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Abstract
A unicyclic graph is a connected graph whose number of edges is equal to the
number of vertices. Fan et al. (Discrete Math. 313:903-909, 2013) and Liu et al.
(Electron. J. Linear Algebra 26:333-344, 2013) determined, independently, the unique
unicyclic graph whose least Q-eigenvalue attains the minimum among all
non-bipartite unicyclic graphs of order n with k pendant vertices. In this paper, we
extend their results and determine the first three non-bipartite unicyclic graphs of
order n with k pendant vertices ordering by least Q-eigenvalue.
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1 Introduction
Let G = (V , E) be a simple undirected graph with vertex set V = V (G) = {v, v, . . . , vn} and
edge set E = E(G), where n is called the order of G. Let A(G) be the adjacency matrix
of a graph G and let D(G) = diag(dG(v), dG(v), . . . , dG(vn)) be the diagonal matrix of de-
grees of G, where dG(v) or simply d(v) denotes the degree of a vertex v in G. The matrix
Q(G) = D(G) + A(G) is called the signless Laplacian matrix (or Q-matrix) of G. Since Q(G)
is symmetric and positive semidefinite, it follows that its eigenvalues are real and non-
negative. We simply call the eigenvalues of Q(G) as the signless Laplacian eigenvalues or
Q-eigenvalues of G. As usual, we shall index the eigenvalues of Q(G) in nonincreasing
order and denote them as q(G) ≥ q(G) ≥ · · · ≥ qn(G) ≥ . Denote by κ(G) the least Q-
eigenvalue of G.

For a connected graph G, Desai and Rao [] showed that κ(G) =  if and only if G is
bipartite, and suggested that κ(G) can be used as a measure of non-bipartiteness of G. For
a connected non-bipartite graph G, how small can κ(G) be? Cardoso et al. [] proposed
this problem and proved that the minimum value of κ(G) of a connected non-bipartite
graph G of order n is attained solely in the unicyclic graph that arises from a cycle of order
 by attaching a path at one of its end vertices. Wang and Fan [] investigated how the
least Q-eigenvalue of a graph changes when a bipartite branch attached at one vertex is
relocated to another vertex and proved a perturbation theorem on the least Q-eigenvalue.
As an application, they minimized the least Q-eigenvalue among the class of connected
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graphs with fixed order which contains a given non-bipartite graph as an induced sub-
graph. Recently, the problem of finding all graphs with the minimal least Q-eigenvalue
among a given class of graphs has been studied extensively. For related results, one may
refer to [, , –].

A c-cyclic graph G is a connected graph with n vertices and n + c –  edges. Specially,
if c = , , or , then G is a tree, a unicyclic graph, or a bicyclic graph, respectively. Very
recently, Fan et al. [] and Liu et al. [] determined, independently, the unique unicyclic
graph whose least Q-eigenvalue attains the minimum among all non-bipartite unicyclic
graphs of order n with k pendant vertices. In this paper, we extend their results and de-
termine the first three non-bipartite unicyclic graphs of order n with k pendant vertices
ordering by least Q-eigenvalue.

The rest of the paper is organized as follows. In Section , we recall some basic notions
and lemmas used further, and prove two new lemmas. In Section , we order non-bipartite
unicyclic graphs of order n with k pendant vertices. In Section , a conjecture is proposed.

2 Preliminaries
Denote by Cn the cycle of order n. Let G–uv denote the graph obtained from G by deleting
the edge uv ∈ E(G). Similarly, G + uv is the graph obtained from G by adding an edge uv /∈
E(G), where u, v ∈ V (G). We write dG(u, v) or simply d(u, v) for the distance in G between
vertices u and v. The diameter of a connected graph G is the maximum distance between
pairs of vertices in V (G). For v ∈ V (G), NG(v) or simply N(v) denotes the neighborhood of
v in G. A pendant vertex of G is a vertex of degree . A pendant neighbor of G is a vertex
adjacent to a pendant vertex.

Let x = (x, x, . . . , xn)T be a column vector in R
n. Then x can be considered as a function

defined on V (G), that is, each vertex vi is given by the value x(vi) = xi. Then the quadratic
form

xT Q(G)x =
∑

uv∈E(G)

(
x(u) + x(v)

).

Let |x(v)| denote the absolute value of x(v). If x is an eigenvector corresponding to a Q-
eigenvalue of G, then it defines on V (G) naturally, i.e. x(v) is the entry of x corresponding
to v. For an arbitrary unit vector x ∈R

n, one can find in [, ]

κ(G) ≤ xT Q(G)x, ()

where equality holds if and only if x is an eigenvector corresponding to κ(G).
Let G and G be two vertex-disjoint graphs, and let v ∈ V (G), v ∈ V (G). G(v) �

G(v) denotes the coalescence of G and G, which arises from G, G by identifying v

with v and forming a new vertex u (see [] for details). The graph G(v) � G(v) is also
written as G(u)�G(u). If a graph G can be expressed in the form G = G(u)�G(u), where
G and G are both connected and nontrivial, then Gi is called a branch of G with root u
for i = , . Let x be a vector defined on V (G). A branch H of G is called a zero branch
with respect to x if x(v) =  for all v ∈ V (H); otherwise it is called a nonzero branch with
respect to x.

Lemma . ([]) Let G be a connected graph which contains a bipartite branch B with root
v. Let x be an eigenvector of G corresponding to κ(G).
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Figure 1 C(v0) � B(v0).

(i) If x(v) = , then B is a zero branch of G with respect to x.
(ii) If x(v) �= , then x(p) �=  for every vertex p ∈ V (B).

Lemma . ([]) Let G be a connected non-bipartite graph of order n, and let x be an
eigenvector of G corresponding to κ(G). Let T be a tree, which is a nonzero branch of G with
respect to x and with root v. Then |x(q)| < |x(p)| whenever p, q are vertices of T such that q
lies on the unique path from v to p.

Lemma . ([]) Let G = C(v) � B(v) be a graph of order n, where C = vvv · · · vk ×
ukuk– · · ·uv is a cycle of length k + , and B is a bipartite graph of order n – k >  (see
Figure ). Let x = (x(v), x(v), x(v), . . . , x(vk), x(u), x(u), . . . , x(uk), . . .)T be an eigenvector
corresponding to κ(G). Then

(i) |x(v)| = max{|x(w)| | w ∈ V (C)} > ;
(ii) x(vi) = x(ui) for i = , , . . . , k.

Lemma . ([]) Let G = G(v)�T(u) and G∗ = G(v)�T(u), where G is a non-bipartite
connected graph containing two distinct vertices v, v, and T is a nontrivial tree. If there
exists an eigenvector x = (x(v), x(v), . . . , x(vk), . . .)T of G corresponding to κ(G) such that
|x(v)| > |x(v)| or |x(v)| = |x(v)| > , then κ(G∗) < κ(G).

Lemma . ([]) Let G be a graph with n vertices and m edges. Then

κ(G) ≤ m –  MaxCut(G)
n

,

where MaxCut(G) denotes, as usual, the size of the largest bipartite subgraph of G.

For a c-cyclic graph G, we have MaxCut(G) ≥ n – . This implies the following lemma.

Lemma . Let G be a c-cyclic graph. Then κ(G) ≤ c
n .

Lemma . ([]) Let G be a non-bipartite connected graph of order n with diameter D.
Then κ(G) ≥ 

n(D+) .

Uk
n (g), shown in Figure , denotes the unicyclic graph of order n with odd girth g and k

pendant vertices, where g + l + k = n. C
(n – k – ), C

(n – k – ), and C
(n – k – ) are the

unicyclic graphs of order n with k pendant vertices, shown in Figures  and , respectively.

Lemma . Let  ≤ k ≤ (n – )/
√

. Then κ(C
(n – k – )) < κ(C

(n – k – )).

Proof Let κ = κ(C
(n – k – )), and x = (x, x, . . . , xn)T be a unit eigenvector corresponding

to κ . Then κ =
∑

vivj∈E(C
(n–k–))(xi +xj) and  < κ <  (by Lemma .). From the eigenvalue
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Figure 2 Uk
n(g) and C1

3 (n – k – 1).

Figure 3 C2
3 (n – k – 1) and C1

3 (n – k – 2).

equation Q(C
(n – k – ))x = κx, we have xn–k+ = · · · = xn,

xn–k = (κ – )xn,

xn–k– =
(
κ – (k + )κ + 

)
xn,

xn–k– =
(
κ – (k + )κ + (k + )κ – 

)
xn,

xn–k+ =


κ – 
(
κ – (k + )κ + (k + )κ – 

)
xn,

and xn �= .
Let y = (y, y, . . . , yn)T ∈ R

n, which is defined on V (C
(n – k – )), satisfy yn–k+ =

–(xn–k– + xn–k– + xn–k+), yn–k+ = –(xn–k– + xn–k+ + xn–k), and yi = xi for i = , , . . . , n – k,
n – k + , . . . , n. Then

∑

vivj∈E(C
 (n–k–))

(yi + yj) =
∑

vivj∈E(C
(n–k–))

(xi + xj) = κ

and

‖y‖ – ‖x‖ =
n∑

i=

y
i –

n∑

i=

x
i

= κ
(
κ – (k + )κ +

(
k + k – 

)
κ + (k + )κ

–
(
k + k + 

)
κ + 

)
x

n.

Let f (t) = t – (k + )t + (k + k – )t + (k + )t – (k + k + )t + . It is not difficult
to verify that f (t) >  for  ≤ t ≤ /(k + k + ).
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Let z = (z, z, . . . , zn)T ∈ R
n, which is defined on V (C

(n – k – )), satisfy z = z = ,
zn–k+ = (–)n–k+(n – k – ),

zn–k–i = (–)n–k–i(n – k – i – ) for  ≤ i ≤ n – k – ,

zn–k+i = (–)n–k+(n – k – ) for i = , , . . . , k.

Then, by () and  ≤ k ≤ (n – )/
√

, we have

κ = κ
(
C

(n – k – )
) ≤ zT Q(G)z

zT z

=
n – 

 +  + · · · + (n – k – ) + (n – k – ) + (k – )(n – k – )

=
(n – )

n – n – (k – k + )n + k + k + k + 
<


k + k + 

.

Therefore f (κ) > , and so

‖y‖ – ‖x‖ = κf (κ)x
n > .

Combining the above arguments, we have

κ
(
C

(n – k – )
) ≤ ‖y‖–

∑

vivj∈E(C
 (n–k–))

(yi + yj) < ‖x‖–
∑

vivj∈E(C
(n–k–))

(xi + xj)

= κ . �

Lemma . Let n ≥ , k > –+
√


 n. Then κ(C

(n – k – )) < κ(C
(n – k – )).

Proof Let κ = κ(C
(n – k – )), and x = (x, x, . . . , xn)T be a unit eigenvector correspond-

ing to κ . Then κ =
∑

vivj∈E(C
 (n–k–))(xi + xj) and  < κ < . From the eigenvalue equation

Q(C
(n – k – ))x = κx, we have xn–k+ = · · · = xn,

xn–k = (κ – )xn,

xn–k– =
(
κ – kκ + 

)
xn,

xn–k+ = xn–k+ =


κ – 
(
κ – kκ + 

)
xn,

xn–k– =


κ – 
(
κ – (k + )κ + (k + )κ – (k + )κ + 

)
xn,

and xn �= .
Let y = (y, y, . . . , yn)T ∈ R

n, which is defined on V (C
(n – k – )), satisfy that yn–k+ =

–(xn–k– + xn–k– + xn–k+), yn–k+ = –(xn–k– + xn–k+ + xn–k), and yi = xi for i = , , . . . , n – k,
n – k + , n – k + , . . . , n. Then

∑

vivj∈E(C
(n–k–))

(yi + yj) =
∑

vivj∈E(C
 (n–k–))

(xi + xj) = κ
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and

‖y‖ – ‖x‖ =
n∑

i=

y
i –

n∑

i=

x
i

=
κ

κ – 
(
κ – (k + )κ +

(
k + k + 

)
κ –

(
k + k + 

)
κ

+
(
k + k + 

)
κ –

(
k + k + 

)
κ + 

)
x

n.

Let

f (t) = t – (k + )t +
(
k + k + 

)
t –

(
k + k + 

)
t +

(
k + k + 

)
t

–
(
k + k + 

)
t + .

Then f () = . From n ≥  and k > –+
√


 n, we have k > –+

√


 n > , and

kf
(
/k) = k – k + k + k + k – k – k + k

+ k – k – k +  > ,

kf
(
/k) = –k + k + k – k – k – k

+ k + k – k – k +  < ,

f ′(t) = t – (k + )t +
(
k + k + 

)
t –

(
k + k + 

)
t

+
(
k + k + 

)
t –

(
k + k + 

)
< ,

for  ≤ t ≤ /. So f (t) is strictly decreasing with respect to t in [, /]. Recalling that
k > –+

√


 n, by Lemmas . and ., we find that


k <


n(n – k)

≤ κ = κ
(
C

(n – k – )
) ≤ 

n
≤ 


.

This implies that f (κ) <  and

‖y‖ – ‖x‖ =
κ

κ – 
f (κ)x

n > .

It follows that

κ
(
C

(n – k – )
) ≤ ‖y‖–

∑

vivj∈E(C
(n–k–))

(yi + yj) < ‖x‖–
∑

vivj∈E(C
 (n–k–))

(xi + xj)

= κ . �

3 Main results
Let U k

n be the set of non-bipartite unicyclic graphs of order n with k pendant vertices.
From [, ], we know that Uk

n () is the unique graph whose least Q-eigenvalue attains the
minimum among all graphs in U k

n . In this section, we will determine the first three graphs
in U k

n ordered according to their least Q-eigenvalues.
For k = , from [], we know that κ(U

n()) < κ(U
n()) < κ(U

n()) < · · · .
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Theorem . Let  ≤ k ≤ n–. Among all graphs inU k
n \{Uk

n ()}, C
(n–k –) is the unique

graph whose least Q-eigenvalue attains the minimum.

Proof Let G be a graph in U k
n \{Uk

n()} whose least Q-eigenvalue attains the minimum,
and Cg = vv · · · vgv be the unique cycle of G. Then g is odd, and G can be obtained
by attaching rooted trees T, . . . , Tg to the vertices v, . . . , vg of Cg , respectively, where Ti

contains the root vertex vi. |V (Ti)| =  means that V (Ti) = {vi} and in this case Ti is a trivial
tree. Let x = (x, x, . . . , xn)T be a unit eigenvector corresponding to κ(G).

First, we show that G is the cycle Cg = vv · · · vgv with only one nontrivial tree attached.
Otherwise, we assume that there are more than one nontrivial trees attached at two dif-
ferent vertices of the cycle Cg . Let vt be a vertex of the cycle Cg such that |xt| ≥ |xi| for
i = , , . . . , g . By Lemma ., xt �= . Let vl be another vertex of the cycle Cg such that
|V (Tl)| > , and let

G = G –
∑

v∈NTl (vl)

vlv +
∑

v∈NTl (vl)

vtv.

From k ≤ n – , we have G ∈ U k
n \{Uk

n()}. By Lemma ., we have κ(G) < κ(G), a contra-
diction. Therefore G is the cycle C = vv · · · vgv with only one nontrivial tree attached.
Without loss of generality, we may assume the nontrivial tree is Tg .

Second, we show that g = . Otherwise, we assume that g ≥ . By Lemma ., we have
x(g–)/ = x(g+)/. Let

G′ = G – v(g–)/v(g–)/ + v(g–)/v(g+)/.

Clearly, G′ ∈ U k+
n , and from () we have

κ
(
G′) ≤ xT Q

(
G′)x = xT Q(G)x = κ(G).

Let vt be a pendant vertex of G, and y = (y, y, . . . , yn)T be a unit eigenvector corresponding
to κ(G′). By Lemma ., we have |yt| > |yg | > . Let G′′ = G′ – vvg + vvt . It is easy to see
that G′′ ∈ U k

n \{Uk
n ()}. By Lemma ., we have κ(G′′) < κ(G′). Then we have κ(G′′) < κ(G),

a contradiction. Therefore g = .
Third, we show that G has two pendant neighbors exactly. Otherwise, suppose that G

has r ≥  pendant neighbors. Let va be a pendant neighbor of G such that d(v, va) is as
large as possible, vs and vt be two other pendant neighbors of G. Applying Lemma . to
vs and vt , we may obtain a graph G′ ∈ U k

n \{Uk
n()} or G′ ∈ U k+

n such that κ(G′) < κ(G). If
G′ ∈ U k

n \{Uk
n ()}, we have a contradiction. If G′ ∈ U k+

n , without loss of generality, we may
assume that vs is a pendant vertex of G′. Let u and w be two pendant vertices adjacent to
vt of G′, and G′′ = G′ – vtw + uw. Clearly, G′′ ∈ U k

n \{Uk
n()} and κ(G′′) < κ(G′). Then we

have κ(G′′) < κ(G), a contradiction. Therefore G has two pendant neighbors exactly. Let
va be a pendant neighbor of G such that d(v, va) is as large as possible, and vb be another
pendant neighbor of G.

Fourth, we show that vb is in path v – va. Otherwise, suppose that vb is not in path
v – va. Employing Lemma . to vertices va and vb, we may obtain a graph G′ ∈ U k+

n such
that κ(G′) < κ(G). Without loss of generality, we may assume that vb is a pendant vertex
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of G′. Let u and w be two pendant vertices adjacent to va of G′, and G′′ = G′ – vaw + uw.
Clearly, G′′ ∈ U k

n \{Uk
n()} and κ(G′′) < κ(G′). Then we have κ(G′′) < κ(G), a contradiction.

Therefore vb is in path v – va.
Fifth, we show that va and vb are adjacent. Otherwise, suppose that va and vb are not

adjacent. Let vc ∈ N(vb) be in path vb – va, then, by Lemma ., we have |xc| > |xb|. Let vt

be the pendant vertex adjacent to vb and G′ = G – vbvt + vcvt . Clearly, G′ ∈ U k
n \{Uk

n()} and
by Lemma . we have κ(G′) < κ(G), a contradiction. Therefore va and vb are adjacent.

Sixth, we show that d(vb) = . Otherwise, suppose that d(vb) > . Let vt be the pendant
vertex adjacent to vb and G′ = G – vbvt + vavt . Clearly, G′ ∈ U k

n \{Uk
n()}. By Lemma .,

we have |xa| > |xb|, and by Lemma ., we have κ(G′) < κ(G), a contradiction. Therefore
d(vb) = .

From the above arguments, we have G = C
(n – k – ). �

For k = n – , Un–
n = {�r,s,t | r ≥ s ≥ t ≥ , r + s + t = n – }, where �r,s,t is the graph

obtained from the cycle C by attaching r, s, t pendent edges to the vertices v, v, and v

of the cycle C, respectively. By a similar reasoning to that of Theorem ., we can prove
the following theorem.

Theorem . Let n ≥ , and G ∈ Un–
n \{�n–,,,�n–,,,�n–,,}. Then

κ(�n–,,) < κ(�n–,,) < κ(�n–,,) < κ(G).

Next, we will determine the graph in U k
n \{Uk

n(), C
(n – k – )} whose least Q-eigenvalue

attains the minimum.

Theorem . Let  ≤ k ≤ n–. Among all graphs inU k
n \{Uk

n(), C
(n–k –)}, C

(n–k –)
or C

(n – k – ) is the graph whose least Q-eigenvalue attains the minimum.

Proof Let G be a graph in U k
n \{Uk

n(), C
(n – k – )} whose least Q-eigenvalue attains the

minimum, and let x = (x, x, . . . , xn)T be a unit eigenvector corresponding to κ(G). By a
similar reasoning to that of Theorem ., we can prove that G is the cycle C = vvvv

with only one nontrivial tree T attached at v, and G has two pendant neighbors exactly.
Let va be a pendant neighbor of G such that d(v, va) is as large as possible, and vb be
another pendant neighbor of G. By a similar reasoning to that of Theorem ., we can
prove that vb is in path v – va.

Now we show that d(vb, va) ≤ . Otherwise, suppose that d(vb, va) ≥ . Let vt be the
pendant vertex adjacent to vb and vc ∈ N(vb) be in path vb – va. Then, by Lemma .,
we have |xc| > |xb|. Let G′ = G – vbvt + vcvt . Clearly, G′ ∈ U k

n \{Uk
n (), C

(n – k – )} and
κ(G′) < κ(G), a contradiction. Therefore d(vb, va) ≤ .

If d(vb, va) = , then we declare d(vb) = . Otherwise, suppose that d(vb) ≥ . Let vt be the
pendant vertex adjacent to vb and let G′ = G – vbvt + vavt . Clearly, G′ ∈ U k

n \{Uk
n(), C

(n –
k – )} and κ(G′) < κ(G), a contradiction. Therefore d(vb) =  and G = C

(n – k – ).
If d(vb, va) = , then we declare d(vb) = . Otherwise, suppose that d(vb) ≥ . Let vt be the

pendant vertex adjacent to vb and let G′ = G – vbvt + vavt . Clearly, G′ ∈ U k
n \{Uk

n(), C
(n –

k – )} and κ(G′) < κ(G), a contradiction. Therefore d(vb) =  and G = C
(n – k – ).

From the above arguments, we have G = C
(n – k – ) or C

(n – k – ). �
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Figure 4 Cr,s,t,l
3 , C1

3 (2), and C2
3 (3).

For k = n – , Un–
n = {Cr,s,t,l

 | l ≥ , r ≥ , s ≥ , t ≥ , r + s + t + l = n – }, where Cr,s,t,l
 ,

shown in Figure , denotes the unicyclic graph of order n with n –  pendant vertices.
C

() and C
(), shown in Figure , are the unicyclic graphs of order n with n –  pendant

vertices.

Theorem . Let n ≥ . Among all graphs in Un–
n \{Un–

n (), C
()}, C

() is the unique
graph whose least Q-eigenvalue attains the minimum.

Proof By a similar reasoning to that of Theorem ., we can prove that C
() or

C
() is the graph whose least Q-eigenvalue attains the minimum among all graphs in

Un–
n \{Un–

n (), C
()}. Let κ = κ(C

()) and let x = (x, x, . . . , xn)T be an eigenvector cor-
responding to κ . From the eigenvalue equations, we have x = x, x = x, x = · · · = xn,

(κ – )x = x + x,

(κ – )x = x + x + x,

(κ – n + )x = x + (n – )x,

(κ – )x = x,

(κ – )x = x.

Since x is an eigenvector, it follows that κ = κ(C
()) is the least root of the equation

f (x) �

∣∣∣∣∣∣∣∣∣∣∣∣

x –  –   
– x –  – – 
 – x – n +   –n + 
 –  x –  
  –  x – 

∣∣∣∣∣∣∣∣∣∣∣∣

= .

By an easy computation, we can obtain

f (x) = x – (n + )x + (n – )x – (n – )x + (n – )x – .

Similarly, from the eigenvalue equation, we can prove that κ(C
()) is the least root of

g(x) � x – (n + )x + (n – )x – (n – )x + (n – )x – (n – )x +  = .
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By Lemma ., we have  < κ(C
()),κ(C

()) ≤ /n. Note that for n ≥ ,

(x – )f (x) – g(x) = x
(
(n – )x – (n – )x + (n – )x + 

)
> 

for  < x ≤ /n. It follows that g(κ(C
())) < . This implies that κ(C

()) < κ(C
()).

For  ≤ n ≤ , by computation, we can verify that κ(C
()) < κ(C

()).
From the above arguments, we have κ(C

()) < κ(C
()) for n ≥ . �

Combining Theorem . and Lemma ., we have the following theorem.

Theorem . Let  ≤ k ≤ (n – )/
√

. Among all graphs in U k
n \{Uk

n(), C
(n – k – )},

C
(n – k – ) is the unique graph whose least Q-eigenvalue attains the minimum.

Combining Theorem . and Lemma ., we have the following theorem.

Theorem . Let n ≥ , k > –+
√


 n. Among all graphs in U k

n \{Uk
n (), C

(n – k – )},
C

(n – k – ) is the unique graph whose least Q-eigenvalue attains the minimum.

4 Discussion
According to Lemmas . and ., we propose the following conjecture.

Conjecture . There exists a real number α with  < α <  such that, for any ε > , there
exists a sufficiently large N such that

κ
(
C

(n – k – )
)

< κ
(
C

(n – k – )
)

for all n ≥ N and all  ≤ k ≤ (α – ε)n, and

κ
(
C

(n – k – )
)

> κ
(
C

(n – k – )
)

for all n ≥ N and all (α + ε)n ≤ k ≤ n – .

If Conjecture . is true, then, by Lemmas . and .,
√

/ ≤ α ≤ (
√

 – )/, where
α is the same as in Conjecture ..
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