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Abstract
We propose an efficient method for the construction of an arbitrage-free call option
price function from observed call price quotes. The no-arbitrage theory of option
pricing places various shape constraints on the option price function. For each
available maturity on a given trading day, the proposed method estimates an option
price function of strike price using a Bernstein polynomial basis. Using the properties
of this basis, we transform the constrained functional regression problem to the
least-squares problem of finite dimension and derive the sufficiency conditions of
no-arbitrage pricing to a set of linear constraints. The resultant linearly constrained
least square minimization problem can easily be solved using an efficient quadratic
programming algorithm. The proposed method is easy to use and constructs a
smooth call price function which is arbitrage-free in the entire domain of the strike
price with any finite number of observed call price quotes. We empirically test the
proposed method on S&P 500 option price data and compare the results with the
cubic spline smoothing method to see the applicability.

Keywords: call price function; no-arbitrage inequality constraints; constrained
functional regression; Bernstein polynomial basis; quadratic programming

1 Introduction
The arbitrage-free option price function defined across strike price and estimated from
the available quotes has been studied extensively by researchers and practitioners (see,
e.g., [–]). This function contains precious information about the risk inherent in the un-
derlying asset. Policy makers and investors estimate the state price density from option
prices, which signifies the probability that market participants ascribe to the future asset
price movements []. Practitioners frequently compute the implied volatility which sets
the Black-Scholes model option value equal to the price of that option. The implied volatil-
ity is then used to obtain the price of other complex exotic options which are either not
significantly traded, or for which the quotes are not recorded.

There are three essential difficulties in constructing an arbitrage-free option price func-
tion from the available bid-ask quotes. First, on a given trading day, the bid-ask quotes
of an option contingent on an underlying asset are known only for a limited number of
unevenly distributed strike prices. Second, high bid-ask spreads are observed for the op-
tions with the strike price far from the current underlying asset price which makes finding
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the right price more challenging. Third, the observed quotes are not always free from an
arbitrage opportunity. It is crucial to have an option price function which does not allow
for any arbitrage, to avoid any mispricing.

An option price function is arbitrage-free in the strike domain if it is monotonic, convex,
and satisfying certain bounds on itself and the first derivative [, ]. So, an arbitrage-free
option price function needs to meet some shape restrictions although the actual functional
form of the function is not known a priori. The only other information available is that
it should fall ideally within the observed bid and ask quotes. Mathematically, estimating
such a function is a generalized constrained functional regression problem.

Several approaches have been suggested for the construction of the arbitrage-free option
price function. Bates [] was first to use constrained cubic spline fitting to interpolate
an arbitrage-free option price function from the observed option price transactions data.
Kahalé [], proposed a technique using the piecewise convex polynomial interpolation
to approximate the call price function. However, the prerequisite for this algorithm is to
prepare the data arbitrage-free which may lead to substantial loss of information.

Aït-Sahalia and Duarte [] proposed a two-step method to estimate the arbitrage-free
call price function. First, they use a constrained least-squares procedure which incorporate
no-arbitrage shape constraints of monotonicity and convexity and then employ smoothing
using local polynomials. In the same vein, Birke and Pilz [] and Fan and Mancini [] sug-
gested alternative kernel regression estimators for the arbitrage-free call price function.
The drawback of the kernel-based regression is that it is computationally intensive.

Fengler [] proposed a procedure based on quadratic programming using the cubic
spline smoothing on the call price data to get an arbitrage-free implied volatility. Along
the same line, more spline-based models are described in the literature [–]. Unfor-
tunately, selecting the optimal number and location of the knots for spline fitting under
shape constraints leads to a highly nonlinear optimization problem [].

In this study, we use a Bernstein polynomial basis [] to estimate the arbitrage-free op-
tion price function. The choice of this basis is straightforward as the constraints of mono-
tonicity, convexity, and other bounds on the function and its first derivative on the entire
domain leads to a set of linear inequality constraints on unknown parameters. The advan-
tage is that we need to solve a finite-dimensional least-squares problem with a few linear
constraints only. Moreover, they provide a smooth estimate, which can be obtained as a
unique solution of a quadratic programming problem, thereby making it computationally
attractive and efficient.

The class of Bernstein polynomials is dense in the space of all continuous functions
(C[a, b]) with any finite support with supremum norm and all of the derivatives possess
the same convergence properties []. Furthermore, Chak et al. [] proved that the uni-
variate Bernstein polynomial estimator is consistent not only with the true function but
also for its first and second derivatives. In the literature, the Bernstein polynomial re-
gression has been employed with several shape constraints which include non-negativity,
unimodality, monotonicity, convexity (or concavity), etc., either alone or in combination
with each other (see, e.g., [–]).

The organization of our paper is as follows: we present the no-arbitrage inequalities on
the call price function in Section . Section  describes our proposed methodology to ap-
proximate the call price function using a Bernstein polynomial basis under the various
inequality constraints arising from no-arbitrage conditions and derive the quadratic pro-
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gramming formulation of the estimation problem. In Section , we examine the empirical
applicability of our proposed model using S&P  option price data. We compare our
computed results with the cubic spline smoothing method in Section . Finally, we con-
clude in Section .

2 No-arbitrage inequalities on the call price function
On a single underlying asset St , at current time t, the price of a European call option C(K)
with strike price K , at fixed expiry time T , time to maturity τ = T – t, risk-free interest
rate r, and deterministic dividend rate q, is given by

C(K) = e–rτ
∫ ∞


max(ST – K , )g(ST ) dST , ()

provided the probability density function g(ST ) of state price ST exists. The fundamen-
tal theorem of asset pricing ensures the existence of g(ST ) under the assumption of no-
arbitrage and is usually called the state price density (SPD) (see [, ]).

Differentiating () w.r.t. the strike price K we get

∂C
∂K

= –e–rτ
∫ ∞

K
g(ST ) dST . ()

Since the state price density g(ST ) is a probability density function, it is non-negative and
integrable to one. Now,

g(ST ) ≥  ⇒ ∂C
∂K

≤  and
∫ ∞


g(ST ) dST =  ⇒ ∂C

∂K
≥ –e–rτ .

So we have

–e–rτ ≤ ∂C
∂K

≤ . ()

Thus, the call option price function needs to be monotonically non-increasing and further
the slope of the function must be bounded below uniformly.

Differentiating () again w.r.t. the strike price K , we get the famous relation given by
Breeden and Litzenberger [],

∂C
∂K = e–rτ g(K). ()

Equation () implies that the second derivative of the call price function is proportional
to the state price density,

⇒ ∂C
∂K ≥ . ()

Hence, the call price function has to be globally convex as any local non-convexity of the
call price function implies a negative state price density.

In addition, the no-arbitrage theory also imposes the following bounds on the call price
function:

max
(
e–qτ St – e–rτ K , 

) ≤ C(K) ≤ Ste–qτ . ()
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Therefore, an arbitrage-free call price function must satisfy the set of inequality con-
straints given by (), (), and ().

3 Problem formulation
In this section, we describe the mathematical formulation to construct the arbitrage-free
call price function Ĉ : [Kmin, Kmax] → R using the given discrete set of observable data
points. For a fixed expiry date, we assume that a finite sample of observations {(Ki, Ci) : Ki ∈
[Kmin, Kmax], i =  : n} are available in the market, where the ordered pair (Ki, Ci) represents
the price Ci corresponding to the European call option of strike price Ki contingent on a
single underlying asset.

Let us consider the regression model,

Ci = f (Ki) + εi, i = , , . . . , n,

where the error term εi has zero mean with finite variance. The set of ordered pairs
{(Ki, Ci)}n

i= are assumed to be independent and identically distributed. Here, the unknown
call price function f (K) is assumed to belong to a class of smooth functions having some
restrictions on their shapes and can be estimated by minimizing the empirical L norm,
i.e.,

Ĉ(K) = arg min
f (K )∈�c


n

n∑
i=

(
f (Ki) – Ci

). ()

Here �c = {f (K) ∈ C[Kmin, Kmax] : f (K) satisfies the inequality constraints given by (),
(), and ()}.

Nevertheless, the constrained functional regression problem () has some basic mathe-
matical challenges, such as

• only a finite sample of noisy and unevenly distributed observations are available;
• the actual functional form of the regression function f is not known a priori;
• the constraints arising from no-arbitrage conditions must be satisfied everywhere in

the domain;
• the constraints are imposed not only on the function but also on its first and second

derivative.
As the actual functional form of the regression function f is not known a priori we pro-
pose to approximate the regression function in a Bernstein polynomial basis. Using the
properties of the Bernstein polynomial basis, we now transform the constrained func-
tional regression problem () into a finite-dimensional least-squares problem with linear
constraints.

3.1 Finite-dimensional problem in Bernstein polynomial basis
Let us apply a simple linear transformation K 	−→ x, where x = K–Kmin

Kmax–Kmin
to transform the

domain [Kmin, Kmax] to [, ]. Then it is easy to see that the inequality constraints on f given
by (), (), and () transforms to the following conditions:

–(Kmax – Kmin)e–rτ ≤ ∂f
∂x

≤ , ()
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∂f
∂x ≥ , ()

max
(
e–qτ St – e–rτ ((Kmax – Kmin)x + Kmin

)
, 

) ≤ f (x) ≤ Ste–qτ . ()

Now, for any continuous function f in [, ], the approximating Bernstein polynomial of
order N is given by

BN (x; f ) =
N∑

k=

f (k/N)
(

N
k

)
xk( – x)N–k =

N∑
k=

βkbk(x, N), ()

where {bk(x, N) =
(N

k
)
xk( – x)N–k , k = , , . . . , N} forms a basis of the Bernstein polynomial

of degree N and βN = {βk : βk = f ( k
N ), k = , , . . . , N} are the corresponding coefficients.

So, if we approximate f (x) in the Bernstein polynomial basis of order N , the constrained
functional regression problem () transforms into the following finite-dimensional prob-
lem of estimation of βN :

Ĉ(x) = arg min
BN (x,f )∈�N


n

n∑
i=

(
BN (xi, f ) – Ci

), ()

where

�N =
{

BN (x, f ) : BN (x, f ) satisfy the inequality constraints (), (), and ()
}

,

From the Weierstrass theorem, BN (x; f ) → f (x) uniformly over [, ] as N → ∞ []. Ad-
ditionally, the derivatives of BN (x; f ) also satisfy the existing bounds of the corresponding
derivatives of f (see []) and possess the same convergence properties (see []). More-
over, using the properties of the Bernstein polynomial basis, the inequality constraints
on BN (x; f ) and its the derivatives can be transformed to the linear inequality constraints
involving βN only.

3.2 Constraints in Bernstein polynomial basis
Bernstein polynomial basis functions are non-negative on x ∈ [, ]. Also, they form a par-
tition of unity, i.e.,

∑N
k= bk(x, N) = . The first and second derivatives of BN (x; f ), N ≥ 

can be written

B′
N (x; f ) =

N∑
k=

βkb′
k(x, N) = N

N–∑
k=

(βk+ – βk)bk(x, N – ), ()

B′′
N (x; f ) =

N∑
k=

βkb′′
k (x, N) = N(N – )

N–∑
k=

(βk+ – βk+ + βk)bk(x, N – ). ()

Since bk(x, N – ) is positive in [, ],

(βk+ – βk+ + βk) ≥ , ∀k =  : N –  ⇒ B′′
N (x; f ) ≥ , ∀x ∈ [, ].

The above set of inequalities can also be written β – β ≤ · · · ≤ βN – βN–. Then

(βN – βN–) ≤  ()
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⇒ β – β ≤ · · · ≤ βN – βN– ≤ 

⇒ B′
N (x; f ) ≤ , ∀x ∈ [, ].

Further, as
∑N–

k= bk(x, N – ) = ,

β – β ≥ –(Kmax – Kmin)e–rτ

N
()

⇒ –(Kmax – Kmin)e–rτ

N
≤ β – β ≤ · · · ≤ βN – βN–

⇒ N
N–∑
k=

(βk+ – βk)bk(x, N – ) ≥ –(Kmax – Kmin)e–rτ
N–∑
k=

bk(x, N – )

⇒ B′
N (x; f ) ≥ –(Kmax – Kmin)e–rτ , ∀x ∈ [, ].

Furthermore,

β – β ≥ –(Kmax – Kmin)e–rτ /N

⇒ β ≥ β – (Kmax – Kmin)e–rτ /N .

So,

β ≥ e–qτ St – e–rτ Kmin

⇒ β ≥ e–qτ St – e–rτ
(

(Kmax – Kmin)

N

+ Kmin

)
.

Similarly, for k = , , . . . , N ,

βk ≥ e–qτ St – e–rτ
(

(Kmax – Kmin)
k
N

+ Kmin

)
.

Then

BN (x; f ) ≥
N∑

k=

(
e–qτ St – e–rτ

(
(Kmax – Kmin)

k
N

+ Kmin

))
bk(x, N).

Since the right hand side of the above inequality is the Bernstein polynomial representa-
tion of a linear function e–qτ St – e–rτ ((Kmax – Kmin)x + Kmin).

Thus, we can always write

BN (x; f ) ≥ e–qτ St – e–rτ ((Kmax – Kmin)x + Kmin
)
, ∀x ∈ [, ]. ()

Now,

B′
N (x; f ) ≤  ⇒ BN (; f ) ≥ BN (x; f ) ≥ BN (; f ), ∀x ∈ [, ].

Moreover, we have BN (; f ) = β, and BN (; f ) = βN .
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Then

βN ≥  ⇒ BN (x; f ) ≥ , ∀x ∈ [, ],

and

β ≤ Ste–qτ ⇒ BN (x; f ) ≤ Ste–qτ , ∀x ∈ [, ].

Hence, BN (x; f ) satisfy (), (), and () if the following conditions hold:

(βk – βk+ + βk+) ≥ , ∀k =  : N – , ()

(βN– – βN ) ≥ , ()

(–β + β) ≥ –erτ (Kmax – Kmin)
N

, ()

βN ≥ , ()

β ≥ e–qτ St – e–rτ Kmin, ()

–β ≥ –e–qτ St . ()

3.3 Quadratic programming formulation
The finite-dimensional problem () can be written as the following least square mini-
mization problem with linear constraints:

β̂N = arg min
βN ∈BN


n

n∑
i=

(
bN (xi)β�

N – Ci
), ()

where BN = {βN ∈ R
N+ : ANβ�

N ≥ dN } and bN (x) = (b(x, N), b(x, N), . . . , bN (x, N)) is a
row vector of order (N + ). Here, AN is a matrix of order (N + ) × (N + ) and dN is
column vector of order (N + ) given by

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 – 
 – 

· · ·
 – 

 –


– 


–

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, dN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝



...
...


–e–rτ (Kmax–Kmin)
N

e–qτ St – e–rτ Kmin

–e–qτ St

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above optimization problem can also be written as a general quadratic program-
ming problem with linear inequality constraints,

minβN –f�
N β�

N +


βN HNβ�

N

subject to ANβ�
N ≥ dN ;

()
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Figure 1 Estimated call price functions for both of the times to maturity of τ = 30 days and τ = 80
days, respectively.

where fN = [f, f, . . . , fN ]� is a column vector of order (N + ), with the elements fi =

∑n

j= Cjbi(xj, N), and the Hessian HN is a symmetric matrix of order (N + ) with the
elements hi,j defined by

hi,j =

{∑n
k= b

i (xk , N); when i = j,∑n
k= bi(xk , N)bj(xk , N); when i 
= j.

For a given N , if the Hessian matrix HN is strictly positive definite, the quadratic program-
ming problem () is well posed and can be solved in polynomial time []. Optimal N
may be selected adaptively based on information criteria such as AIC used in [] and
defined by

AIC(N) = n log(SSE/n) + edf , ()

where SSE =
∑n

i=(BN (xi; f ) – Ci), and edf = N +  is the effective degree of freedom. From
equation (), we choose the optimal N as Nopt = arg minN∈N AIC(N).
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Figure 2 Estimated call price functions are plotted with mid prices, bid prices and ask prices for deep
out-of-money strikes. Results are reported for both of the times to maturity of τ = 30 days and τ = 80 days,
separately.

4 Empirical applications
In this paper, we test the empirical applicability of our proposed method on S&P 
Index call option data. S&P  Index options belong the most liquid exchange traded
options in the world and are well suited as a test case, since numerous empirical studies
are performed on this data [, ]. We use the end of day quotes of the S&P  Index call
option obtained from the Chicago Board of Options Exchange (CBOE). For each trading
day, the quotes comprise last-bid and last-ask price for the option contingent on the S&P
 Index with different strikes and maturities.

For the exposition, we choose the call options with dates of maturity (T ) December ,
 and February , , which were recorded on t = December , . The S&P 
Index closed at St = ,. on that day. As reported in [], we consider an annual-
ized risk-free rate r as .% corresponding to the time to maturity τ =  days, and
.% for τ =  days. Also, we consider the implied forward Fτ

t = Ste(r–q)τ , as ,.
and ,. for the respective maturities. Using the risk-free rates, we calculate the div-
idend q = r – 

τ
log( Fτ

t
St

), as .% and .% for the respective maturities. Since the call
price can fluctuate around the median of the bid and ask price [], we minimize the esti-



Kundu et al. Journal of Inequalities and Applications  (2016) 2016:153 Page 10 of 16

Figure 3 Call price residuals are computed as Ci – Ĉi , where Ci is the mid price of the observed bid and
ask quotes and Ĉi denotes the value of the arbitrage-free estimated price. Results are reported for both
of the times to maturity of τ = 30 days and τ = 80 days, respectively.

mation error from the mid price of the bid-ask quotes as suggested by Glaser and Heider
[]. To eliminate the error-prone observations and possible biases, we use a level  filter
suggested by []. After filtering, the remaining number of observations are n =  for
τ =  days and n =  for τ =  days.

We apply our proposed method to the data and solve the resultant quadratic program-
ming problem by an interior-point-convex method using the quadprog function of the
Matlab package. Using equation (), for times to maturity τ equal to  days and 
days, we get Nopt as  and , respectively.

To validate the computed results we compare the outcome with the popular cubic spline
smoothing method for a single time to maturity as suggested by Fengler []. The natural
cubic spline smoothing estimator can be obtained by minimizing the penalized sum of
squares under the linear constraints given in Section . in [],

n∑
i=

(
Ci – f (Ki)

) + λ

∫ Kmax

Kmin

(
f ′′(K)

) dK , ()
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Figure 4 Comparison of the implied volatility curve estimated from the Bernstein polynomial (BP)
estimator and the Cubic spline smoothing method. IV mid, IV bid and IV ask are computed from the
corresponding mid price, bid price and ask price by inverting equation (28). Results are reported for both of
the times to maturity of τ = 30 days and τ = 80 days, respectively.

where λ is a smoothing parameter. As the constraints on the first and second derivatives
of the call price function act as a strong smoothing device, the choice of λ is of secondary
importance, and so we fix λ as e– as suggested in []. Finding an optimal number of
knots and locations of these knots in the presence of constraints leads to a nonlinear op-
timization problem []. So, for the sake of simplicity, we fix the knots at the observation
points.

Since practitioners regularly use the implied volatility to compare options prices across
various strikes, expiries, and underlying assets, we also compare the implied volatility
function corresponding to the estimated call price curves. In general, the implied volatili-
ties are obtained by inverting the call option price function using the Black-Scholes equa-
tion [] given by

C(St , t; K , τ , r, q, σ̂ ) = Ste–qτ�(d) – Ke–rτ�(d), ()
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Figure 5 Implied volatility residuals computed as σi – σ̂i , where σ̂i denotes the values of estimated
implied volatility. Results are reported for both of the times to maturity of τ = 30 days and τ = 80 days,
respectively.

where σ̂ is the implied volatility, � is the CDF of the standard normal distribution and
d = log (St/K )+(r–q+σ̂/)τ

σ̂
√

τ
, and d = d – σ̂

√
τ . It is well known that the implied volatility curve

will be arbitrage-free if it is deduced from the call price curve satisfying no-arbitrage con-
ditions [].

5 Results and discussion
The numerical results are computed and are compared with the cubic spline smooth-
ing method to validate the performance. Figure  depicts the estimated arbitrage-free call
price function for both of the maturities, which shows that our proposed estimator and CS
method match well with the mid price of the observed bid-ask quotes. Also, Figure  as-
certains that both of the estimators satisfy the price bound constraints defined in equation
() globally.

Figure  demonstrates that, even in the region of a deep out-of-money strike price (i.e.,
K � St), the estimated curves from both of the methods lie between the bid and ask
quotes. Estimates computed using the CS method are a bit closer to the mid price of the
observed bid-ask quotes.
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Figure 6 Estimated first derivative of the call price functions in strike. Results are reported for both of
the times to maturity of τ = 30 days and τ = 80 days, respectively.

To see the closeness of the curve with the mid price, we present the price residuals in
Figure . For both of the maturities, larger deviations are spotted for near-the-money op-
tions, which are consistent with the observation reported in [].

Figure  displays the arbitrage-free implied volatility curve corresponding to the es-
timated call price function. We also show the computed implied volatility correspond-
ing to the bid and ask price. It is observable that for the deep in-the-money strike price
Kdeep (� St), the implied volatility for the corresponding bid price Cbid does not exist as
Cbid < (e–qτ St – e–rτ Kdeep), i.e., the time value of the corresponding bid price is negative.
Still, both of the methods produce a reasonable estimate of the implied volatility in that
region. Again, we notice that the estimates from the CS method are a bit closer to the
implied volatility corresponding to the mid price of the observed bid-ask quotes. On the
other hand, our proposed method produce a bit smoother estimate.

Figure  plots pointwise implied volatility residuals. We observe larger deviations for in-
the-money and out-of-money options where the first derivative of the implied volatility
with respect to call price (known as the inverse vega) is sensitive.
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Figure 7 Estimated state price density for both of the times to maturity of τ = 30 days and
τ = 80 days, respectively.

To monitor the correct implementations of no-arbitrage inequalities, we compute the
first derivative of the estimated call price function. It is obtained using equation () and
transforming back to the strike domain. We display the derivative across strike in Figure ,
which shows that the estimated derivative from both of the methods is monotonically
increasing and satisfy the bounds given by equation (). However, unlike the cubic spline
method our proposed method produces smooth estimates of the first derivative.

We also estimate the state price density function by computing the second derivative
of the estimated call price function for both of the maturities. Figure  presents the esti-
mated state price density function using both of the methods. The estimated state price
density functions are positive in the entire domain, which shows that our proposed esti-
mator satisfies the inequality arising from the convexity constraint. Since a relatively low
penalty is added to the objective function to minimize equation (), the contribution of
the smoothness part becomes relatively negligible, which leads to a rough estimate of first
and second derivatives of the cubic spline estimator. It is noticeable that unlike the CS
method our proposed estimator produces a smooth state price density function.
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Table 1 Root mean square error (RMSE), mean absolute error (MAE), and percentage relative
mean error (PRME) of the estimated call option price function (Price) and the implied
volatility function (IV) with respect to mid price quotes by the proposed Bernstein
polynomial method (BP) and the cubic spline smoothing method (CS)

Time to maturity
in days

RMSE MAE PRME

BP CS BP CS BP CS

30 Price 0.0610 0.0427 0.0472 0.0237 –0.6694 –1.0065
IV 0.0017 0.0016 0.0011 0.0008 –0.0632 –0.0891

80 Price 0.1008 0.0713 0.0635 0.0406 –0.0465 –0.0477
IV 0.0010 0.0007 0.0007 0.0004 –0.0020 –0.0048

Results are reported for both of the times to maturity τ = 30 days and τ = 80 days.

Table 2 Number of constraints, number of iterations, and the average computational time
taken by the optimization routine of the proposed Bernstein polynomial method (BP) and the
cubic spline smoothing method (CS) for times to maturity of 30 days and 80 days, respectively

Time to maturity
in days

No. of constraints
(n)

Iterations Average cpu time
(in seconds)

30 BP 21 12 0.0090
CS 69 12 0.0136

80 BP 19 12 0.0080
CS 115 12 0.0165

Table  shows the comparative results in terms of the root mean square error (RMSE),
the mean absolute error (MAE), and the percentage relative mean error (PRME) for the
estimation of the call price function and the implied volatilities with respect to the mid
price of the bid-ask quotes. It is apparent that both of the methods have an almost similar
error behavior in terms of RMSE, MAE, and PRME measures.

Table  reports the computational details, i.e., the number of constraints, number of it-
erations, and the average computational time taken by the optimization routine of the pro-
posed Bernstein polynomial method (BP) and the cubic spline smoothing method (CS).
The average is taken over  runs of the optimization routine starting from the second
run. The number of constraints in the cubic spline method is equal to n + , where n
is the number of observations, while our proposed method requires only Nopt +  con-
straints, Nopt being the optimal order of the Bernstein polynomial basis and in general,
Nopt � n. Although both of the methods take the same number of iterations, yet our pro-
posed method consumes on average less computational time.

6 Conclusion
In this article, we propose an easy to use method for the construction of an arbitrage-free
call option price function using a Bernstein polynomial basis. One of the most fundamen-
tal advantages here is that the estimation problem can be reduced to a quadratic program-
ming problem with only a few linear constraints. The empirical results demonstrate that
the proposed method is accurate and computationally efficient. For a limited number of
bid-ask quotes, the method produces smooth estimates that satisfy all the inequality con-
straints imposed by no-arbitrage conditions on the entire domain. However, the spline-
based model seems to provide a closer fit to the data, which may lead to overfitting and
poor out-of-sample performance. These findings should motivate further research in the
use of Bernstein polynomials for option pricing.
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