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Abstract
In this paper, we present a splitting method for solving the shifted skew-Hermitian
linear system, which is briefly called an α-SSS. Some convergence results are
established and numerical experiments show that the splitting method is feasible for
solving the problem of this linear system.
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1 Introduction
In this paper, we consider the shifted skew-Hermitian linear equation system of the form

Ax = b, A = (aij) ∈C
n×n nonsingular, and b, x ∈C

n, ()

where A is a shifted skew-Hermitian matrix, i.e.

A = αI + S, SH = –S, ()

α is some positive constant and I is the identity matrix. It is obvious that the matrix αI + S
is a non-Hermitian positive definite matrix [–]. In the literature [, ], the Hermitian
and skew-Hermitian splitting (HSS) method and the positive-definite and skew-Hermitian
splitting (PSS) method are presented for solving a non-Hermitian system. For these meth-
ods, a non-Hermitian system is divided into a skew-Hermitian system and a Hermitian
positive definite system, and there are many good strategies to solve such a Hermitian
positive definite system. However, for a skew-Hermitian system the previous methods are
more difficult than solving the origin linear system []. So, there are no available methods
to deal with this system efficiently and by a solution procedure which is cheaper. In this
paper we consider a splitting method to solve this shifted skew-Hermitian system, and we
present a corresponding convergence theorem for our method.

The rest of the paper is organized as follows. Some notions and preliminary results that
are used in this paper are given in Section . A splitting method for solving the shifted
skew-Hermitian linear system is proposed in Section . In Section , the convergent the-
orem for the splitting method is established. In Section , we study the properties of the
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spectral radius, and we conclude to an internal connection between the best choice of β ,
γ , and s. In Section , the power method is used to estimate the largest modulus eigen-
value of the Hermitian matrix L + LH . Numerical experiments are performed in Section 
for solving the shifted skew-Hermitian system. The concluding remarks are presented in
Section .

2 Preliminaries
In this section we give some notions and preliminary results that are used in this paper.
Cn×n(Rn×n) will be used to denote the set of all n × n complex (real) matrices. Let D =
(dij) ∈ Cn×n, we denote the spectrum of D by σ (D), namely, the set of all eigenvalues of D.
The spectral radius of D, ρ(D), is defined by ρ(D) = max{|λ| : λ ∈ σ (D)}, and the transpose
of D will be denoted by DT .

Since the eigenvalues of the Hermitian matrix B ∈C
n×n are real, we shall adopt the con-

vention that they are labeled according to increasing (non-decreasing) size:

λmin = λ ≤ λ ≤ · · · ≤ λn– ≤ λn = λmax. ()

The smallest and largest eigenvalues are easily characterized as the solutions to a con-
strained minimum and maximum problem.

Lemma  (Rayleigh-Ritz [, ]) Let B ∈ C
n×n be Hermitian and let the eigenvalues of

matrix B be ordered as in (). Then

λxHx ≤ xHBx ≤ λnxHx for all x ∈ C
n,

λmax = λn = max
x �=

xHBx
xHx

= max
xH x=

xHBx,

λmin = λ = min
x �=

xHBx
xHx

= min
xH x=

xHBx.

Corollary  Let L ∈C
n×n be a given matrix, and xH Lx

xH x = s+ ti for any nonzero vector x ∈C
n.

Then xH LH x
xH x = s – ti, s = 


xH (L+LH )x

xH x , and s ∈ 
 [λmin(L + LH ),λmax(L + LH )].

3 α-SSS for shifted skew-Hermitian system
In this section, we consider a splitting method to solve the shifted skew-Hermitian linear
system. We call this method α-SSS briefly. We split the matrix αI + S as a sum of a lower
triangular matrix and an upper triangular matrix, i.e.

αI + S = (β – γ )I +
(
L – LH)

= (βI + L) –
(
γ I + LH)

, ()

where S = L – LH , L is a lower triangular, LH , the conjugate transpose of L, is upper trian-
gular, and α, β , and γ are some positive constants with β > γ , β – γ = α. So, we can write
() as

(βI + L)x =
(
γ I + LH)

x + b. ()
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Since the diagonal entries of βI + L are nonzero, we carry out the following iterative
method derived from ():

(βI + L)xk+ =
(
γ I + LH)

xk + b, k = , , , . . . , ()

where the x is initial estimate of the unique solution x of (). Because βI + L is a nonsin-
gular matrix, the α-SSS can be written as

xk+ = (βI + L)–(γ I + LH)
xk + (βI + L)–b, k = , , , . . . . ()

The matrix T � (βI + L)–(γ I + LH ) is called the iteration matrix of α-SSS. It is well known
that α-SSS converges for any given x() if and only if ρ(T) < , where ρ(T) is the spectral
radius of the matrix T . Thus, to establish convergence results for the α-SSS, we need to
study the spectral radius of the iteration matrix in ().

4 Convergence analysis for α-SSS
In this section, we mainly study the convergence of the α-SSS for a shifted skew-Hermitian
linear system.

Theorem  Let αI + S be the shifted skew-Hermitian matrix, where S is a skew-Hermitian
matrix and α is a given positive constant. If s + β + γ >  and β > γ ≥  all hold for any
s ∈ 

 [λmin(L + LH ),λmax(L + LH)], then ρ((βI + L)–(γ I + LH )) < , and thus the sequence {xk}
generated by the α-SSS converges to the unique solution of () for any choice of the initial
guess x.

Proof It is well known that the iterative sequence {xk} generated by an α-SSS converges
to the unique solution of () for any choice of the initial guess x, if and only if the spectral
radius of the iteration matrix is less than . So, in order to guarantee the convergence of
α-SSS, we just need

ρ
(
(βI + L)–(γ I + LH))

< . ()

Assuming that λ is an eigenvalue as associated with the eigenvector x of the iteration
matrix (βI + L)–(γ I + LH ), i.e.

(
(βI + L)–(γ I + LH))

x = λx, ()

we will prove that any of the eigenvalues of the matrix (βI + L)–(γ I + LH ) is less than . It
follows from Corollary  that there exists a nonzero vector x ∈ C

n such that xH Lx
xH x = s + ti

and xH LH x
xH x = s – ti. Since s + β + γ >  and β > γ ≥ , it is very easy to verify that

|γ + s – ti| < |β + s + ti|. ()

By xH Lx
xH x = s + ti, and xH LH x

xH x = s – ti, the inequality () could be rewritten as

∣∣
∣∣γ +

xHLHx
xHx

∣∣
∣∣ <

∣∣
∣∣β +

xHLx
xHx

∣∣
∣∣.
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Furthermore, if we set xHx = 〈x, x〉 = , it leads to

∣∣xH(
γ I + LH)

x
∣∣ <

∣∣xH(
βI + LH)

x
∣∣. ()

Following (), we get

λ =
xH (γ I + LH )x
xH(βI + LH )x

.

Thus, according to Lemma  and (), we have

|λ| =
∣∣
∣∣
xH(γ I + LH )x
xH(βI + LH )x

∣∣
∣∣ ≤ max

xH x=

∣∣
∣∣
xH(γ I + LH )x
xH(βI + LH )x

∣∣
∣∣ <  ()

for any eigenvalue of the matrix (βI + L)–(γ I + LH ).
As a result,

ρ
(
(βI + L)–(γ I + LH))

= max
(|λ|) < . ()�

From Theorem , if we set s = 
λmin(L + LH ), we have the following corollary.

Corollary  Let β – γ = α and β > γ ≥ . If λmin(L + LH ) + β + γ >  for any positive
constants β and γ , then the sequence {xk} generated by an α-SSS converges to the unique
solution of () for any choice of the initial guess x.

Furthermore, when we set the positive constants β and γ large enough, then the condi-
tions that s + β + γ >  and β > γ ≥  in Theorem  naturally hold, and thus we have the
following corollary.

Corollary  If –|λ(L + LH )|max + β + γ >  for any positive constants β and γ with β – γ =
α and β > γ ≥ , then the sequence {xk} generated by the α-SSS converges to the unique
solution of () for any choice of the initial guess x.

Proof We take

γ =


∣∣λ

(
L + LH)∣∣

max, β =


∣∣λ

(
L + LH)∣∣

max + α,

and hence

β – γ = α, β > γ ≥ .

If –|λ(L + LH )|max + β + γ > , we have s + β + γ >  for any s ∈ 
 [λmin(L + LH ),λmax(L +

LH )]. By Theorem , we can conclude that the sequence {xk} generated by α-SSS converges
to the unique solution of () for any choice of the initial guess x. �

Theorem  shows that the convergence for α-SSS. By the conditions s + β + γ >  and
β > γ ≥  in Theorem , an important truth is that the choice of the positive constants
β and γ is decided by the real number s. In other words, the choice of the real number s
plays an important role on the properties (such as stability and rate of convergence) for
the α-SSS.
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5 Best choice of the constants β and γ for α-SSS
In this section, we study the best choice of the constants β and γ for the α-SSS. Further-
more, we present the internal connection between the best choice of constants β , γ and s.

From the proof of Theorem , it is very easy to see that

|λ| =
(s + γ ) + t

(s + γ + α) + t

=  –
(s + γ + α) + t – [(s + γ ) + t]

(s + γ + α) + t

=  –
α(s + γ + 

α)
(s + γ + α) + t

=  –
αy

(y + 
α) + t

and
(

y = s + γ +


α

)

=  –
αy

y + αy + 
α + t

=  –
α

y + (

 α+t

y ) + α

. ()

By the triangular inequality, while y =

 α+t

y or y = 
α + t, we get the smallest value of

the |λ|, such that

|λ| =  –
α


√


α + t + α

. ()

That is to say, while γ =
√


α + t – 

α – s, the |λ| gets the smallest value

√√√
√ –

α


√


α + t + α

. ()

Combining (), () with Theorem , we get

√√√√ –
α


√


α + t + α

≤ ρ
(
(βI + L)–(γ I + LH))

< . ()

(i) If t = ,
√

 – α


√


 α+t+α

gets the smallest value . In other words, while γ = –s, we

have
√√√
√ –

α


√


α + t + α

= .

By the condition γ = –s for the smallest value of |λ| and the conditions in Theorem , we
can get the best choice of constants β and γ , such that

γbest = –s, βbest = –s + α and s ≤ .
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(ii) If t �= , similarly, by the condition γ =
√


α + t – 

α – s for the smallest |λ| and the
conditions in Theorem , we can get the best choice of the constants β and γ , such that

γbest =
√




α + t –


α – s,

βbest =
√




α + t +


α – s and

t > max
{

s + αs, s – αs
}

.

According to the above analysis, the conditions s + β + γ > , β – γ = α, and β > γ ≥ 
in Theorem  hold for any s ≤  and t ∈ R.

From the circumstance (ii), we can find how to choose the best constants β and γ this
being determined by the value of constant t. Unfortunately, we do not know the value of
the constant t at all, and how to find the value of t has the same difficulty as solving the
original problem. So, in this paper we just consider the first circumstance, letting γbest = –s,
βbest = –s + α, and s ≤ . In fact, when we set positive constants β and γ large enough, the
second circumstance and the conditions in Theorem  hold naturally.

Remark  By the conclusion s ∈ 
 [λmin(L + LH ),λmax(L + LH )] in Corollary , if the condi-

tions s + β + γ > , β – γ = α, and β > γ ≥  in Theorem  hold, we just let

s = min

{


λmin

(
L + LH)

, 
}

, γ = –s and β – γ = α

or

γ =


∣
∣λ

(
L + LH)∣∣

max and β – γ = α.

This is consistent with Corollary  or Corollary .

By Remark , it seems that we have got the best choice of the positive constants β

and γ . However, when we meet the large scale matrix, it is very difficult to get the
λmin(L + LH ). A natural idea is that we could use an approximate estimate value to replace
the λmin(L + LH ), and simultaneously, the estimate value could guarantee α-SSS conver-
gence. A direct way that we could use the –|λ(L + LH)|max is to replace the λmin(L + LH ),
and this is consistent with the Corollary  and the second circumstance in Remark .

6 Estimate the largest modulus eigenvalue for L + LH

In this section, we turn to estimate the largest modulus eigenvalue of the Hermitian matrix
L + LH . One of the powerful techniques for solving eigenvalue problems is the so-called
power method []. Simply described, this method consists of generating the sequence
of vectors Bkv where v is some nonzero initial vector. This sequence of vectors, when
normalized appropriately, and under reasonably mild conditions, converges to a dominant
eigenvector, i.e., an eigenvector associated with the eigenvalue of the largest modulus. The
most commonly used normalization is to ensure that the largest component of the current
iterate is equal to one. This yields the following algorithm.
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Algorithm (The power method for |λ(L + LH )|max)

Initial guess: v

While not converged do

vk =

αk

(
L + LH)

vk–

Then k → k + 

End while

where αk is a component of the vector (L + LH )vk– which has the maximum modulus.
The literature [] also told us that if the eigenvalue is multiple, but semi-simple, then the
algorithm provides only one eigenvalue and a corresponding eigenvector. So, the power
method can be used to estimate the largest modulus eigenvalue |λ(L + LH )|max for the
Hermitian matrix L + LH .

Remark  In order to quickly get the approximate largest modulus eigenvalue of the Her-
mitian matrix L + LH , by the Gersgǒrin theorem [], the large boundary of the eigenvalues
of the Hermitian matrix L + LH could be quickly obtained, and we conclude that

|λi| ≤ ∣∣Li,i + LH
i,i
∣∣ +

n∑

j=,i�=j

∣∣Li,j + LH
i,j
∣∣

≤ max
i

n∑

j=,i≤n≤j

∣∣Li,j + LH
i,j
∣∣

≤ ∥∥L + LH∥∥∞. ()

So, the –|λ(L + LH )|max could be approximated by the –‖L + LH‖∞, and then

γ =


∥
∥L + LH∥

∥∞, β =


∥
∥L + LH∥

∥∞ + α. ()

It is obvious that the conditions that s+β +γ > , β –γ = α, and β > γ ≥  in Theorem 
hold, and thus the sequence {xk} generated by the α-SSS converges to the unique solution
of () for any choice of the initial guess x.

7 Numerical examples
In this section, some numerical examples are given to demonstrate the convergence of the
α-SSS for the shifted skew-Hermitian linear system.

Example  Consider the Korteweg-de Vries partial differential equation,

ut = –uux – δuxxx, ()

with the periodic boundary conditions u(, t) = u(l, t), where l is the period and δ is a small
parameter. As shown in [], appropriate methods of space discretization lead to solve a
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set of ODE’s of the form

y′ = H(y)y, y() = y. ()

The evolution is on the sphere of radius ‖y‖, where y(t) = (u(t), u(t), . . . , un–(t))T ,
ui(t) ≈ u(i	x, t) for i = , , . . . , n – , n = ,, and where 	x = 

n is the spatial step of
[, ]. For instance, if we consider the space discretization method in [], we have

H(y) = –


	x
g(y) –

δ

	x P, ()

where both g(y) and P are two n × n skew-symmetric matrices given by

[
g(y)

]
i,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui– + ui, j = i + ,
–(u + un–), i = , j = n,
–(uj– + uj), i = j + ,
u + un–, i = n, j = ,
, otherwise,

and

P =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

 –   · · ·  – 

  – 
. . . . . .  –

–   –
. . . . . . . . . 

 –  
. . . . . . . . .

...
...

. . . . . . . . . . . . . . .  


. . . . . . . . .   – 

 
. . . . . . –   –

–   · · ·  –  

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

.

In Table , we consider five instances for the four diagonal skew-Hermitian matrix linear
systems, corresponding to α =  × , α =  × , α =  × –, α =  × –, and α =  ×
–, respectively. Similarly, in Table  we set the same values of α as Table  for the seven
diagonal skew-Hermitian matrix linear systems considered. In these two experiments, we
throughout set γ = 

‖L+LH‖∞, β = 
‖L+LH‖∞ +α, and the stopping rule is ‖xk+ –xk‖ ≤

ε, ε = –.
It is shown in Table  and Table  that: (i) the number of iterations, starting from a

zero initial guess, becomes increasing as α decreases; (ii) the α-SSS converges for seven
diagonal skew-Hermitian matrix systems becoming slower than the four diagonal skew-
Hermitian matrix for a given α. See Figures  and .

Table 1 The comparison of iteration steps k with different α for Example 1

The values of α 2× 101 2× 100 5× 10–2 2× 10–2 1× 10–2

Iteration steps k 8 34 1,106 2,778 5,598
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Table 2 The comparison of iteration steps k with different α for Example 2

The values of α 2× 101 2× 100 5× 10–2 2× 10–2 1× 10–2

Iteration steps k 10 48 1,604 3,945 7,848

Figure 1 The convergent iteration steps with different α for Example 1. Each curve in this graph
represents the convergent iteration steps for different α , with γ = 1

2‖L + LH‖∞ , β = 1
2‖L + LH‖∞ + α .

The yellow curve represents α = 5× 10–2; the red curve represents α = 2× 10–2; and the blue curve
represents α = 1× 10–2.

Figure 2 The convergent iteration steps with different α for Example 2. Each curve in this graph
represents the convergent iteration steps for different α , with γ = 1

2‖L + LH‖∞ , β = 1
2‖L + LH‖∞ + α .

The yellow curve represents α = 5× 10–2; the red curve represents α = 2× 10–2; and the blue curve
represents α = 1× 10–2.
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Example  Furthermore, we consider the general skew-Hermitian matrix S as a  × 

seven diagonal matrix in the complex field for the shifted skew-Hermitian linear system,
and the simulations are provided to show the computational cost for the α-SSS. We have

S =

⎡

⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎣

 i .i  .i i –i  · · ·        i

i  i .i  .i i –i
. . .

. . .       

.i i  i .i  .i i
. . .

. . .
. . .      

– .i i  i .i  .i
. . .

. . .
. . .

. . .     

.i – .i i  i .i 
. . .

. . .
. . .

. . .
. . .    

i .i – .i i  i .i
. . .

. . .
. . .

. . .
. . .

. . .   

–i i .i – .i i  i
. . .

. . .
. . .

. . .
. . .

. . .
. . .  

 –i –i .i – .i i 
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...


. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .  i .i  .i i i 

 
. . .

. . .
. . .

. . .
. . .

. . .
. . . i  i .i  .i i i

  
. . .

. . .
. . .

. . .
. . .

. . . .i i  i .i  .i i

   
. . .

. . .
. . .

. . .
. . . – .i i  i .i  .i

    
. . .

. . .
. . .

. . . .i – .i i  i .i 

     
. . .

. . .
. . . i .i – .i i  i .i

      
. . .

. . . –i i .i – .i i  i
i        · · ·  –i i .i – .i i 

⎤

⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎦

.

8 Conclusions
In this paper we present the α-SSS for the shifted skew-Hermitian linear system, and we
study the convergence for α-SSS. Some of our results illustrate that α-SSS is feasible for
solving the shifted skew-Hermitian linear system. However, the α-SSS converges slowly
when α is very small, and how to improve the convergent rate for the smaller α is left for
further work.
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