Ordering non-bipartite unicyclic graphs with pendant vertices by the least Q-eigenvalue

Shu-Guang Guo ${ }^{1 *}$, Xiaorong Liu ${ }^{1,2}$, Rong Zhang ${ }^{1}$ and Guanglong Yu ${ }^{1}$

Correspondence: ychgsg@163.com
${ }^{1}$ School of Mathematics and Statistics, Yancheng Teachers University, Yancheng, Jiangsu 224002, P.R. China
Full list of author information is available at the end of the article

Abstract

A unicyclic graph is a connected graph whose number of edges is equal to the number of vertices. Fan et al. (Discrete Math. 313:903-909, 2013) and Liu et al. (Electron. J. Linear Algebra 26:333-344, 2013) determined, independently, the unique unicyclic graph whose least Q-eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with k pendant vertices. In this paper, we extend their results and determine the first three non-bipartite unicyclic graphs of order n with k pendant vertices ordering by least Q-eigenvalue.

MSC: 05C50
Keywords: signless Laplacian; least eigenvalue; unicyclic graph; pendant vertex

1 Introduction

Let $G=(V, E)$ be a simple undirected graph with vertex set $V=V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E=E(G)$, where n is called the order of G. Let $A(G)$ be the adjacency matrix of a graph G and let $D(G)=\operatorname{diag}\left(d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \ldots, d_{G}\left(v_{n}\right)\right)$ be the diagonal matrix of degrees of G, where $d_{G}(v)$ or simply $d(v)$ denotes the degree of a vertex v in G. The matrix $Q(G)=D(G)+A(G)$ is called the signless Laplacian matrix (or Q-matrix) of G. Since $Q(G)$ is symmetric and positive semidefinite, it follows that its eigenvalues are real and nonnegative. We simply call the eigenvalues of $Q(G)$ as the signless Laplacian eigenvalues or Q-eigenvalues of G. As usual, we shall index the eigenvalues of $Q(G)$ in nonincreasing order and denote them as $q_{1}(G) \geq q_{2}(G) \geq \cdots \geq q_{n}(G) \geq 0$. Denote by $\kappa(G)$ the least Q eigenvalue of G.

For a connected graph G, Desai and Rao [3] showed that $\kappa(G)=0$ if and only if G is bipartite, and suggested that $\kappa(G)$ can be used as a measure of non-bipartiteness of G. For a connected non-bipartite graph G, how small can $\kappa(G)$ be? Cardoso et al. [4] proposed this problem and proved that the minimum value of $\kappa(G)$ of a connected non-bipartite graph G of order n is attained solely in the unicyclic graph that arises from a cycle of order 3 by attaching a path at one of its end vertices. Wang and Fan [5] investigated how the least Q-eigenvalue of a graph changes when a bipartite branch attached at one vertex is relocated to another vertex and proved a perturbation theorem on the least Q-eigenvalue. As an application, they minimized the least Q-eigenvalue among the class of connected
graphs with fixed order which contains a given non-bipartite graph as an induced subgraph. Recently, the problem of finding all graphs with the minimal least Q-eigenvalue among a given class of graphs has been studied extensively. For related results, one may refer to [1, 2, 5-12].
A c-cyclic graph G is a connected graph with n vertices and $n+c-1$ edges. Specially, if $c=0,1$, or 2 , then G is a tree, a unicyclic graph, or a bicyclic graph, respectively. Very recently, Fan et al. [1] and Liu et al. [2] determined, independently, the unique unicyclic graph whose least Q-eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with k pendant vertices. In this paper, we extend their results and determine the first three non-bipartite unicyclic graphs of order n with k pendant vertices ordering by least Q-eigenvalue.
The rest of the paper is organized as follows. In Section 2, we recall some basic notions and lemmas used further, and prove two new lemmas. In Section 3, we order non-bipartite unicyclic graphs of order n with k pendant vertices. In Section 4 , a conjecture is proposed.

2 Preliminaries

Denote by C_{n} the cycle of order n. Let $G-u \nu$ denote the graph obtained from G by deleting the edge $u v \in E(G)$. Similarly, $G+u v$ is the graph obtained from G by adding an edge $u v \notin$ $E(G)$, where $u, v \in V(G)$. We write $d_{G}(u, v)$ or simply $d(u, v)$ for the distance in G between vertices u and v. The diameter of a connected graph G is the maximum distance between pairs of vertices in $V(G)$. For $v \in V(G), N_{G}(v)$ or simply $N(v)$ denotes the neighborhood of v in G. A pendant vertex of G is a vertex of degree 1 . A pendant neighbor of G is a vertex adjacent to a pendant vertex.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a column vector in \mathbb{R}^{n}. Then x can be considered as a function defined on $V(G)$, that is, each vertex v_{i} is given by the value $x\left(v_{i}\right)=x_{i}$. Then the quadratic form

$$
x^{T} Q(G) x=\sum_{u v \in E(G)}(x(u)+x(v))^{2} .
$$

Let $|x(v)|$ denote the absolute value of $x(v)$. If x is an eigenvector corresponding to a $Q-$ eigenvalue of G, then it defines on $V(G)$ naturally, i.e. $x(v)$ is the entry of x corresponding to v. For an arbitrary unit vector $x \in \mathbb{R}^{n}$, one can find in $[5,13]$

$$
\begin{equation*}
\kappa(G) \leq x^{T} Q(G) x, \tag{1}
\end{equation*}
$$

where equality holds if and only if x is an eigenvector corresponding to $\kappa(G)$.
Let G_{1} and G_{2} be two vertex-disjoint graphs, and let $v_{1} \in V\left(G_{1}\right), v_{2} \in V\left(G_{2}\right) . G_{1}\left(v_{1}\right) \diamond$ $G_{2}\left(v_{2}\right)$ denotes the coalescence of G_{1} and G_{2}, which arises from G_{1}, G_{2} by identifying v_{1} with v_{2} and forming a new vertex u (see [5] for details). The graph $G_{1}\left(v_{1}\right) \diamond G_{2}\left(v_{2}\right)$ is also written as $G_{1}(u) \diamond G_{2}(u)$. If a graph G can be expressed in the form $G=G_{1}(u) \diamond G_{2}(u)$, where G_{1} and G_{2} are both connected and nontrivial, then G_{i} is called a branch of G with root u for $i=1,2$. Let x be a vector defined on $V(G)$. A branch H of G is called a zero branch with respect to x if $x(v)=0$ for all $v \in V(H)$; otherwise it is called a nonzero branch with respect to x.

Lemma 2.1 ([5]) Let G be a connected graph which contains a bipartite branch B with root v. Let x be an eigenvector of G corresponding to $\kappa(G)$.

Figure $1 C\left(v_{0}\right) \diamond B\left(v_{0}\right)$.

(i) If $x(v)=0$, then B is a zero branch of G with respect to x.
(ii) If $x(v) \neq 0$, then $x(p) \neq 0$ for every vertex $p \in V(B)$.

Lemma 2.2 ([5]) Let G be a connected non-bipartite graph of order n, and let x be an eigenvector of G corresponding to $\kappa(G)$. Let T be a tree, which is a nonzero branch of G with respect to x and with root v. Then $|x(q)|<|x(p)|$ whenever p, q are vertices of T such that q lies on the unique path from v to p.

Lemma 2.3 ([10]) Let $G=C\left(v_{0}\right) \diamond B\left(v_{0}\right)$ be a graph of order n, where $C=v_{0} v_{1} v_{2} \cdots v_{k} \times$ $u_{k} u_{k-1} \cdots u_{1} v_{0}$ is a cycle of length $2 k+1$, and B is a bipartite graph of order $n-2 k>1$ (see Figure 1). Let $x=\left(x\left(v_{0}\right), x\left(v_{1}\right), x\left(v_{2}\right), \ldots, x\left(v_{k}\right), x\left(u_{1}\right), x\left(u_{2}\right), \ldots, x\left(u_{k}\right), \ldots\right)^{T}$ be an eigenvector corresponding to $\kappa(G)$. Then
(i) $\left|x\left(v_{0}\right)\right|=\max \{|x(w)| \mid w \in V(C)\}>0$;
(ii) $x\left(v_{i}\right)=x\left(u_{i}\right)$ for $i=1,2, \ldots, k$.

Lemma 2.4 $([10])$ Let $G=G_{1}\left(v_{2}\right) \diamond T(u)$ and $G^{*}=G_{1}\left(v_{1}\right) \diamond T(u)$, where G_{1} is a non-bipartite connected graph containing two distinct vertices v_{1}, v_{2}, and T is a nontrivial tree. If there exists an eigenvector $x=\left(x\left(v_{1}\right), x\left(v_{2}\right), \ldots, x\left(v_{k}\right), \ldots\right)^{T}$ of G corresponding to $\kappa(G)$ such that $\left|x\left(v_{1}\right)\right|>\left|x\left(v_{2}\right)\right|$ or $\left|x\left(v_{1}\right)\right|=\left|x\left(v_{2}\right)\right|>0$, then $\kappa\left(G^{*}\right)<\kappa(G)$.

Lemma 2.5 ([14]) Let G be a graph with n vertices and m edges. Then

$$
\kappa(G) \leq \frac{4 m-4 \operatorname{MaxCut}(G)}{n}
$$

where $\operatorname{MaxCut}(G)$ denotes, as usual, the size of the largest bipartite subgraph of G.

For a c-cyclic graph G, we have $\operatorname{Max} \operatorname{Cut}(G) \geq n-1$. This implies the following lemma.
Lemma 2.6 Let G be a c-cyclic graph. Then $\kappa(G) \leq \frac{4 c}{n}$.

Lemma 2.7 ([15]) Let G be a non-bipartite connected graph of order n with diameter D. Then $\kappa(G) \geq \frac{1}{n(D+1)}$.
$U_{n}^{k}(g)$, shown in Figure 2, denotes the unicyclic graph of order n with odd girth g and k pendant vertices, where $g+l+k=n$. $C_{3}^{1}(n-k-1), C_{3}^{2}(n-k-1)$, and $C_{3}^{1}(n-k-2)$ are the unicyclic graphs of order n with k pendant vertices, shown in Figures 2 and 3, respectively.

Lemma 2.8 Let $3 \leq k \leq(n-4) / \sqrt{6}$. Then $\kappa\left(C_{3}^{2}(n-k-1)\right)<\kappa\left(C_{3}^{1}(n-k-2)\right)$.
Proof Let $\kappa=\kappa\left(C_{3}^{1}(n-k-2)\right)$, and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit eigenvector corresponding to κ. Then $\kappa=\sum_{v_{i} \nu_{j} \in E\left(C_{3}^{1}(n-k-2)\right)}\left(x_{i}+x_{j}\right)^{2}$ and $0<\kappa<1$ (by Lemma 2.6). From the eigenvalue

Figure $2 U_{n}^{k}(g)$ and $C_{3}^{1}(n-k-1)$.

Figure $3 C_{3}^{2}(n-k-1)$ and $C_{3}^{1}(n-k-2)$.
equation $Q\left(C_{3}^{1}(n-k-2)\right) x=\kappa x$, we have $x_{n-k+2}=\cdots=x_{n}$,

$$
\begin{aligned}
& x_{n-k}=(\kappa-1) x_{n}, \\
& x_{n-k-1}=\left(\kappa^{2}-(k+1) \kappa+1\right) x_{n}, \\
& x_{n-k-2}=\left(\kappa^{3}-(k+3) \kappa^{2}+(2 k+2) \kappa-1\right) x_{n}, \\
& x_{n-k+1}=\frac{1}{\kappa-1}\left(\kappa^{3}-(k+3) \kappa^{2}+(2 k+2) \kappa-1\right) x_{n},
\end{aligned}
$$

and $x_{n} \neq 0$.
Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$, which is defined on $V\left(C_{3}^{2}(n-k-1)\right)$, satisfy $y_{n-k+1}=$ $-\left(x_{n-k-1}+x_{n-k-2}+x_{n-k+1}\right), y_{n-k+2}=-\left(x_{n-k-1}+x_{n-k+2}+x_{n-k}\right)$, and $y_{i}=x_{i}$ for $i=1,2, \ldots, n-k$, $n-k+3, \ldots, n$. Then

$$
\sum_{v_{i} v_{j} \in E\left(C_{3}^{2}(n-k-1)\right)}\left(y_{i}+y_{j}\right)^{2}=\sum_{v_{i} v_{j} \in E\left(C_{3}^{1}(n-k-2)\right)}\left(x_{i}+x_{j}\right)^{2}=\kappa
$$

and

$$
\begin{aligned}
\|y\|^{2}-\|x\|^{2}= & \sum_{i=1}^{n} y_{i}^{2}-\sum_{i=1}^{n} x_{i}^{2} \\
= & \kappa\left(\kappa^{5}-(2 k+2) \kappa^{4}+\left(k^{2}+2 k-1\right) \kappa^{3}+(4 k+6) \kappa^{2}\right. \\
& \left.-\left(2 k^{2}+6 k+3\right) \kappa+2\right) x_{n}^{2} .
\end{aligned}
$$

Let $f(t)=t^{5}-(2 k+2) t^{4}+\left(k^{2}+2 k-1\right) t^{3}+(4 k+6) t^{2}-\left(2 k^{2}+6 k+3\right) t+2$. It is not difficult to verify that $f(t)>0$ for $0 \leq t \leq 1 /\left(k^{2}+3 k+2\right)$.

Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)^{T} \in \mathbb{R}^{n}$, which is defined on $V\left(C_{3}^{1}(n-k-2)\right)$, satisfy $z_{1}=z_{2}=0$, $z_{n-k+1}=(-1)^{n-k+1}(n-k-3)$,

$$
\begin{aligned}
& z_{n-k-i}=(-1)^{n-k-i}(n-k-i-2) \quad \text { for } 0 \leq i \leq n-k-3, \\
& z_{n-k+i}=(-1)^{n-k+1}(n-k-1) \quad \text { for } i=2,3, \ldots, k .
\end{aligned}
$$

Then, by (1) and $3 \leq k \leq(n-4) / \sqrt{6}$, we have

$$
\begin{aligned}
\kappa & =\kappa\left(C_{3}^{1}(n-k-2)\right) \leq \frac{z^{T} Q(G) z}{z^{T} z} \\
& =\frac{n-1}{1^{2}+2^{2}+\cdots+(n-k-2)^{2}+(n-k-3)^{2}+(k-1)(n-k-1)^{2}} \\
& =\frac{6(n-1)}{2 n^{3}-9 n^{2}-\left(6 k^{2}-6 k+11\right) n+4 k^{3}+3 k^{2}+17 k+42}<\frac{1}{k^{2}+3 k+2} .
\end{aligned}
$$

Therefore $f(\kappa)>0$, and so

$$
\|y\|^{2}-\|x\|^{2}=\kappa f(\kappa) x_{n}^{2}>0 .
$$

Combining the above arguments, we have

$$
\begin{aligned}
\kappa\left(C_{3}^{2}(n-k-1)\right) & \leq\|y\|^{-2} \sum_{v_{i} v_{j} \in E\left(C_{3}^{2}(n-k-1)\right)}\left(y_{i}+y_{j}\right)^{2}<\|x\|^{-2} \sum_{v_{i} v_{j} \in E\left(C_{3}^{1}(n-k-2)\right)}\left(x_{i}+x_{j}\right)^{2} \\
& =\kappa .
\end{aligned}
$$

Lemma 2.9 Let $n \geq 120, k>\frac{-3+\sqrt{21}}{2} n$. Then $\kappa\left(C_{3}^{1}(n-k-2)\right)<\kappa\left(C_{3}^{2}(n-k-1)\right)$.
Proof Let $\kappa=\kappa\left(C_{3}^{2}(n-k-1)\right)$, and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit eigenvector corresponding to κ. Then $\kappa=\sum_{v_{i} v_{j} \in E\left(C_{3}^{2}(n-k-1)\right)}\left(x_{i}+x_{j}\right)^{2}$ and $0<\kappa<1$. From the eigenvalue equation $Q\left(C_{3}^{2}(n-k-1)\right) x=\kappa x$, we have $x_{n-k+3}=\cdots=x_{n}$,

$$
\begin{aligned}
& x_{n-k}=(\kappa-1) x_{n}, \\
& x_{n-k-1}=\left(\kappa^{2}-k \kappa+1\right) x_{n}, \\
& x_{n-k+1}=x_{n-k+2}=\frac{1}{\kappa-1}\left(\kappa^{2}-k \kappa+1\right) x_{n}, \\
& x_{n-k-2}=\frac{1}{\kappa-1}\left(\kappa^{4}-(k+5) \kappa^{3}+(5 k+2) \kappa^{2}-(2 k+3) \kappa+1\right) x_{n},
\end{aligned}
$$

and $x_{n} \neq 0$.
Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$, which is defined on $V\left(C_{3}^{1}(n-k-2)\right)$, satisfy that $y_{n-k+1}=$ $-\left(x_{n-k-1}+x_{n-k-2}+x_{n-k+1}\right), y_{n-k+2}=-\left(x_{n-k-1}+x_{n-k+2}+x_{n-k}\right)$, and $y_{i}=x_{i}$ for $i=1,2, \ldots, n-k$, $n-k+3, n-k+4, \ldots, n$. Then

$$
\sum_{v_{i} v_{j} \in E\left(C_{3}^{1}(n-k-2)\right)}\left(y_{i}+y_{j}\right)^{2}=\sum_{v_{i} v_{j} \in E\left(C_{3}^{2}(n-k-1)\right)}\left(x_{i}+x_{j}\right)^{2}=\kappa
$$

and

$$
\begin{aligned}
\|y\|^{2}-\|x\|^{2}= & \sum_{i=1}^{n} y_{i}^{2}-\sum_{i=1}^{n} x_{i}^{2} \\
= & \frac{\kappa}{\kappa-1}\left(\kappa^{6}-(2 k+7) \kappa^{5}+\left(k^{2}+14 k+14\right) \kappa^{4}-\left(7 k^{2}+28 k+4\right) \kappa^{3}\right. \\
& \left.+\left(14 k^{2}+6 k+15\right) \kappa^{2}-\left(2 k^{2}+14 k+1\right) \kappa^{2}+6\right) x_{n}^{2} .
\end{aligned}
$$

Let

$$
\begin{aligned}
f(t)= & t^{6}-(2 k+7) t^{5}+\left(k^{2}+14 k+14\right) t^{4}-\left(7 k^{2}+28 k+4\right) t^{3}+\left(14 k^{2}+6 k+15\right) t^{2} \\
& -\left(2 k^{2}+14 k+1\right) t+6
\end{aligned}
$$

Then $f(0)=6$. From $n \geq 120$ and $k>\frac{-3+\sqrt{21}}{2} n$, we have $k>\frac{-3+\sqrt{21}}{2} n>94$, and

$$
\begin{aligned}
& k^{12} f\left(1 / k^{2}\right)= 4 k^{12}-14 k^{11}+13 k^{10}+6 k^{9}+8 k^{8}-28 k^{7}-3 k^{6}+14 k^{5} \\
&+14 k^{4}-2 k^{3}-7 k^{2}+1>0 \\
& k^{12} f\left(3 / k^{2}\right)=-42 k^{11}+123 k^{10}+54 k^{9}-54 k^{8}-756 k^{7}-27 k^{6} \\
&+1134 k^{5}+1134 k^{4}-486 k^{3}-1701 k^{2}+729<0 \\
& f^{\prime}(t)=6 t^{5}-(10 k+35) t^{4}+\left(4 k^{2}+56 k+56\right) t^{3}-\left(21 k^{2}+84 k+12\right) t^{2} \\
&+\left(28 k^{2}+12 k+30\right) t-\left(2 k^{2}+14 k+1\right)<0
\end{aligned}
$$

for $0 \leq t \leq 1 / 30$. So $f(t)$ is strictly decreasing with respect to t in [$0,1 / 30]$. Recalling that $k>\frac{-3+\sqrt{21}}{2} n$, by Lemmas 2.6 and 2.7 , we find that

$$
\frac{3}{k^{2}}<\frac{1}{n(n-k)} \leq \kappa=\kappa\left(C_{3}^{2}(n-k-1)\right) \leq \frac{4}{n} \leq \frac{1}{30} .
$$

This implies that $f(\kappa)<0$ and

$$
\|y\|^{2}-\|x\|^{2}=\frac{\kappa}{\kappa-1} f(\kappa) x_{n}^{2}>0
$$

It follows that

$$
\begin{aligned}
\kappa\left(C_{3}^{1}(n-k-2)\right) & \leq\|y\|^{-2} \sum_{v_{i} v_{j} \in E\left(C_{3}^{1}(n-k-2)\right)}\left(y_{i}+y_{j}\right)^{2}<\|x\|^{-2} \sum_{v_{i} v_{j} \in E\left(C_{3}^{2}(n-k-1)\right)}\left(x_{i}+x_{j}\right)^{2} \\
& =\kappa .
\end{aligned}
$$

3 Main results

Let \mathcal{U}_{n}^{k} be the set of non-bipartite unicyclic graphs of order n with k pendant vertices. From [1, 2], we know that $U_{n}^{k}(3)$ is the unique graph whose least Q-eigenvalue attains the minimum among all graphs in \mathcal{U}_{n}^{k}. In this section, we will determine the first three graphs in \mathcal{U}_{n}^{k} ordered according to their least Q-eigenvalues.
For $k=1$, from [1], we know that $\kappa\left(U_{n}^{1}(3)\right)<\kappa\left(U_{n}^{1}(5)\right)<\kappa\left(U_{n}^{1}(7)\right)<\cdots$.

Theorem 3.1 Let $2 \leq k \leq n-4$. Among all graphs in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}, C_{3}^{1}(n-k-1)$ is the unique graph whose least Q-eigenvalue attains the minimum.

Proof Let G be a graph in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$ whose least Q-eigenvalue attains the minimum, and $C_{g}=v_{1} \nu_{2} \cdots v_{g} \nu_{1}$ be the unique cycle of G. Then g is odd, and G can be obtained by attaching rooted trees T_{1}, \ldots, T_{g} to the vertices v_{1}, \ldots, v_{g} of C_{g}, respectively, where T_{i} contains the root vertex $v_{i} .\left|V\left(T_{i}\right)\right|=1$ means that $V\left(T_{i}\right)=\left\{v_{i}\right\}$ and in this case T_{i} is a trivial tree. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit eigenvector corresponding to $\kappa(G)$.

First, we show that G is the cycle $C_{g}=v_{1} v_{2} \cdots v_{g} v_{1}$ with only one nontrivial tree attached. Otherwise, we assume that there are more than one nontrivial trees attached at two different vertices of the cycle C_{g}. Let v_{t} be a vertex of the cycle C_{g} such that $\left|x_{t}\right| \geq\left|x_{i}\right|$ for $i=1,2, \ldots, g$. By Lemma 2.1, $x_{t} \neq 0$. Let v_{l} be another vertex of the cycle C_{g} such that $\left|V\left(T_{l}\right)\right|>1$, and let

$$
G_{1}=G-\sum_{v \in N_{T_{l}}\left(v_{l}\right)} v_{l} v+\sum_{v \in N_{T_{l}}\left(v_{l}\right)} v_{t} v .
$$

From $k \leq n-4$, we have $G_{1} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$. By Lemma 2.4, we have $\kappa\left(G_{1}\right)<\kappa(G)$, a contradiction. Therefore G is the cycle $C=v_{1} v_{2} \cdots v_{g} v_{1}$ with only one nontrivial tree attached. Without loss of generality, we may assume the nontrivial tree is T_{g}.

Second, we show that $g=3$. Otherwise, we assume that $g \geq 5$. By Lemma 2.3, we have $x_{(g-3) / 2}=x_{(g+3) / 2}$. Let

$$
G^{\prime}=G-v_{(g-1) / 2} v_{(g-3) / 2}+v_{(g-1) / 2} v_{(g+3) / 2}
$$

Clearly, $G^{\prime} \in \mathcal{U}_{n}^{k+1}$, and from (1) we have

$$
\kappa\left(G^{\prime}\right) \leq x^{T} Q\left(G^{\prime}\right) x=x^{T} Q(G) x=\kappa(G)
$$

Let v_{t} be a pendant vertex of G, and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ be a unit eigenvector corresponding to $\kappa\left(G^{\prime}\right)$. By Lemma 2.2, we have $\left|y_{t}\right|>\left|y_{g}\right|>0$. Let $G^{\prime \prime}=G^{\prime}-v_{1} v_{g}+v_{1} v_{t}$. It is easy to see that $G^{\prime \prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$. By Lemma 2.4, we have $\kappa\left(G^{\prime \prime}\right)<\kappa\left(G^{\prime}\right)$. Then we have $\kappa\left(G^{\prime \prime}\right)<\kappa(G)$, a contradiction. Therefore $g=3$.

Third, we show that G has two pendant neighbors exactly. Otherwise, suppose that G has $r \geq 3$ pendant neighbors. Let v_{a} be a pendant neighbor of G such that $d\left(v_{3}, v_{a}\right)$ is as large as possible, v_{s} and v_{t} be two other pendant neighbors of G. Applying Lemma 2.4 to v_{s} and v_{t}, we may obtain a graph $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$ or $G^{\prime} \in \mathcal{U}_{n}^{k+1}$ such that $\kappa\left(G^{\prime}\right)<\kappa(G)$. If $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$, we have a contradiction. If $G^{\prime} \in \mathcal{U}_{n}^{k+1}$, without loss of generality, we may assume that v_{s} is a pendant vertex of G^{\prime}. Let u and w be two pendant vertices adjacent to v_{t} of G^{\prime}, and $G^{\prime \prime}=G^{\prime}-v_{t} w+u w$. Clearly, $G^{\prime \prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$ and $\kappa\left(G^{\prime \prime}\right)<\kappa\left(G^{\prime}\right)$. Then we have $\kappa\left(G^{\prime \prime}\right)<\kappa(G)$, a contradiction. Therefore G has two pendant neighbors exactly. Let v_{a} be a pendant neighbor of G such that $d\left(v_{3}, v_{a}\right)$ is as large as possible, and v_{b} be another pendant neighbor of G.

Fourth, we show that v_{b} is in path $v_{3}-v_{a}$. Otherwise, suppose that v_{b} is not in path $v_{3}-v_{a}$. Employing Lemma 2.4 to vertices v_{a} and v_{b}, we may obtain a graph $G^{\prime} \in \mathcal{U}_{n}^{k+1}$ such that $\kappa\left(G^{\prime}\right)<\kappa(G)$. Without loss of generality, we may assume that v_{b} is a pendant vertex
of G^{\prime}. Let u and w be two pendant vertices adjacent to v_{a} of G^{\prime}, and $G^{\prime \prime}=G^{\prime}-v_{a} w+u w$. Clearly, $G^{\prime \prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$ and $\kappa\left(G^{\prime \prime}\right)<\kappa\left(G^{\prime}\right)$. Then we have $\kappa\left(G^{\prime \prime}\right)<\kappa(G)$, a contradiction. Therefore v_{b} is in path $v_{3}-v_{a}$.
Fifth, we show that v_{a} and v_{b} are adjacent. Otherwise, suppose that v_{a} and v_{b} are not adjacent. Let $v_{c} \in N\left(v_{b}\right)$ be in path $v_{b}-v_{a}$, then, by Lemma 2.4 , we have $\left|x_{c}\right|>\left|x_{b}\right|$. Let v_{t} be the pendant vertex adjacent to v_{b} and $G^{\prime}=G-v_{b} v_{t}+v_{c} v_{t}$. Clearly, $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$ and by Lemma 2.4 we have $\kappa\left(G^{\prime}\right)<\kappa(G)$, a contradiction. Therefore v_{a} and v_{b} are adjacent.
Sixth, we show that $d\left(v_{b}\right)=3$. Otherwise, suppose that $d\left(v_{b}\right)>3$. Let v_{t} be the pendant vertex adjacent to v_{b} and $G^{\prime}=G-v_{b} v_{t}+v_{a} v_{t}$. Clearly, $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3)\right\}$. By Lemma 2.4, we have $\left|x_{a}\right|>\left|x_{b}\right|$, and by Lemma 2.4, we have $\kappa\left(G^{\prime}\right)<\kappa(G)$, a contradiction. Therefore $d\left(v_{b}\right)=3$.
From the above arguments, we have $G=C_{3}^{1}(n-k-1)$.
For $k=n-3, \mathcal{U}_{n}^{n-3}=\left\{\Delta_{r, s, t} \mid r \geq s \geq t \geq 0, r+s+t=n-3\right\}$, where $\Delta_{r, s, t}$ is the graph obtained from the cycle C_{3} by attaching r, s, t pendent edges to the vertices v_{1}, v_{2}, and v_{3} of the cycle C_{3}, respectively. By a similar reasoning to that of Theorem 3.1, we can prove the following theorem.

Theorem 3.2 Let $n \geq 8$, and $G \in \mathcal{U}_{n}^{n-3} \backslash\left\{\Delta_{n-3,0,0}, \Delta_{n-4,1,0}, \Delta_{n-5,2,0}\right\}$. Then

$$
\kappa\left(\Delta_{n-3,0,0}\right)<\kappa\left(\Delta_{n-4,1,0}\right)<\kappa\left(\Delta_{n-5,2,0}\right)<\kappa(G) .
$$

Next, we will determine the graph in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-k-1)\right\}$ whose least Q-eigenvalue attains the minimum.

Theorem 3.3 Let $2 \leq k \leq n-5$. Among allgraphs in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-k-1)\right\}, C_{3}^{1}(n-k-2)$ or $C_{3}^{2}(n-k-1)$ is the graph whose least Q-eigenvalue attains the minimum.

Proof Let G be a graph in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-k-1)\right\}$ whose least Q-eigenvalue attains the minimum, and let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit eigenvector corresponding to $\kappa(G)$. By a similar reasoning to that of Theorem 3.1, we can prove that G is the cycle $C=v_{1} \nu_{2} \nu_{3} \nu_{1}$ with only one nontrivial tree T_{3} attached at v_{3}, and G has two pendant neighbors exactly. Let v_{a} be a pendant neighbor of G such that $d\left(v_{3}, v_{a}\right)$ is as large as possible, and v_{b} be another pendant neighbor of G. By a similar reasoning to that of Theorem 3.1, we can prove that v_{b} is in path $v_{3}-v_{a}$.
Now we show that $d\left(v_{b}, v_{a}\right) \leq 2$. Otherwise, suppose that $d\left(v_{b}, v_{a}\right) \geq 3$. Let v_{t} be the pendant vertex adjacent to v_{b} and $v_{c} \in N\left(v_{b}\right)$ be in path $v_{b}-v_{a}$. Then, by Lemma 2.4, we have $\left|x_{c}\right|>\left|x_{b}\right|$. Let $G^{\prime}=G-v_{b} v_{t}+v_{c} v_{t}$. Clearly, $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-k-1)\right\}$ and $\kappa\left(G^{\prime}\right)<\kappa(G)$, a contradiction. Therefore $d\left(v_{b}, v_{a}\right) \leq 2$.
If $d\left(v_{b}, v_{a}\right)=2$, then we declare $d\left(v_{b}\right)=3$. Otherwise, suppose that $d\left(v_{b}\right) \geq 4$. Let v_{t} be the pendant vertex adjacent to v_{b} and let $G^{\prime}=G-v_{b} v_{t}+v_{a} v_{t}$. Clearly, $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-\right.$ $k-1)\}$ and $\kappa\left(G^{\prime}\right)<\kappa(G)$, a contradiction. Therefore $d\left(v_{b}\right)=3$ and $G=C_{3}^{1}(n-k-2)$.
If $d\left(v_{b}, v_{a}\right)=1$, then we declare $d\left(v_{b}\right)=4$. Otherwise, suppose that $d\left(v_{b}\right) \geq 5$. Let v_{t} be the pendant vertex adjacent to v_{b} and let $G^{\prime}=G-v_{b} v_{t}+v_{a} v_{t}$. Clearly, $G^{\prime} \in \mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-\right.$ $k-1)\}$ and $\kappa\left(G^{\prime}\right)<\kappa(G)$, a contradiction. Therefore $d\left(v_{b}\right)=4$ and $G=C_{3}^{2}(n-k-1)$.
From the above arguments, we have $G=C_{3}^{1}(n-k-1)$ or $C_{3}^{2}(n-k-1)$.

For $k=n-4, \mathcal{U}_{n}^{n-4}=\left\{C_{3}^{r, s, t, l} \mid l \geq 1, r \geq 0, s \geq 0, t \geq 0, r+s+t+l=n-4\right\}$, where $C_{3}^{r, s, t, l}$, shown in Figure 4, denotes the unicyclic graph of order n with $n-4$ pendant vertices. $C_{3}^{1}(2)$ and $C_{3}^{2}(3)$, shown in Figure 4, are the unicyclic graphs of order n with $n-4$ pendant vertices.

Theorem 3.4 Let $n \geq 7$. Among all graphs in $\mathcal{U}_{n}^{n-4} \backslash\left\{U_{n}^{n-4}(3), C_{3}^{1}(3)\right\}, C_{3}^{1}(2)$ is the unique graph whose least Q-eigenvalue attains the minimum.

Proof By a similar reasoning to that of Theorem 3.3, we can prove that $C_{3}^{2}(3)$ or $C_{3}^{1}(2)$ is the graph whose least Q-eigenvalue attains the minimum among all graphs in $\mathcal{U}_{n}^{n-4} \backslash\left\{U_{n}^{n-4}(3), C_{3}^{1}(3)\right\}$. Let $\kappa=\kappa\left(C_{3}^{2}(3)\right)$ and let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be an eigenvector corresponding to κ. From the eigenvalue equations, we have $x_{1}=x_{2}, x_{5}=x_{6}, x_{7}=\cdots=x_{n}$,

$$
\begin{aligned}
& (\kappa-2) x_{1}=x_{1}+x_{3} \\
& (\kappa-5) x_{3}=2 x_{1}+x_{4}+2 x_{5} \\
& (\kappa-n+5) x_{4}=x_{3}+(n-6) x_{7} \\
& (\kappa-1) x_{5}=x_{3} \\
& (\kappa-1) x_{7}=x_{4}
\end{aligned}
$$

Since x is an eigenvector, it follows that $\kappa=\kappa\left(C_{3}^{2}(3)\right)$ is the least root of the equation

$$
f(x) \triangleq\left|\begin{array}{ccccc}
x-3 & -1 & 0 & 0 & 0 \\
-2 & x-5 & -1 & -2 & 0 \\
0 & -1 & x-n+5 & 0 & -n+6 \\
0 & -1 & 0 & x-1 & 0 \\
0 & 0 & -1 & 0 & x-1
\end{array}\right|=0
$$

By an easy computation, we can obtain

$$
f(x)=x^{5}-(n+5) x^{4}+(9 n-17) x^{3}-(19 n-65) x^{2}+(7 n-16) x-4
$$

Similarly, from the eigenvalue equation, we can prove that $\kappa\left(C_{3}^{1}(2)\right)$ is the least root of

$$
g(x) \triangleq x^{6}-(n+6) x^{5}+(9 n-2) x^{4}-(25 n-48) x^{3}+(25 n-58) x^{2}-(7 n-8) x+4=0 .
$$

By Lemma 2.6, we have $0<\kappa\left(C_{3}^{2}(3)\right), \kappa\left(C_{3}^{1}(2)\right) \leq 4 / n$. Note that for $n \geq 12$,

$$
(x-1) f(x)-g(x)=x\left((n-10) x^{3}-(3 n-34) x^{2}+(n-23) x+4\right)>0
$$

for $0<x \leq 4 / n$. It follows that $g\left(\kappa\left(C_{3}^{2}(3)\right)\right)<0$. This implies that $\kappa\left(C_{3}^{1}(2)\right)<\kappa\left(C_{3}^{2}(3)\right)$.
For $7 \leq n \leq 11$, by computation, we can verify that $\kappa\left(C_{3}^{1}(2)\right)<\kappa\left(C_{3}^{2}(3)\right)$.
From the above arguments, we have $\kappa\left(C_{3}^{1}(2)\right)<\kappa\left(C_{3}^{2}(3)\right)$ for $n \geq 7$.

Combining Theorem 3.3 and Lemma 2.8, we have the following theorem.
Theorem 3.5 Let $3 \leq k \leq(n-4) / \sqrt{6}$. Among all graphs in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-k-1)\right\}$, $C_{3}^{2}(n-k-1)$ is the unique graph whose least Q-eigenvalue attains the minimum.

Combining Theorem 3.3 and Lemma 2.9, we have the following theorem.
Theorem 3.6 Let $n \geq 120, k>\frac{-3+\sqrt{21}}{2} n$. Among all graphs in $\mathcal{U}_{n}^{k} \backslash\left\{U_{n}^{k}(3), C_{3}^{1}(n-k-1)\right\}$, $C_{3}^{1}(n-k-2)$ is the unique graph whose least Q-eigenvalue attains the minimum.

4 Discussion

According to Lemmas 2.8 and 2.9, we propose the following conjecture.

Conjecture 4.1 There exists a real number α with $0<\alpha<1$ such that, for any $\varepsilon>0$, there exists a sufficiently large N such that

$$
\kappa\left(C_{3}^{2}(n-k-1)\right)<\kappa\left(C_{3}^{1}(n-k-2)\right)
$$

for all $n \geq N$ and all $3 \leq k \leq(\alpha-\varepsilon) n$, and

$$
\kappa\left(C_{3}^{2}(n-k-1)\right)>\kappa\left(C_{3}^{1}(n-k-2)\right)
$$

for all $n \geq N$ and all $(\alpha+\varepsilon) n \leq k \leq n-5$.

If Conjecture 4.1 is true, then, by Lemmas 2.8 and $2.9, \sqrt{6} / 6 \leq \alpha \leq(\sqrt{21}-3) / 2$, where α is the same as in Conjecture 4.1.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Author details

${ }^{1}$ School of Mathematics and Statistics, Yancheng Teachers University, Yancheng, Jiangsu 224002, P.R. China. ${ }^{2}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, P.R. China.

Acknowledgements

The first author is very grateful to Professor Yong-Gao Chen for his help. This work is supported by the National Natural Science Foundation of China (Nos. 11171290, 11271315) and the Natural Science Foundation of Jiangsu Province (BK20151295).

References

1. Fan, $Y Z$, Wang, Y, Guo, H : The least eigenvalues of signless Laplacian of non-bipartite graphs with pendant vertices. Discrete Math. 313, 903-909 (2013)
2. Liu, RF, Wan, HX, Yuan, JJ, Jia, HC: The least eigenvalue of the signless Laplacian of non-bipartite unicyclic graphs with k pendant vertices. Electron. J. Linear Algebra 26, 333-344 (2013)
3. Desai, M, Rao, V: A characterization of the smallest eigenvalue of a graph. J. Graph Theory 18, 181-194 (1994)
4. Cardoso, DM, Cvetković, D, Rowlinson, P, Simić, SK: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl. 429, 2770-2780 (2008)
5. Wang, Y, Fan, YZ: The least eigenvalue of signless Laplacian of graphs under perturbation. Linear Algebra Appl. 436, 2084-2092 (2012)
6. Fan, YZ, Tan, YY: The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number. Discrete Math. 334, 20-25 (2014)
7. Guo, SG, Xu, ML, Yu, GL: On the least signless Laplacian eigenvalue of non-bipartite unicyclic graphs with both given order and diameter. Ars Comb. 114, 385-395 (2014)
8. Li, SC, Wang, SJ: The least eigenvalue of the signless Laplacian of the complements of trees. Linear Algebra Appl. 436, 2398-2405 (2012)
9. Wen, Q, Zhao, Q, Liu, HQ: The least signless Laplacian eigenvalue of non-bipartite graphs with given stability number. Linear Algebra Appl. 476, 148-158 (2015)
10. Yu, GL, Guo, SG, Xu, ML: On the least signless Laplacian eigenvalue of some graphs. Electron. J. Linear Algebra 26, 560-573 (2013)
11. Yu, GL, Guo, SG, Zhang, R, Wu, YR: The domination number and the least Q-eigenvalue. Appl. Math. Comput. 244, 274-282 (2014)
12. Yu, GD, Fan, YZ, Wang, Y: Quadratic forms on graphs with application to minimizing the least eigenvalue of signless Laplacian over bicycle graphs. Electron. J. Linear Algebra 27, 213-236 (2014)
13. Cvetković, D: Spectral theory of graphs based on the signless Laplacian. Research report. http://www.mi.sanu.ac.rs/projects/signless_L_reportApr11.pdf (2010)
14. de Lima, LS, Oliveira, CS, de Abreu, NMM, Nikiforov, V: The smallest eigenvalue of the signless Laplacian. Linear Algebra Appl. 435, 2570-2584 (2011)
15. He, CX, Zhou, M: Least Q-eigenvalue of a graph. J. East China Norm. Univ. Natur. Sci. Ed. 3, 1-5 (2012) (in Chinese)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

