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Abstract
In this paper, we investigate approximations of the inverse moment model by widely
orthant dependent (WOD) random variables. Let {Zn,n ≥ 1} be a sequence of
nonnegative WOD random variables, and {wni , 1 ≤ i ≤ n,n ≥ 1} be a triangular array
of nonnegative nonrandom weights. If the first moment is finite, then
E(a +

∑n
i=1wniZi)–α ∼ (a +

∑n
i=1wniEZi)–α for all constants a > 0 and α > 0. If the rth

moment (r > 2) is finite, then the convergence rate is presented as
E(a+

∑n
i=1 wniZi)–α

(a+
∑n

i=1 wniEZi)–α
– 1 = O( 1

(a+
∑n

i=1 wniEZi )1–2β/r
), where β ≥ 0 and 2β/r < 1. Finally, some

simulations illustrate the results. We generalize some corresponding results.
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1 Introduction
In this paper, we investigate approximations of the inverse moments of nonnegative and
dependent random variables. Let {Zn, n ≥ } be a sequence of nonnegative random vari-
ables with finite second moments. Denote the normalized sums for {Zn, n ≥ } by Xn =


σn

∑n
i= Zi, where σ 

n =
∑n

i= Var(Zi). Under some suitable conditions, the inverse moment
can be approximated by the inverse of the moment. More precisely, we prove that

E
(


(a + Xn)α

)

∼ 
(a + EXn)α

(.)

for all a >  and α > , where cn ∼ dn means that cn/dn →  as n → ∞.
Generally, the computation of the exact αth inverse moment of a + Xn is more difficult

than that of the αth inverse of the moment of a + Xn. The αth inverse moment of a + Xn

often plays an important role in many statistical applications such as Stein estimation,
life testing problems, evaluating risks of estimators, evaluating the power of test statistics,
financial and insurance mathematics, change-point analysis, and so on. These fields are
usually require high accuracy. Several authors have studied approximations to the inverse
moments and their applications. For example, Chao and Strawderman [] studied the in-
verse moments of the binomial and Poisson random variables, Pittenger [] obtained some
sharp mean and variance bounds for Jensen-type inequalities, Cribari-Neto et al. [] used
the integral method to investigate the inverse moments for binomial random variables,
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Fujioka [] investigated the inverse moments for chi-squared random variables, Hsu []
and Inclán and Tiao [] studied the change-point analysis, which need to compute some
inverse moments for gamma and chi-squared random variables, etc.

Under some asymptotic normally condition, relation (.) was established by Garcia and
Palacios []. Kaluszka and Okolewski [] modified the assumptions of Garcia and Palacios
[] and obtained (.) for the nonnegative and independent sequence {Zn, n ≥ } satis-
fying the condition

∑n
i= E|Zi – EZi| = o(σ 

n ). Hu et al. [] considered the weaker con-
dition

∑n
i= E|Zi – EZi| = o(σ +δ

n ) for some δ ∈ (, ]. On the one hand, Wu et al. []
used the truncated method and exponential inequalities of random variables to study
the inverse moment (.) when {Zn, n ≥ } satisfies the analogous Linderberg condition
σ –

n
∑n

i= E{Z
i I(Zi > ησn)} →  as n → ∞ for some η > . Wang et al. [] and Shen []

extended the results of Wu et al. [] to the dependent cases of NOD random variables
and ρ-mixing random variables, respectively. On the other hand, Sung [] applied a
Rosenthal-type inequality to establish (.) under the assumption that a nonnegative se-
quence {Zn, n ≥ } satisfies the analogous Linderberg condition. Xu and Chen [] used a
Rosehthal-type inequality to investigate the inverse moments of nonnegative NOD ran-
dom variables. Hu et al. [] established (.) under the first moment condition of {Zn, n ≥
}, where Xn = 

Mn

∑n
i= Zi, and {Mn} is a sequence of positive real numbers. Shen [] also

obtained (.) for nonnegative random variables satisfying a Rosenthal-type inequality.
Moreover, Shi et al. [] obtained the inverse moment (.) for Xn =

∑n
i= Zi. Horng et al.

[] also considered the inverse moment (.) for Xn = 
Bn

∑n
i= Zi, where {Bn} is a sequence

of nondecreasing positive real numbers. Yang et al. [] established (.) for Xn =
∑n

i= Zi

and obtained a convergence rate for it. Shi et al. [] applied the Taylor series expansion
to obtain a better convergence rate of (.) for Xn =

∑n
i= Zi.

In this paper, we investigate the inverse moments (.) for the double-indexed weighted
case, that is, for Xn =

∑n
i= wniZi, where {wni,  ≤ i ≤ n, n ≥ } is a triangular array of non-

negative nonrandom weights, and {Zn, n ≥ } is a sequence of nonnegative and widely or-
thant dependent (WOD) random variables. Now, we recall the definition of WOD random
variables.

Definition . Let {Zn, n ≥ } be a sequence of random variables. If there exists a finite
sequence of real numbers {gu(n), n ≥ } such that, for each n ≥  and for all zi ∈ (–∞,∞),
 ≤ i ≤ n,

P

( n⋂

i=

(Zi > zi)

)

≤ gu(n)
n∏

i=

P(Zi > zi),

then we say that the random variables {Zn, n ≥ } are widely upper orthant dependent
(WUOD). If there exists a finite sequence of real numbers {gl(n), n ≥ } such, that for each
n ≥  and for all zi ∈ (–∞,∞),  ≤ i ≤ n,

P

( n⋂

i=

(Zi ≤ zi)

)

≤ gl(n)
n∏

i=

P(Zi ≤ zi),

then we say that the random variables {Zn, n ≥ } are widely lower orthant dependent
(WLOD). If the random variables {Zn, n ≥ } are both WUOD and WLOD, then we say
that they are widely orthant dependent (WOD).
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For some  ≤ i ≤ n, n ≥ , if P(Zi > zi) = , then P(
⋂n

i=(Zi > zi)) = . Similarly, if some
 ≤ i ≤ n, n ≥ , we have P(Zi ≤ zi) = , then P(

⋂n
i=(Zi ≤ zi)) = . Define 

 = . By Defini-
tion . we can find that gu(n) ≥  and gl(n) ≥  for all n ≥ . Sometimes, we can take

gu(n) = sup
zi∈(–∞,∞),≤i≤n

P(
⋂n

i=(Zi > zi))
∏n

i= P(Zi > zi)
, n ≥ ,

and

gl(n) = sup
zi∈(–∞,∞),≤i≤n

P(
⋂n

i=(Zi ≤ zi))
∏n

i= P(Zi ≤ zi)
, n ≥ ,

if gu(n) < ∞ and gl(n) < ∞ for all n ≥ .
On the one hand, WOD random variables were introduced by Wang and Cheng [] for

risk model. Liu et al. [], Wang et al. [], He et al. [], and Wang et al. [] obtained
more results on asymptotic properties of ruin probability in risk model under WOD ran-
dom variables. On the other hand, for the limit theories and applications of WOD se-
quences, we refer to Shen [] for some exponent-type inequalities, Wang et al. [] for
complete convergence results and application to nonparametric regression model estima-
tion, Qiu and Chen [] for complete moment convergence results, Yang et al. [] for the
Bahadur representation, Wang and Hu [] for the consistency of the nearest neighbor
estimator, etc.

If gu(n) = gl(n) ≡ , then WOD random variables are negatively orthant dependent
(NOD) random variables (see Lehmann []). Joag-Dev and Proschan [] gave the no-
tion of negatively associated (NA) random variables. Recall that a family X = {Xt , t ∈ T}
of real-valued random variables is said to be normal (or Gaussian) system if all its finite-
dimensional distributions are Gaussian. Let X = (X, X, . . . , Xn) ba a normal random vec-
tor, n ≥ . Then Joag-Dev and Proschan [] proved that it is NA if and only if its com-
ponents are nonpositively correlated. Joag-Dev and Proschan [] also pointed out that
NA random variables are NOD random variables, but the converse statement is not true.
Moreover, if M ≥  and gu(n) = gl(n) = M, then WOD random variables form extended
negatively dependent (END) random variables (see Liu [, ]). We also refer to Wang et
al. [, ] and Hu et al. [] for more information on END random variables.

Throughout the paper, we denote by C, C, C, . . . positive constants independent of n
and by Cq, Cq, Cq, . . . positive constants dependent only on q. Our results and simulations
are presented in Section , and the proofs of the main results are presented in Section .

2 Main results and simulations
Let {Zn, n ≥ } be a sequence of nonnegative WOD random variables with the dom-
inating coefficients g(n) = max{gu(n), gl(n)}, and {wni,  ≤ i ≤ n, n ≥ } be a triangular
array of nonnegative and nonrandom weights. Denote Xn =

∑n
i= wniZi, μn = EXn, and

μn,s =
∑n

i= wniE[ZiI(Zi ≤ μs
n)] for some  < s < . We list some assumptions.

Assumption .
(A.) g(n) = O(μβ

n ) for some β ≥ ;
(A.) max≤i≤n wni = O();
(A.) μn → ∞ as n → ∞;
(A.) μn ∼ μn,s as n → ∞.
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With the finite first moment, we get the following inverse moments.

Theorem . Let EZn < ∞ for all n ≥ , and let assumptions (A.)-(A.) hold. Then (.)
holds for all constants a >  and α > .

In the case of the finite rth moment (r > ), we establish the following convergence rates
of inverse moments.

Theorem . Suppose that, for some r > , EZr
n < ∞ for all n ≥  and

n∑

i=

E|Zi – EZi|r = O
(
(μn)r/) and

n∑

i=

Var(Zi) = O(μn). (.)

Let conditions (A.)-(A.) be fulfilled and β/r < . Then, for all a >  and α > ,

E(a + Xn)–α

(a + EXn)–α
–  = O

(


(a + EXn)–β/r

)

, (.)

and, for all a >  and α > ,

E
(

Xn

(a + Xn)α

)/ EXn

(a + EXn)α
–  = O

(


(a + EXn)–β/r

)

. (.)

Remark . If a in (.) is replaced by an >  satisfying an → ∞ and an = o(EXn), then
Theorem . and Theorem . still hold. In view of END random variables, NOD random
variables, NA random variables, and independent random variables are WOD random
variables with dominating coefficients g(n) = max{gu(n), gl(n)} = O(), so that condition
(A.) is fulfilled with β = . Therefore, we generalize the results of [–] for the single-
indexed weighted case or nonweighted case to the double-indexed weighted case under
WOD random variables.

Simulation . We use the Monte Carlo method and MATLAB software to compute the
approximations of inverse moments. For simplicity, let {Zn, n ≥ } be a sequence of i.i.d.
P(λ) distributed random variables (λ > ), wni = 

σn
,  ≤ i ≤ n, and σ 

n =
∑n

i= Var(Zi).
Then, we have Xn = 

σn

∑n
i= Zi, n ≥ . For λ = , n = , , , . . . , , a = ., , and

α = , , we repeat the experiments , times and compute the ‘ratio’ E(a+Xn)–α

(a+EXn)–α ; see
Figure .

Similarly, let {Zn, n ≥ } be a sequence of i.i.d. χ()-distributed random variables, and
wni ≡ ,  ≤ i ≤ n. Then, we have Xn =

∑n
i= Zi, n ≥ . For n = , , , . . . , , a = ., ,

and α = , , the experiments are repeated by , times, the ‘ratio’ E(a+Xn)–α

(a+EXn)–α is com-
puted; see Figure .

Likewise, let {Zn, n ≥ } be a sequence of i.i.d. binomial random variables, and wni = i
n ,

 ≤ i ≤ n. Then, we have Xn =
∑n

i=
i
n Zi, n ≥ . For n = , , , . . . , , a = ., , and α =

, , the experiments are repeated by , times, and the ‘ratio’ E(a+Xn)–α

(a+EXn)–α is computed;
see Figure  and Figure .

In Figures -, the label of y-axis ‘ratio’ is defined as E(a+Xn)–α

(a+EXn)–α , and the label of x-axis
‘sample sizes’ is the number of a sample. By Figures - we find that the ‘ratio’ ≥ . In fact,
by the Jensen inequality we can obtain that E(a+Xn)–α ≥ (a+EXn)–α for all a >  and α > .
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Figure 1 Inverse moment for Poisson distribution.

Figure 2 Inverse moment for Chi-square distribution.

Meanwhile, with different a and α, the ‘ratio’ deceases to  as the sample n increases. So
the results of Figures - coincide with Theorems . and ..

3 Proofs of main results
Lemma . (Wang et al. [], Proposition .) Let {Zn, n ≥ } be WUOD (WLOD) with
dominating coefficients gu(n), n ≥  (gl(n), n ≥ ). If {fn(·), n ≥ } are nondecreasing, then
{fn(Zn), n ≥ } are still WUOD (WLOD) with dominating coefficients gu(n), n ≥  (gl(n),
n ≥ ); if {fn(·), n ≥ } are nonincreasing, then {fn(Zn), n ≥ } are WLOD (WUOD) with
dominating coefficients gl(n), n ≥  (gu(n), n ≥ ).
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Figure 3 Inverse moment for Binomial distribution.

Figure 4 Inverse moment for Binomial distribution.

Lemma . (Wang et al. [], Corollary .) Let q ≥ , and let {Zn, n ≥ } be a mean-zero
sequence of WOD random variables with dominating coefficients g(n) = max{gu(n), gl(n)}
and E|Zn|q < ∞ for all n ≥ . Then, for all n ≥ , there exist positive constants C(q) and
C(q) depending only on q such that

E

∣
∣
∣
∣
∣

n∑

i=

Zi

∣
∣
∣
∣
∣

q

≤ C(q)
n∑

i=

E|Zi|q + C(q)g(n)

( n∑

i=

EZ
i

)q/

.
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Proof of Theorem . Let a >  and α > . Since f (x) = (a + x)–α is a convex function for
x ≥ , applying Jensen’s inequality, we obtain

E(a + Xn)–α ≥ (a + EXn)–α .

Thus,

lim inf
n→∞

{
(a + EXn)αE(a + Xn)–α

} ≥ . (.)

It suffices to show that

lim sup
n→∞

{
(a + EXn)αE(a + Xn)–α

} ≤ . (.)

So, it only needs to show that, for all δ ∈ (, ),

lim sup
n→∞

{
(a + EXn)αE(a + Xn)–α

} ≤ ( – δ)–α . (.)

Obviously, it follows from (A.) that

lim
n→∞

{ n∑

i=

wniE
[
ZiI

(
Zi > μs

n
)]

/ n∑

i=

wniEZi

}

= ,

which yields that there exists n(δ) >  such that

n∑

i=

wniE
[
ZiI

(
Zi > μs

n
)] ≤ δ



n∑

i=

wniEZi, n ≥ n(δ). (.)

Decompose E(a + Xn)–α as

E(a + Xn)–α := Q + Q, (.)

where

Q = E
[
(a + Xn)–αI(Un ≤ μn – δμn)

]
, Q = E

[
(a + Xn)–αI(Un > μn – δμn)

]
,

Un =
n∑

i=

wni
[
ZiI

(
Zi ≤ μs

n
)

+ μs
nI

(
Zi > μs

n
)]

.

Since Xn ≥ Un, we have

Q ≤ E
[
(a + Xn)–αI(Xn > μn – δμn)

] ≤ (a + μn – δμn)–α ,

which by condition (A.) implies that

lim sup
n→∞

{
(a + EXn)αQ

} ≤ lim sup
n→∞

{
(a + μn)α(a + μn – δμn)–α

}
= ( – δ)–α . (.)
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We get by (.) that, for all n ≥ n(δ),

|μn – EUn| ≤ 
n∑

i=

wniE
[
ZiI

(
Zi > μs

n
)] ≤ δμn/.

Denote Zni = wni[ZiI(Zi ≤ μs
n) + μs

nI(Zi > μs
n)],  ≤ i ≤ n. So, {Zni – EZni,  ≤ i ≤ n} are

also mean-zero WOD random variables with dominating coefficients g(n) by Lemma ..
Thus, by the Markov inequality, Lemma ., and Cr inequality, we obtain that, for all q > 
and n ≥ n(δ),

Q = E
[
(a + Xn)–αI(Un ≤ μn – δμn)

]

≤ a–αP(Un ≤ μn – δμn)

≤ a–αP
(|EUn – Un| ≥ δμn/

)

≤ Cqq

δq μ–q
n

{ n∑

i=

E|Zni|q + g(n)

( n∑

i=

Var(Zni)

)q/}

≤ Cq

δq μ–q
n

{ n∑

i=

wq
ni
[
E
(
Zq

i I
(
Zi ≤ μs

n
))

+ μsq
n EI

(
Zi > μs

n
)]

}

+
Cq

δq μ–q
n g(n)

{ n∑

i=

w
ni
[
E
(
Z

i I
(
Zi ≤ μs

n
))

+ μs
n EI

(
Zi > μs

n
)]

}q/

≤ Cq(max≤i≤n wni)q–

δq μ–q
n

{

μs(q–)
n

n∑

i=

wni
[
E
(
ZiI

(
Zi ≤ μs

n
))

+ E
(
ZiI

(
Zi > μs

n
))]

}

+
Cq(max≤i≤n wni)q/

δq μ–q
n g(n)

×
{

μs
n

n∑

i=

wni
[
E
(
ZiI

(
Zi ≤ μs

n
))

+ E
(
ZiI

(
Zi > μs

n
))]

}q/

:= In + In. (.)

Combining conditions (A.)-(A.) with (.), we establish

In + In ≤ Cq

δq μ–q
n

[
μs(q–)

n μn + μβ
n
(
μs

nμn
)q/] =

Cq

δq

[
μ–(q–)(–s)

n + μ
β– q

 (–s)
n

]
. (.)

Since q > , we have q –  > q
 . Therefore, we take q > max{, (α + β)/( – s)} in (.) and

obtain

lim sup
n→∞

{
(a + EXn)αQ

} ≤ lim sup
n→∞

{

(a + μn)α
Cq

δq

[
μ–(q–)(–s)

n + μ
β– q

 (–s)
n

]
}

= . (.)

Thus, by (.)-(.), (.), (.), and (.) the proof of (.) is completed. �

Proof of Theorem . By the Taylor series expansion at EXn, we have that


(a + Xn)α

=


(a + EXn)α
–

α(Xn – EXn)
(a + EXn)α+ +

α(α + )


(Xn – EXn)

(a + ξn)α+ ,
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where ξn lies between Xn and μn. Taking the expectation, we obtain

E
(


(a + Xn)α

)

=


(a + EXn)α
+

α(α + )


E
(

(Xn – EXn)

(a + ξn)α+

)

. (.)

We need to show that

E
(

(Xn – EXn)

(a + ξn)α+

)

= O
(


(a + EXn)α+–β/r

)

, (.)

where β ≥ , β/r < , and r > . Obviously, we can decompose it so that

E
(

(Xn – EXn)

(a + ξn)α+

)

= E
(

(Xn – EXn)

(a + ξn)α+ I(Xn > μn)
)

+ E
(

(Xn – EXn)

(a + ξn)α+ I(Xn ≤ μn)
)

. (.)

For some r > , we can argue by Lemma . and conditions (.) and (A.) that

E
(

(Xn – EXn)

(a + ξn)α+ I(Xn > μn)
)

≤ 
(a + μn)α+ E(Xn – EXn)

≤ 
(a + μn)α+

(
E|Xn – EXn|r

)/r =


(a + μn)α+

(

E

∣
∣
∣
∣
∣

n∑

i=

wni(Zi – EZi)

∣
∣
∣
∣
∣

r)/r

≤ C

(a + μn)α+

{ n∑

i=

wr
niE|Zi – EZi|r + g(n)

( n∑

i=

w
ni Var(Zi)

)r/}/r

≤ C(max≤i≤n wni)

(a + μn)α+

{ n∑

i=

E|Zi – EZi|r + g(n)

( n∑

i=

Var(Zi)

)r/}/r

≤ C

(
(EXn)+β/r

(a + EXn)α+

)

= O
(


(a + EXn)α+–β/r

)

, (.)

where β/r < .
Meanwhile, for some r > , applying the Hölder inequality and Theorem ., we have

that

E
(

(Xn – EXn)

(a + ξn)α+ I(Xn ≤ μn)
)

≤ E
(

(Xn – EXn)

(a + Xn)α+

)

≤ [
E|Xn – EXn|r

]/r[E(a + Xn)
(–α–)r

r–
] r–

r

≤ C

(

E

∣
∣
∣
∣
∣

n∑

i=

wni(Zi – EZi)

∣
∣
∣
∣
∣

r)/r
[
(a + EXn)

(–α–)r
r–

] r–
r

= O
(

(EXn)+β/r

(a + EXn)α+

)

= O
(


(a + EXn)α+–β/r

)

, (.)

where β/r < .
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Consequently, (.) follows from (.)-(.). Combining (.) with (.), we estab-
lish the result of (.) with β/r < .

It is time to prove (.). We decompose

E
(

Xn

(a + Xn)α

)

= E
(


(a + Xn)α–

)

– aE
(


(a + Xn)α

)

. (.)

For α > , by (.) and (.) we have

E
(


(a + Xn)α–

)

=


(a + EXn)α– + O
(


(a + EXn)α–β/r

)

. (.)

Similarly, it follows from (.) and (.) that

E
(


(a + Xn)α

)

=


(a + EXn)α
+ O

(


(a + EXn)α+–β/r

)

. (.)

Consequently, by (.)-(.) we have

E
(

Xn

(a + Xn)α

)

=


(a + EXn)α– + O
(


(a + EXn)α–β/r

)

–
{

a
(a + EXn)α

+ O
(

a
(a + EXn)α+–β/r

)}

=
EXn

(a + EXn)α
+ O

(


(a + EXn)α–β/r

)

. (.)

Therefore, (.) immediately follows from (.). �
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