
He and Yin Journal of Inequalities and Applications  (2016) 2016:129 
DOI 10.1186/s13660-016-1070-8

R E S E A R C H Open Access

Lp Hardy type inequality in the half-space
on the H-type group
Jianxun He and Mingkai Yin*

*Correspondence:
yinmingkai@outlook.com
School of Mathematics and
Information Sciences, Guangzhou
University, Guangzhou, 510006,
P.R. China

Abstract
In the current work we studied Hardy type and Lp Hardy type inequalities in the
half-space on the H-type group, where the Hardy inequality in the upper half-space
Rn
+ was proved by Tidblom in (J. Funct. Anal. 221:482-495, 2005).
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1 Introduction
In recent years a lot of authors studied the Hardy inequalities (see [–]). They are the
extensions of the original inequality by Hardy []. The Heisenberg group, denoted by Hn,
is also very popular in mathematics (see [–]). By Hn,+ = {(z, t) ∈ Hn|z ∈ Cn, t > } is
denoted the half-space on the Heisenberg group. A Hardy type inequality on Hn,+ in [] is
stated as follows. For u ∈ C∞

 (Hn,+), we have

∫
Hn,+

|∇Hn u| dz dt ≥
∫

Hn,+

|z|
t |u| dz dt +

(Q + )(Q – )


∫
Hn,+

ρ–|z||u| dz dt,

where ρ = (|z| + t) 
 and Q = n +  is the homogeneous dimension of the Heisenberg

group. We know that the H-type group, denoted by H = {(z, t) ∈ H|z ∈ Cn, t ∈ Rm}, is the
nilpotent Lie group introduced by Kaplan (see []). We also know that Hn is a nilpotent
Lie group with homogeneous dimension n + . The homogeneous dimension of H is
n + m. Kaplan introduced the H-type group as a direct generalization of the Heisenberg
group, which motivates us to study the H-type group.

In this paper we prove the Hardy type inequality in the half-space on the H-type group
(see Theorem .). The half-space on the H-type group is given by H+ = {(z, t) ∈ H|tm > }.
For u ∈ C∞

 (H+), we have

∫
H+

|∇Hu| dz dt ≥ 


∫
H+

|z|
t
m

|u| dz dt

+
(Q – )(Q + )



∫
H+

d(z, t)–|z||u| dz dt

– (Q + )
∫

H+
d(z, t)–

m–∑
k=

〈
U (k)z, U (m)z

〉 tk|u|
tm

dz dt,
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where d(z, t) = (|z| + |t|) 
 and Q = n + m is the homogeneous dimension of the H-

type group.
In [], the Lp Hardy inequalities in the upper half-space Rn

+ were studied. So we are also
interested in the Lp Hardy type inequalities in the half-space on the H-type group.

In the remainder of this section we give a basic concept of H-type group and a useful
theorem.

Let (z, t), (z′, t′) ∈ H, U (j) is a n × n skew-symmetric orthogonal matrix and U (j) satisfy
U (i)U (j) + U (j)U (i) = , i, j = , , . . . , m with i �= j. The group law is given by

(z, t)
(
z′, t′) =

(
z + z′, t + t′ +



�(

zz′)),

where (�(zz′))j = 〈z, U (j)z′〉, 〈z, U (j)z′〉 is the inner product of z and U (j)z′ on Rn.
The left invariant vector fields are given by

Xj =
∂

∂xj
+




m∑
k=

( n∑
i=

siU (k)
i,j

)
∂

∂tk
, j = , , . . . , n,

Yj =
∂

∂yj
+




m∑
k=

( n∑
i=

siU (k)
i,j+n

)
∂

∂tk
, j = , , . . . , n,

Tk =
∂

∂tk
, k = , , . . . , m,

where si = xi for i = , , . . . , n and si = yi–n for i = n + , n + , . . . , n. The sub Laplacian L is
defined by

L = –
n∑

j=

(
X

j + Y 
j
)
.

We write ∇H = (X, . . . , Xn, Y, . . . , Yn) and

divH(f, f, . . . , fn) =
n∑

j=

(Xjfj + Yjfj+n).

We define the Kohn Laplacian �H by

�H =
n∑

j=

(
X

j + Y 
j
)
. ()

On the Heisenberg group, a fundamental solution for the sub Laplacian was studied in
[]. Similarly, we give a fundamental solution for �H below. For  < r < ∞ and (z, t) ∈ H,
we define δr(z, t) = (rz, rt).

Theorem . A fundamental solution for �H with source at  is given by cn,md(z, t)–Q+,
where

c–
n,m = (n + m + )( – n – m)

∫
H

|z|(d(z, t) + 
) –n–m–

 dz dt.
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For u(z, t) ∈ C∞
 (H), we have

〈
�Hu(z, t), cn,md(z, t)–Q+〉

L(H) = u(, ).

Proof For ε > , let dε(z, t) = (d(z, t) + ε) 
 , similar to [], by equation () and a direct

calculation, we have

�Hdε(z, t)–Q+ = ε–Qφ
(
δ 

ε
(z, t)

)
, ()

where

φ(z, t) = (n + m + )( – n – m)|z|(d(z, t) + 
) –n–m–

 .

From this, it follows that, for all u(z, t) ∈ C∞
 (H),

〈
�Hu(z, t), cn,md(z, t)–Q+〉

L(H) = lim
ε→

〈
�Hu(z, t), cn,mdε(z, t)–Q+〉

L(H)

= lim
ε→

〈
u(z, t), cn,m�Hdε(z, t)–Q+〉

L(H)

= u(, ). �

For ε > , the Green’s function on the half-space on the H-type group is given by

G(z, t, ε) =


(|z| + 
∑m–

j= t
j + (tm – ε))

Q–


–


(|z| + 
∑m–

j= t
j + (tm + ε))

Q–


.

2 Result
We give the main results of this paper in this section.

Theorem . For u ∈ C∞
 (H+), we have

∫
H+

|∇Hu| dz dt ≥ 


∫
H+

|z|
t
m

|u| dz dt

+
(Q – )(Q + )



∫
H+

d(z, t)–|z||u| dz dt

– (Q + )
∫

H+
d(z, t)–

m–∑
k=

〈
U (k)z, U (m)z

〉 tk|u|
tm

dz dt.

The theorems below show us the Lp Hardy type inequalities in the half-space on the
H-type group.

Theorem . Let u ∈ C∞
 (H+) and  < p < ∞, then

∫
H+

|∇Hu|p dz dt ≥
(

p – 
p

)p p


∫
H+

|u|p|z|
tp
m

dz dt

–
(

p – 
p

)p p – 


p

p–

∫
H+


tp
m

|z| p
p– |u|p dz dt. ()
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Theorem . Let u ∈ C∞
 (H+) and  < p < ∞, then

∫
H+

|∇Hu|p dz dt ≥
(

p – 
p

)p p


∫
H+

|u|p|z|
tp
m

dz dt

–
(

p – 
p

)p p – 


p

p–

∫
H+


tp
m

∣∣ – tp–
m

∣∣ p
p– |z| p

p– |u|p dz dt. ()

We also study the Lp Hardy type inequalities in the H-type group.

Theorem . Let u ∈ C∞
 (H) and  < p < ∞, then

∫
H

|∇Hu|p dz dt ≥
(

p – 
p

)p

p(Q – )
∫

H

|u|p|z|
d(–Q+)p+Q dz dt

–
(

p – 
p

)p

(p – )(Q – )
p

p–

∫
H

|u|p|z| p
p–

d(–Q+)p+ p
p– Q

dz dt. ()

Theorem . Let u ∈ C∞
 (H) and  < p < ∞. Then

∫
H

|∇Hu|p dz dt

≥
(

p – 
p

)p–

c–
n,m

∣∣u()
∣∣p +

(
p – 

p

)p

p(Q – )
∫

H

|u|p|z|
d(–Q+)p+Q dz dt

–
(

p – 
p

)p

(p – )(Q – )
p

p–

∫
H

|u|p| – d(–Q+)(p–)| p
p– |z| p

p–

d(–Q+)p+ p
p– Q

dz dt. ()

3 Hardy type inequality
This section is to show the Hardy type inequality in H+.

Proof of Theorem . Let v(z, t) = G(z, t, ε)– 
 u(z, t). Write tε = (, . . . , , ε). We know that

G(, tε , ε) = ∞, so we have v(, tε) =  and u(z, t) = G(z, t, ε) 
 v(z, t). Then we obtain

∇Hu =
(




∇HG
G

+
∇Hv

v

)
u

and

∫
H+

|∇Hu| dz dt

=



∫
H+

|∇HG|
G |u| dz dt +

∫
H+

〈∇HG,∇Hv〉
Gv

|u| dz dt +
∫

H+

|∇Hv|
v |u| dz dt

=



∫
H+

|∇HG|
G |u| dz dt +

∫
H+

v〈∇HG,∇Hv〉dz dt +
∫

H+
|∇Hv|G dz dt

=



∫
H+

|∇HG|
G |u| dz dt +




∫
H+

〈∇HG,∇Hv〉dz dt +
∫

H+
|∇Hv|G dz dt

=



∫
H+

|∇HG|
G |u| dz dt +




c–
n,mv(, tε

)
+

∫
H+

|∇Hv|G dz dt
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=



∫
H+

|∇HG|
G |u| dz dt +

∫
H+

|∇Hv|G dz dt

≥ 


∫
H+

|∇HG|
G |u| dz dt.

Using L’Hospital’s rule, we also have

lim
ε→+

G(z, t, ε)
ε

= (Q – )tmd(z, t)–Q–

and

lim
ε→+

∣∣∣∣∇HG(z, t, ε)
ε

∣∣∣∣


=
(
(Q – )

)(t
m
∣∣∇Hd(z, t)–Q–∣∣

+ d(z, t)–Q–tm
〈∇Hd(z, t)–Q–,∇Htm

〉

+
(
d(z, t)–Q–)|∇Htm|).

Because

∇Htm =

(



n∑
i=

siU (m)
i, , . . . ,




n∑
i=

siU (m)
i,n ,




n∑
i=

siU (m)
i,+n, . . . ,




n∑
i=

siU (m)
i,n

)
,

from this we can see that

|∇Htm| =

((



n∑
i=

siU (m)
i,

)

+ · · · +

(



n∑
i=

siU (m)
i,n

)

+

(



n∑
i=

siU (m)
i,+n

)

+ · · · +

(



n∑
i=

siU (m)
i,n

)) 


=


|z|.

By a direct calculation, we get

∣∣∇Hd(z, t)
∣∣ =

|z|
d(z, t) .

Thus we have

∣∣∇Hd(z, t)–Q–∣∣ = (Q + )d(z, t)–Q–|z|,

|∇Htm| =



|z|, ()

and

〈∇Hd(z, t)–Q–,∇Htm
〉

= (–Q – )d(z, t)–Q–

( m∑
k=

〈
U (k)z, U (m)z

〉
tk

)
.
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Consequently, we have

lim
ε→+

∣∣∣∣∇HG(z, t, ε)
ε

∣∣∣∣


=
(
(Q – )

)
(

(Q + )d(z, t)–Q–|z|t
m

+ (–Q – )d(z, t)–Q–〈U (m)z, U (m)z
〉
t
m +




d(z, t)–Q–|z|

+ (–Q – )d(z, t)–Q–
m–∑
k=

〈
U (k)z, U (m)z

〉
tmtk

)
.

This finishes the proof of the theorem. �

4 Lp Hardy type inequality
In this section, we are going to consider the Lp Hardy type inequalities in H+ and H, re-
spectively. Let � be a domain in H. We write 	(z, t) = dist((z, t), ∂�). Similar to [], we have
the lemma below.

Lemma . Let u ∈ C∞
 (�), l ∈ {, , , . . .},  < p < ∞, s ∈ (–∞, lp – ), Fj ∈ C(�), j =

, , . . . , n, F = (F, F, . . . , Fn) and w ∈ C(�) be a nonnegative weight function. We write
C(p, l, s) = ( lp–s–

p )p, then we have

∫
�

|∇Hu|pw
	(l–)p–s dz dt ≥ C(p, l, s)

∫
�

p|u|p|∇H	|w
	lp–s dz dt

– C(p, l, s)
∫

�

p|u|p�H	w
(lp – s – )	lp–s– dz dt

+ C(p, l, s)
∫

�

p divH F|u|pw
lp – s – 

dz dt

– C(p, l, s)
∫

�

p – 
	lp–s

∣∣∇H	 – 	lp–s–F
∣∣ p

p– |u|pw dz dt

+
(

lp – s – 
p

)p– ∫
�

∇Hw
(

F –
∇H	

	lp–s–

)
|u|p dz dt. ()

Proof Applying Hölder’s inequality, we can deduce that

pp
∫

�

|∇Hu|pw
	(l–)p–s dz dt

(∫
�

∣∣∣∣ ∇H	

	
l(p–)+ s

p –s
– 	

l–– s
p F

∣∣∣∣
p

p– |u|pw dz dt
)p–

≥ pp
∣∣∣∣
∫

�

(∇H	w
	lp–s– – Fw

)(
sign(u)|u|p–)∇Hu dz dt

∣∣∣∣
p

.

On the other hand, by partial integration we get

pp
∣∣∣∣
∫

�

(∇H	w
	lp–s– – Fw

)(
sign(u)|u|p–)∇Hu dz dt

∣∣∣∣
p

=
∣∣∣∣
∫

�

((
(lp – s – )|∇H	|

	lp–s –
�H	

	lp–s– + divH F
)

w

+ ∇Hw
(

F –
∇H	

	lp–s–

))
|u|p dz dt

∣∣∣∣
p

.
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Thus we obtain

pp
∫

�

|∇Hu|pw
	(l–)p–s dz dt

≥
∣∣∣∣
∫

�

((
(lp – s – )|∇H	|

	lp–s –
�H	

	lp–s– + divH F
)

w

+ ∇Hw
(

F –
∇H	

	lp–s–

))
|u|p dz dt

∣∣∣∣
p

×
(∫

�

∣∣∣∣ ∇H	

	
l(p–)+ s

p –s
– 	

l–– s
p F

∣∣∣∣
p

p– |u|pw dz dt
)–p+

.

It is clear that |a|p
bp– ≥ pa – (p – )b for b > . Then we have equation (). �

For F = , we have

∫
�

|∇Hu|pw
	(l–)p–s dz dt ≥ C(p, l, s)

∫
�

p|u|p|∇H	|w
	lp–s dz dt

– C(p, l, s)
∫

�

p|u|p�H	w
(lp – s – )	lp–s– dz dt

– C(p, l, s)
∫

�

p – 
	lp–s |∇H	| p

p– |u|pw dz dt

–
(

lp – s – 
p

)p– ∫
�

∇Hw∇H	

	lp–s– |u|p dz dt.

Now, let us discuss the Lp Hardy type inequalities in H+. Let l = , s = , and w = , we
have by equation ()

∫
�

|∇Hu|p dz dt ≥
(

p – 
p

)p ∫
�

p|u|p|∇H	|
	p dz dt

–
(

p – 
p

)p ∫
�

p|u|p�H	

(p – )	p– dz dt

+
(

p – 
p

)p ∫
�

p divH F|u|p
p – 

dz dt

–
(

p – 
p

)p ∫
�

p – 
	p

∣∣∇H	 – 	p–F
∣∣ p

p– |u|p dz dt. ()

For � = H+, we have 	 = tm. So we get

∫
H+

|∇Hu|p dz dt ≥
(

p – 
p

)p ∫
H+

p|u|p|∇Htm|
tp
m

dz dt

–
(

p – 
p

)p ∫
H+

p|u|p�Htm

(p – )tp–
m

dz dt

+
(

p – 
p

)p ∫
H+

p divH F|u|p
p – 

dz dt

–
(

p – 
p

)p ∫
H+

p – 
tp
m

∣∣∇Htm – tp–
m F

∣∣ p
p– |u|p dz dt. ()
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Proof of Theorem . We know that

|∇Htm| =


|z|

and

�Htm = .

Set F = , using equation (), then we obtain equation (). �

Proof of Theorem . Set F = ∇Htm. Since U (m) is a n × n skew-symmetric orthogonal
matrix, we have

divH F =
n∑

j=

Xj



n∑
i=

siU (m)
i,j +

n∑
j=

Yj



n∑
i=

siU (m)
i,j+n

=
n∑

j=




U (m)
j,j +

n∑
j=




U (m)
j+n,j+n

= .

Using equation (), we have equation (). �

Now we are going to deal with the Lp Hardy type inequalities in H.

Lemma . Let u ∈ C∞
 (H), l ∈ {, , , . . .},  < p < ∞, s ∈ (–∞, lp – ), Fj ∈ C(H), j =

, , . . . , n, F = (F, F, . . . , Fn) and w ∈ C(H) be a nonnegative weight function. Then we
have

∫
H

|∇Hu|pw
(d–Q+)(l–)p–s dz dt

≥ C(p, l, s)
∫

H

p|u|p|∇Hd–Q+|w
(d–Q+)lp–s dz dt + C(p, l, s)

∫
H

p divH F|u|pw
lp – s – 

dz dt

– C(p, l, s)
∫

H

p – 
(d–Q+)lp–s

∣∣∇Hd–Q+ –
(
d–Q+)lp–s–F

∣∣ p
p– |u|pw dz dt

+
(

lp – s – 
p

)p– ∫
H

∇Hw
(

F –
∇Hd–Q+

(d–Q+)lp–s–

)
|u|p dz dt, ()

where C(p, l, s) = ( lp–s–
p )p.

Proof Similar to Lemma ., we have

∫
H

|∇Hu|pw
(d–Q+)(l–)p–s dz dt

≥ C(p, l, s)
∫

H

p|u|p|∇Hd–Q+|w
(d–Q+)lp–s dz dt

– C(p, l, s)
∫

H

p|u|p�Hd–Q+w
(lp – s – )(d–Q+)lp–s– dz dt
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+ C(p, l, s)
∫

H

p divH F|u|pw
lp – s – 

dz dt

– C(p, l, s)
∫

H

p – 
(d–Q+)lp–s

∣∣∇Hd–Q+ –
(
d–Q+)lp–s–F

∣∣ p
p– |u|pw dz dt

+
(

lp – s – 
p

)p– ∫
H

∇Hw
(

F –
∇Hd–Q+

(d–Q+)lp–s–

)
|u|p dz dt. ()

We know that cn,md(z, t)–Q+ is a fundamental solution for �H. So we have

∫
H

|u|p�Hd–Q+w
(d–Q+)lp–s– dz dt = c–

n,m
∣∣u()

∣∣pw()d()(Q–)(lp–s–) = . �

For l = , s = , and w = , we have

∫
H

|∇Hu|p dz dt

≥
(

p – 
p

)p ∫
H

p|u|p|∇Hd–Q+|
(d–Q+)p dz dt

+
(

p – 
p

)p ∫
H

p divH F|u|p
p – 

dz dt

–
(

p – 
p

)p ∫
H

p – 
(d–Q+)p

∣∣∇Hd–Q+ –
(
d–Q+)p–F

∣∣ p
p– |u|p dz dt. ()

Set F = , then we get

∫
H

|∇Hu|p dz dt ≥
(

p – 
p

)p ∫
H

p|u|p|∇Hd–Q+|
(d–Q+)p dz dt

–
(

p – 
p

)p ∫
H

p – 
(d–Q+)p

∣∣∇Hd–Q+∣∣ p
p– |u|p dz dt. ()

Proof of Theorem . It is obvious that

|∇Hd| =
|z|
d .

So we have

∣∣∇Hd–Q+∣∣ = (Q – )d(–Q+) |z|
d . ()

From this together with (), we get equation (). �

Proof of Theorem . Let F = ∇Hd–Q+. Then we have divH F = divH ∇Hd–Q+ = �Hd–Q+.
From equations () and (), it follows that

∫
H

|∇Hu|p dz dt

≥
(

p – 
p

)p

p(Q – )
∫

H

|u|p|z|
d(–Q+)p+Q dz dt
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+
(

p – 
p

)p ∫
H

p�Hd–Q+|u|p
p – 

dz dt

–
(

p – 
p

)p

(p – )(Q – )
p

p–

∫
H

|u|p| – d(–Q+)(p–)| p
p– |z| p

p–

d(–Q+)p+ p
p– Q

dz dt,

which implies that

∫
H

|∇Hu|p dz dt

≥
(

p – 
p

)p–

c–
n,m

∣∣u()
∣∣p +

(
p – 

p

)p

p(Q – )
∫

H

|u|p|z|
d(–Q+)p+Q dz dt

–
(

p – 
p

)p

(p – )(Q – )
p

p–

∫
H

|u|p| – d(–Q+)(p–)| p
p– |z| p

p–

d(–Q+)p+ p
p– Q

dz dt.

So we have equation (). �
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