g

(∣∣M∗∣∣)y
∥
∥ for all x, y ∈ H .

The second lemma is a consequence of Jensen’s inequality, concerning the convexity or
the concavity of certain power functions. It is a special case of Schlömilch’s inequality for
weighted means of nonnegative real numbers (see, e.g., [], p.).

Lemma . For a, b ≥ ,  < α < , and r 
= , let Kr(a, b,α) = (αar + ( – α)br) 
r and let

K(a, b,α) = aαb–α . Then

Kr(a, b,α) ≤ Ks(a, b,α) for  ≤ r ≤ s.

Now, from the spectral theorem for positive operators and Jensen’s inequality, we give
the third lemma [].

Lemma . Let M ∈ LB(H) be positive, and let x ∈ H be any unit vector. Then
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(a) 〈Mx, x〉s ≤ 〈Msx, x〉 for s ≥ ,
(b) 〈Msx, x〉 ≤ 〈Mx, x〉s for  < s ≤ .

The fourth lemma is a simple consequence of Jensen’s inequality, concerning the con-
cavity of the function h(x) = xs,  ≤ s ≤  on x ∈ [,∞).

Lemma . If x, x, . . . , xn are nonnegative real numbers, then

(
xs

 + xs
 + · · · + xs

n
) ≤ n–s(x + x + · · · + xn)s for  ≤ s ≤ .

The fifth and last lemma contains three parts. Part (i) was proved in [], while (ii) and
(iii) were proved in [].

Lemma . Let M, N ∈ LB(H). Then

(i) ω

([
M 
 N

])

= max
{
ω(M),ω(N)

}
,

(ii) ω

([
M N
N M

])

= max
{
ω(M + N),ω(M – N)

}
,

(iii) ω

([
M N

–N M

])

= max
{
ω(M + iN),ω(M – iN)

}
.

3 Results and discussion
3.1 Result for 2 × 2 operator matrices
In the following theorem we prove a generalization of the inequalities (.) and (.).

Theorem . Let T =
[ A B

C D

] ∈ LB(H ⊕ H), and let f and g be nonnegative functions on
[,∞), which are continuous and that satisfy the relation f (s)g(s) = s for all s ∈ [,∞), and
r ≥ . Then

(a) ‖T‖r ≤ r–(max{‖ρ‖,‖β‖} + max{‖γ ‖,‖δ‖}),
(b) ωr(T) ≤ r– max{ω(ρ + γ ),ω(β + δ)},

where

ρ = f r(|A|) + f r(|C|), β = f r(|D|) + f r(|B|),

γ = gr(∣∣A∗∣∣) + gr(∣∣B∗∣∣), δ = gr(∣∣D∗∣∣) + gr(∣∣C∗∣∣).

Proof (a) Let X =
( x

x

)
and Y =

( y
y

)
be any two unit vectors in (H ⊕ H). Then using the

triangle inequality, Lemma ., Lemma ., Lemma .(a), and Lemma ., we have

∣∣
∣∣
∣

〈[
A B
C D

]

X, Y

〉∣∣
∣∣
∣

=

∣∣∣
∣∣

〈[
A 
 D

]

X, Y

〉

+

〈[
 B
C 

]

X, Y

〉∣∣∣
∣∣

≤
∣
∣∣
∣∣

〈[
A 
 D

]

X, Y

〉∣
∣∣
∣∣

+

∣
∣∣
∣∣

〈[
 B
C 

]

X, Y

〉∣
∣∣
∣∣
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≤
∥∥
∥∥
∥

f

(∣∣
∣∣
∣

[
A 
 D

]∣∣
∣∣
∣

)

X

∥∥
∥∥
∥

∥∥
∥∥
∥

g

(∣∣
∣∣
∣

[
A∗ 
 D∗

]∣∣
∣∣
∣

)

Y

∥∥
∥∥
∥

+

∥
∥∥∥
∥

f

(∣
∣∣∣
∣

[
 B
C 

]∣
∣∣∣
∣

)

X

∥
∥∥∥
∥

∥
∥∥∥
∥

g

(∣
∣∣∣
∣

[
 C∗

B∗ 

]∣
∣∣∣
∣

)

Y

∥
∥∥∥
∥

=

〈

f 

([
|A| 
 |D|

])

X, X

〉 

〈

g

([
|A∗| 

 |D∗|

])

Y , Y

〉 


+

〈

f 

([
|C| 
 |B|

])

X, X

〉 

〈

g

([
|B∗| 

 |C∗|

])

Y , Y

〉 


=

〈[
f (|A|) 

 f (|D|)

]

X, X

〉 

〈[

g(|A∗|) 
 g(|D∗|)

]

Y , Y

〉 


+

〈[
f (|C|) 

 f (|B|)

]

X, X

〉 

〈[

g(|B∗|) 
 g(|C∗|)

]

Y , Y

〉 


≤ 
–
r

(〈[
f (|A|) 

 f (|D|)

]

X, X

〉r

+

〈[
g(|A∗|) 

 g(|D∗|)

]

Y , Y

〉r) 
r

+ 
–
r

(〈[
f (|C|) 

 f (|B|)

]

X, X

〉r

+

〈[
g(|B∗|) 

 g(|C∗|)

]

Y , Y

〉r) 
r

≤ 
–
r

(〈[
f r(|A|) 

 f r(|D|)

]

X, X

〉

+

〈[
gr(|A∗|) 

 gr(|D∗|)

]

Y , Y

〉) 
r

+ 
–
r

(〈[
f r(|C|) 

 f r(|B|)

]

X, X

〉

+

〈[
gr(|B∗|) 

 gr(|C∗|)

]

Y , Y

〉) 
r

≤ 
–
r
(
– 

r
)(〈�X, X〉 + 〈	Y , Y 〉 + 〈
X, X〉 + 〈�Y , Y 〉) 

r

= (– 
r )(〈(� + 
)X, X

〉
+

〈
(	 + �)Y , Y

〉) 
r ,

where

� =

[
f r(|A|) 

 f r(|D|)

]

,

	 =

[
gr(|A∗|) 

 gr(|D∗|)

]

,


 =

[
f r(|C|) 

 f r(|B|)

]

,

� =

[
gr(|B∗|) 

 gr(|C∗|)

]

.

Thus,
∣
∣∣
∣∣

〈[
A B
C D

]

X, Y

〉∣
∣∣
∣∣

r

≤ r–(〈(� + 
)X, X
〉
+

〈
(	 + �)Y , Y

〉)
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and so

sup
{∣∣〈TX, Y 〉∣∣r : X, Y ∈ (H ⊕ H),‖X‖ = ‖Y‖ = 

}

≤ r– sup
(〈

(� + 
)X, X
〉
+

〈
(	 + �)Y , Y

〉)

≤ r–(sup
(〈

(� + 
)X, X
〉)

+
(
sup

〈
(	 + �)Y , Y

〉))
.

Hence,

∥
∥∥
∥∥

[
A B
C D

]∥
∥∥
∥∥

r

≤ r–(max
{‖ρ‖,‖β‖} + max

{‖γ ‖,‖δ‖}).

(b) The result follows from the proof of part (a) by letting X = Y . �

The above theorem includes several norm inequalities of numerical radius and the usual
operator norm for operator matrices. Samples of inequalities are demonstrated in the fol-
lowing remarks.

Remark . Let A = B = D, C = –A, f (t) = tα , and g(t) = t–α with α ∈ [, ] in part (b) of
Theorem .. Then by using Lemma .(iii) we get the following:

ωr

([
A A

–A A

])

=
(√

ω(A)
)r = 

r
 ωr(A)

≤ r–∥∥|A|αr +
∣
∣A∗∣∣(–α)r∥∥,

and so

ωr(A) ≤ 
r
 –∥∥|A|αr +

∣
∣A∗∣∣(–α)r∥∥.

Remark . Let f (t) = tα and g(t) = t–α , α ∈ [, ], in part (a) of Theorem .. Then we
get the following inequality:

∥∥
∥∥
∥

[
A B
C D

]∥∥
∥∥
∥

r

≤ r–(max
{‖ρ‖,‖β‖} + max

{‖γ ‖,‖δ‖}),

where

ρ = |A|αr + |C|αr , β = |D|αr + |B|αr ,

γ =
∣
∣A∗∣∣(–α)r +

∣
∣B∗∣∣(–α)r , δ =

∣
∣D∗∣∣(–α)r +

∣
∣C∗∣∣(–α)r .

Remark . Let A = D, B = C, f (t) = tα , and g(t) = t–α with α ∈ [, ] in Theorem ..
Then by using Lemma .(ii) we get the inequalities (.) and (.)

ωr(A + B) ≤ ωr

([
A B
B A

])

= max
{
ωr(A + B),ωr(A – B)

}

≤ r– max
(∥∥|A|αr +

∣∣A∗∣∣(–α)r + |B|αr +
∣∣B∗∣∣(–α)r∥∥,
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∥∥|A|αr +
∣∣A∗∣∣(–α)r + |B|αr +

∣∣B∗∣∣(–α)r∥∥)

= r–∥∥|A|αr +
∣
∣A∗∣∣(–α)r + |B|αr +

∣
∣B∗∣∣(–α)r∥∥.

Now, in the last inequality letting A = B we get the following inequality:

ωr(A) ≤ 

∥∥|A|αr +

∣∣A∗∣∣(–α)r∥∥.

Also,

‖A + B‖r ≤
∥
∥∥
∥∥

[
A B
B A

]∥
∥∥
∥∥

r

= max
{‖A + B‖r ,‖A – B‖r}

≤ r–(max
(∥∥|A|αr + |B|αr∥∥,

∥
∥|A|αr + |B|αr∥∥))

+ r–(max
(∥∥∣∣A∗∣∣(–α)r +

∣∣B∗∣∣(–α)r∥∥,
∥∥∣∣A∗∣∣(–α)r +

∣∣B∗∣∣(–α)r∥∥))

= r–(∥∥|A|αr + |B|αr∥∥ +
∥
∥
∣
∣A∗∣∣(–α)r +

∣
∣B∗∣∣(–α)r∥∥)

.

Remark . Let r =  in Theorem .. Then we get

ω(T) ≤ 


max
{‖a‖,‖b‖},

where

a = f (|A|) + f (|C|) + g(∣∣A∗∣∣) + g(∣∣B∗∣∣)

and

b = f (|D|) + f (|B|) + g(∣∣D∗∣∣) + g(∣∣C∗∣∣),

and this result is proved in Theorem  in [].

Remark . Let B = C = , f (t) = tα , and g(t) = t–α with α ∈ [, ] in part (b) of Theo-
rem .. Then by using Lemma .(i) we get the following:

ωr(A) ≤ ωr

([
A 
 D

])

= max
{
ωr(A),ωr(D)

}

≤ r– max
(
ω

(|A|αr +
∣
∣A∗∣∣(–α)r),ω

(|D|αr +
∣
∣D∗∣∣(–α)r)).

Also, if D = , then

ωr(A) ≤ r–(ω
(|A|αr +

∣
∣A∗∣∣(–α)r))

= r–∥∥|A|αr +
∣
∣A∗∣∣(–α)r∥∥.
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3.2 Numerical radius equality for 5 × 5 tridiagonal operator matrix
Here, we prove a numerical radius equality for a special  ×  tridiagonal operator ma-
trix and then we prove a more general numerical radius inequality for the general  × 
tridiagonal operator matrix.

Theorem . Let A, B ∈ LB(H) and

T =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

A B   
B A B  
 B A B 
  B A B
   B A

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

be a tridiagonal operator matrix in LB(H). Then

ω(T) = max
{
ω(A +

√
B),ω(A + B),ω(A),ω(A – B),ω(A –

√
B)

}
.

Proof Let

U =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣


 I

√


 I I
√


 I 

 I√


 I
√


 I  –

√


 I –
√


 I

I  –I  I√


 I –
√


 I 

√


 I –
√


 I


 I –

√


 I I –
√


 I 

 I

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

be a partitioned operator matrix in LB(H), where I is the identity operator in LB(H).
Then it is easy to show that U is a unitary operator in LB(H) and

UTU∗ =

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

A +
√

B    
 A + B   
  A  
   A – B 
    A –

√
B

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

.

Hence, from the invariance property of weakly unitarily invariant norms and Lemma .(i),
we have the desired result. �

Here, we give some special cases in the following remark.

Remark .
() If B = , then

ω

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

A    
 A   
  A  
   A 
    A

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

= ω(A).
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() If A = , then

ω

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

 B   
B  B  
 B  B 
  B  B
   B 

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

=
√

ω(B).

() If A = B, then

ω

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

A A   
A A A  
 A A A 
  A A A
   A A

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

= ( +
√

)ω(A).

() If B = iA, then

ω

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

A iA   
iA A iA  
 iA A iA 
  iA A iA
   iA A

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

= ω(A).

Now, the second result in this section is an inequality for a more general tridiagonal
operator matrix than the previous one.

Theorem . Let

S =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

A B   
C A B  
 C A B 
  C A B
   C A

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

be a partitioned operator in LB(H). Then

ω(S) ≥ 


max
{
ω

(
A +

√
(B + C)

)
,ω(A + B + C),

ω(A),ω(A – B – C),ω
(
A –

√
(B + C)

)}
.

Proof It is easy to show that

U =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

    I
   I 
  I  
 I   
I    

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦
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is a unitary operator in LB(H) and

S + USU∗ =

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

A B + C   
B + C A B + C  

 B + C A B + C 
  B + C A B + C
   B + C A

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

.

Hence, from the invariance property of weakly unitarily invariant norms, we have

ω
(
S + USU∗) = max

{
ω

(
A +

√
(B + C)

)
,ω(A + B + C),ω(A),

ω(A – B – C),ω
(
A –

√
(B + C)

)}
.

Thus,

ω(S) ≥ 


max
{
ω

(
A +

√
(B + C)

)
,ω(A + B + C),ω(A),

ω(A – B – C),ω
(
A –

√
(B + C)

)}
,

as required. �

4 Conclusion
New inequalities for general  ×  operator matrices were derived. These inequalities,
which are based on some classical convexity inequalities for the nonnegative real numbers,
generalize earlier inequalities for sums of operators. Some other related results were also
presented. Also, a numerical radius equality for a  ×  tridiagonal operator matrix was
given.
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