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1 Introduction
Let X and Y be Banach spaces. The essential norm of a bounded linear operator T : X → Y
is its distance to the set of compact operators K mapping X into Y , that is,

‖T‖e,X→Y = inf
{‖T – K‖X→Y : K is compact

}
,

where ‖ · ‖X→Y is the operator norm.
Let D be the open unit disk in the complex plane C and H(D) the space of analytic func-

tions on D. Let ϕ be a nonconstant analytic self-map of D, u ∈ H(D), and n be a nonneg-
ative integer. The generalized weighted composition operator, denoted by Dn

ϕ,u, is defined
on H(D) by

(
Dn

ϕ,uf
)
(z) = u(z)f (n)(ϕ(z)

)
, z ∈D.

When n = , the generalized weighted composition operator Dn
ϕ,u is the weighted compo-

sition operator, denoted by uCϕ . In particular, when n =  and u = , we get the compo-
sition operator Cϕ . If n =  and u(z) = ϕ′(z), then Dn

ϕ,u = DCϕ , which was widely studied,
for example, in [–]. If u(z) = , then Dn

ϕ,u = CϕDn, which was studied, for example, in
[, , , ]. For the study of the generalized weighted composition operator on various
function spaces see, for example, [–]. Recently there has been a huge interest in the
study of various related product-type operators containing composition operators; see,
e.g., [–] and the references therein.
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The Bloch space, denoted by B, is defined to be the set of all f ∈ H(D) such that

‖f ‖B =
∣∣f ()

∣∣ + sup
z∈D

(
 – |z|)∣∣f ′(z)

∣∣ < ∞.

B is a Banach space with the above norm. An f ∈ B is said to belong to the little Bloch space
B if lim|z|→ |f ′(z)|( – |z|) = . See [] for more information of Bloch spaces. Composi-
tion operators, as well as weighted composition operators mapping into Bloch-type spaces
were studied a lot see, for example, [, , , –].

The Zygmund space, denoted by Z , is the space consisting of all f ∈ H(D) such that

‖f ‖Z =
∣∣f ()

∣∣ +
∣∣f ′()

∣∣ + sup
z∈D

(
 – |z|)∣∣f ′′(z)

∣∣ < ∞.

It is easy to see that Z is a Banach space with the above norm ‖ · ‖Z . See [, , , , ,
, , –] for some results of the Zygmund space and related operators mapping into
the Zygmund space or into some of its generalizations.

In , Madigan and Matheson proved that Cϕ : B → B is compact if and only if (see
[])

lim
|ϕ(z)|→

( – |z|)
( – |ϕ(z)|)

∣∣ϕ′(z)
∣∣ = .

In , Montes-Rodrieguez in [] obtained the exact value for the essential norm of the
operator Cϕ : B → B, i.e.,

‖Cϕ‖e,B→B = lim
s→

sup
|ϕ(z)|>s

( – |z|)|ϕ′(z)|
( – |ϕ(z)|)

.

Tjani in [] proved that Cϕ : B → B is compact if and only if lim|a|→ ‖Cϕσa‖B = ,
where σa = a–z

–az . Wulan et al. in [] showed that Cϕ : B → B is compact if and only if
limj→∞ ‖ϕj‖B = . Ohno et al. studied the boundedness and compactness of the operator
uCϕ on the Bloch space in []. The estimate for the essential norm of the operator uCϕ

on the Bloch space was given in []. Some new estimates for the essential norm of uCϕ

on the Bloch space were given in [, ]. In [], Zhu has obtained some estimates for the
essential norm of Dn

ϕ,u on the Bloch space when n is a positive integer.
Stević studied the boundedness and compactness of Dn

ϕ,u : B →Z in [] (see also []).
In [], Li and Fu obtained a new characterization for the boundedness, as well as the
compactness for Dn

ϕ,u : B →Z by using three families of functions. We combine the results
in [] and [] as follows.

Theorem A Let n be a positive integer, u ∈ H(D), and ϕ be an analytic self-map of D.
Suppose that Dn

ϕ,u : B →Z is bounded, then the following statements are equivalent:
(a) The operator Dn

ϕ,u : B →Z is compact.
(b)

lim
|ϕ(w)|→

∥∥Dn
ϕ,ufϕ(w)

∥∥
Z = lim

|ϕ(w)|→

∥∥Dn
ϕ,ugϕ(w)

∥∥
Z = lim

|ϕ(w)|→

∥∥Dn
ϕ,uhϕ(w)

∥∥
Z = ,
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where

fϕ(w)(z) =
 – |ϕ(w)|
 – ϕ(w)z

, gϕ(w)(z) =
( – |ϕ(w)|)

( – ϕ(w)z)
,

hϕ(w)(z) =
( – |ϕ(w)|)

( – ϕ(w)z)
, z ∈D.

(c)

lim
|ϕ(z)|→

( – |z|)|u′′(z)|
( – |ϕ(z)|)n = lim

|ϕ(z)|→

( – |z|)|u(z)||ϕ′(z)|
( – |ϕ(z)|)n+

= lim
|ϕ(z)|→

( – |z|)|u′(z)ϕ′(z) + u(z)ϕ′′(z)|
( – |ϕ(z)|)+n = .

Motivated by these observations, the purpose of this paper is to give some estimates of
the essential norm for the operator Dn

ϕ,u : B → Z . Moreover, we give a new characteriza-
tion for the boundedness, compactness, and essential norm of the operator Dn

ϕ,u : B →Z .
Throughout this paper, we say that P � Q if there exists a constant C such that P ≤ CQ.

The symbol P ≈ Q means that P � Q � P.

2 Essential norm of Dn
ϕ,u : B → Z

In this section, we give two estimates of the essential norm for the operator Dn
ϕ,u : B →Z .

Theorem . Let n be a positive integer, u ∈ H(D), and ϕ be an analytic self-map of D such
that Dn

ϕ,u : B →Z is bounded. Then

∥∥Dn
ϕ,u

∥∥
e,B→Z ≈ max{A, B, C} ≈ max{E, F , G},

where

A := lim sup
|a|→

∥∥∥∥Dn
ϕ,u

(
 – |a|
 – az

)∥∥∥∥
Z

, B := lim sup
|a|→

∥∥∥∥Dn
ϕ,u

(
( – |a|)

( – az)

)∥∥∥∥
Z

,

C := lim sup
|a|→

∥∥∥∥Dn
ϕ,u

(
( – |a|)

( – az)

)∥∥∥∥
Z

, F := lim sup
|ϕ(z)|→

( – |z|)|u′′(z)|
( – |ϕ(z)|)n ,

E := lim sup
|ϕ(z)|→

( – |z|)|u′(z)ϕ′(z) + u(z)ϕ′′(z)|
( – |ϕ(z)|)n+ ,

and

G := lim sup
|ϕ(z)|→

( – |z|)|u(z)||ϕ′(z)|
( – |ϕ(z)|)n+ .

Proof First we prove that max{A, B, C} ≤ ‖Dn
ϕ,u‖e,B→Z . Let a ∈D. Define

fa(z) =
 – |a|
( – az)

, ga(z) =
( – |a|)

( – az) , ha(z) =
( – |a|)

( – az) , z ∈D.

It is easy to check that fa, ga, ha ∈ B and ‖fa‖B � , ‖ga‖B � , ‖ha‖B �  for all a ∈ D

and fa, ga, ha converge to  weakly in B as |a| → . This follows since a bounded sequence



Hu et al. Journal of Inequalities and Applications  (2016) 2016:123 Page 4 of 16

contained inB which converges uniformly to  on compact subsets ofD converges weakly
to  in B (see [, ]). Thus, for any compact operator K : B →Z , we have

lim|a|→
‖Kfa‖Z = , lim|a|→

‖Kga‖Z = , lim|a|→
‖Kha‖Z = .

Hence

∥∥Dn
ϕ,u – K

∥∥
B→Z � lim sup

|a|→

∥∥(
Dn

ϕ,u – K
)
fa

∥∥
Z

≥ lim sup
|a|→

∥∥Dn
ϕ,ufa

∥∥
Z – lim sup

|a|→
‖Kfa‖Z = A,

∥∥Dn
ϕ,u – K

∥∥
B→Z � lim sup

|a|→

∥∥(
Dn

ϕ,u – K
)
ga

∥∥
Z

≥ lim sup
|a|→

∥∥Dn
ϕ,uga

∥∥
Z – lim sup

|a|→
‖Kga‖Z = B,

and

∥∥Dn
ϕ,u – K

∥∥
B→Z � lim sup

|a|→

∥∥(
Dn

ϕ,u – K
)
ha

∥∥
Z

≥ lim sup
|a|→

∥∥Dn
ϕ,uha

∥∥
Z – lim sup

|a|→
‖Kha‖Z = C.

Therefore, from the definition of the essential norm, we obtain

∥∥Dn
ϕ,u

∥∥
e,B→Z = inf

K

∥∥Dn
ϕ,u – K

∥∥
B→Z � max{A, B, C}.

Next, we prove that ‖Dn
ϕ,u‖e,B→Z � max{E, F , G}. Let {zj}j∈N be a sequence in D such that

|ϕ(zj)| →  as j → ∞. Define

kj(z) =
 – |ϕ(zj)|
 – ϕ(zj)z

–
n + 

(n + )(n + )
( – |ϕ(zj)|)

( – ϕ(zj)z)
+


(n + )(n + )

( – |ϕ(zj)|)

( – ϕ(zj)z)
,

lj(z) =
 – |ϕ(zj)|
 – ϕ(zj)z

–
(n + )

 + (n + )(n + )
( – |ϕ(zj)|)

( – ϕ(zj)z)
+


 + (n + )(n + )

( – |ϕ(zj)|)

( – ϕ(zj)z)
,

and

mj(z) =
 – |ϕ(zj)|
 – ϕ(zj)z

–


n + 
( – |ϕ(zj)|)

( – ϕ(zj)z)
+


(n + )(n + )

( – |ϕ(zj)|)

( – ϕ(zj)z)
.

Similarly to the above we see that all kj, lj, and mj belong to B and converge to  weakly
in B. Moreover,

k(n)
j

(
ϕ(zj)

)
= , k(n+)

j
(
ϕ(zj)

)
= ,

∣∣k(n+)
j

(
ϕ(zj)

)∣∣ =
n!

n + 
|ϕ(zj)|n+

( – |ϕ(zj)|)n+ ,

l(n+)
j

(
ϕ(zj)

)
= , l(n+)

j
(
ϕ(zj)

)
= ,

∣∣l(n)
j

(
ϕ(zj)

)∣∣ =
n!

 + (n + )(n + )
|ϕ(zj)|n

( – |ϕ(zj)|)n ,

m(n)
j

(
ϕ(zj)

)
= , m(n+)

j
(
ϕ(zj)

)
= ,

∣∣m(n+)
j

(
ϕ(zj)

)∣∣ = n!
|ϕ(zj)|n+

( – |ϕ(zj)|)n+ .
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Then for any compact operator K : B →Z , we obtain

∥∥Dn
ϕ,u – K

∥∥
B→Z � lim sup

j→∞

∥∥Dn
ϕ,u(kj)

∥∥
Z – lim sup

j→∞

∥∥K(kj)
∥∥
Z

� lim sup
j→∞

( – |zj|)|u′(zj)ϕ′(zj) + u(zj)ϕ′′(zj)||ϕ(zj)|n+

( – |ϕ(zj)|)n+ ,

∥∥Dn
ϕ,u – K

∥∥
B→Z � lim sup

j→∞

∥∥Dn
ϕ,u(lj)

∥∥
Z – lim sup

j→∞

∥∥K(lj)
∥∥
Z

� lim sup
j→∞

( – |zj|)|u′′(zj)||ϕ(zj)|n
( – |ϕ(zj)|)n ,

and

∥∥Dn
ϕ,u – K

∥∥
B→Z � lim sup

j→∞

∥∥Dn
ϕ,u(mj)

∥∥
Z – lim sup

j→∞

∥∥K(mj)
∥∥
Z

� lim sup
j→∞

( – |zj|)|u(zj)||ϕ′(zj)||ϕ(zj)|n+

( – |ϕ(zj)|)n+ .

From the definition of the essential norm, we obtain

∥∥Dn
ϕ,u

∥∥
e,B→Z = inf

K

∥∥Dn
ϕ,u – K

∥∥
B→Z

� lim sup
j→∞

( – |zj|)|u′(zj)ϕ′(zj) + u(zj)ϕ′′(zj)||ϕ(zj)|n+

( – |ϕ(zj)|)n+

= lim sup
|ϕ(z)|→

( – |z|)|u′(z)ϕ′(z) + u(z)ϕ′′(z)|
( – |ϕ(z)|)n+ = E,

∥∥Dn
ϕ,u

∥∥
e,B→Z = inf

K

∥∥Dn
ϕ,u – K

∥∥
B→Z

� lim sup
j→∞

( – |zj|)|u′′(zj)||ϕ(zj)|n
( – |ϕ(zj)|)n

= lim sup
|ϕ(z)|→

( – |z|)|u′′(z)|
( – |ϕ(z)|)n = F ,

and

∥∥Dn
ϕ,u

∥∥
e,B→Z = inf

K

∥∥Dn
ϕ,u – K

∥∥
B→Z

� lim sup
j→∞

( – |zj|)|u(zj)||ϕ′(zj)||ϕ(zj)|n+

( – |ϕ(zj)|)n+

= lim sup
|ϕ(z)|→

( – |z|)|u(z)||ϕ′(z)|
( – |ϕ(z)|)n+ = G.

Hence

∥∥Dn
ϕ,u

∥∥
e,B→Z � max{E, F , G}.
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Now, we prove that

∥∥Dn
ϕ,u

∥∥
e,B→Z � max{A, B, C} and

∥∥Dn
ϕ,u

∥∥
e,B→Z � max{E, F , G}.

For r ∈ [, ), set Kr : H(D) → H(D) by (Krf )(z) = fr(z) = f (rz), f ∈ H(D). It is obvious that
fr → f uniformly on compact subsets of D as r → . Moreover, the operator Kr is compact
on B and ‖Kr‖B→B ≤  (see []). Let {rj} ⊂ (, ) be a sequence such that rj →  as j → ∞.
Then for all positive integer j, the operator Dn

ϕ,uKrj : B → Z is compact. By the definition
of the essential norm, we get

∥∥Dn
ϕ,u

∥∥
e,B→Z ≤ lim sup

j→∞

∥∥Dn
ϕ,u – Dn

ϕ,uKrj

∥∥
B→Z . (.)

Therefore, we only need to prove that

lim sup
j→∞

∥∥Dn
ϕ,u – Dn

ϕ,uKrj

∥∥
B→Z � max{A, B, C}

and

lim sup
j→∞

∥∥Dn
ϕ,u – Dn

ϕ,uKrj

∥∥
B→Z � max{E, F , G}.

For any f ∈ B such that ‖f ‖B ≤ , we consider

∥∥(
Dn

ϕ,u – Dn
ϕ,uKrj

)
f
∥∥
Z

=
∣∣u()f (n)(ϕ()

)
– rn

j u()f (n)(rjϕ()
)∣∣

+
∣∣u′()(f – frj )

(n)(ϕ()
)

+ u()(f – frj )
(n+)(ϕ()

)
ϕ′()

∣∣

+
∥∥u · (f – frj )

(n) ◦ ϕ
∥∥∗, (.)

where ‖f ‖∗ = supz∈D( – |z|)|f ′′(z)|.
It is obvious that

lim
j→∞

∣∣u()f (n)(ϕ()
)

– rn
j u()f (n)(rjϕ()

)∣∣ =  (.)

and

lim
j→∞

∣∣u′()(f – frj )
(n)(ϕ()

)
+ u()(f – frj )

(n+)(ϕ()
)
ϕ′()

∣∣ = . (.)

Now, we consider

lim sup
j→∞

∥∥u · (f – frj )
(n) ◦ ϕ

∥∥∗

≤ lim sup
j→∞

sup
|ϕ(z)|≤rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣

∣
∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣

+ lim sup
j→∞

sup
|ϕ(z)|>rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣



Hu et al. Journal of Inequalities and Applications  (2016) 2016:123 Page 7 of 16

+ lim sup
j→∞

sup
|ϕ(z)|≤rN

(
 – |z|)∣∣(f – frj )

(n)(ϕ(z)
)∣∣∣∣u′′(z)

∣∣

+ lim sup
j→∞

sup
|ϕ(z)|>rN

(
 – |z|)∣∣(f – frj )

(n)(ϕ(z)
)∣∣∣∣u′′(z)

∣∣

+ lim sup
j→∞

sup
|ϕ(z)|≤rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣

+ lim sup
j→∞

sup
|ϕ(z)|>rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣

= Q + Q + Q + Q + Q + Q, (.)

where N ∈N is large enough such that rj ≥ 
 for all j ≥ N ,

Q := lim sup
j→∞

sup
|ϕ(z)|≤rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣,

Q := lim sup
j→∞

sup
|ϕ(z)|>rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣,

Q := lim sup
j→∞

sup
|ϕ(z)|≤rN

(
 – |z|)∣∣(f – frj )

(n)(ϕ(z)
)∣∣∣∣u′′(z)

∣∣,

Q := lim sup
j→∞

sup
|ϕ(z)|>rN

(
 – |z|)∣∣(f – frj )

(n)(ϕ(z)
)∣∣∣∣u′′(z)

∣∣,

Q := lim sup
j→∞

sup
|ϕ(z)|≤rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣,

and

Q := lim sup
j→∞

sup
|ϕ(z)|>rN

(
 – |z|)∣∣(f – frj )

(n+)(ϕ(z)
)∣∣∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣.

Since Dn
ϕ,u : B →Z is bounded, by Theorem  of [], we see that u ∈Z ,

K̃ := sup
z∈D

(
 – |z|)∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣ < ∞

and

K̃ := sup
z∈D

(
 – |z|)∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣ < ∞.

Since rn+
j f (n+)

rj → f (n+), as well as rn+
j f (n+)

rj → f (n+) uniformly on compact subsets of D
as j → ∞, we have

Q ≤ K̃ lim sup
j→∞

sup
|w|≤rN

∣∣f (n+)(w) – rn+
j f (n+)(rjw)

∣∣ =  (.)

and

Q ≤ K̃ lim sup
j→∞

sup
|w|≤rN

∣∣f (n+)(w) – rn+
j f (n+)(rjw)

∣
∣ = . (.)
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Similarly, from the fact that u ∈Z we have

Q ≤ ‖u‖Z lim sup
j→∞

sup
|w|≤rN

∣∣f (n)(w) – rn
j f (n)(rjw)

∣∣ = . (.)

Next we consider Q. We have Q ≤ lim supj→∞(S + S), where

S := sup
|ϕ(z)|>rN

(
 – |z|)∣∣f (n+)(ϕ(z)

)∣∣∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)
∣∣

and

S := sup
|ϕ(z)|>rN

(
 – |z|)rn+

j
∣∣f (n+)(rjϕ(z)

)∣∣∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)
∣∣.

First we estimate S. Using the fact that ‖f ‖B ≤  and Theorem . in [], we have

S = sup
|ϕ(z)|>rN

(
 – |z|)∣∣f (n+)(ϕ(z)

)∣∣∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)
∣∣

× ( – |ϕ(z)|)n+(n + )
|ϕ(z)|n+n!

|ϕ(z)|n+n!
(n + )( – |ϕ(z)|)n+

� (n + )‖f ‖B
n!rn+

N
sup

|ϕ(z)|>rN

(
 – |z|)∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣

× n!|ϕ(z)|n+

(n + )( – |ϕ(z)|)n+

� sup
|ϕ(z)|>rN

(
 – |z|)∣∣u′(z)ϕ′(z) + u(z)ϕ′′(z)

∣∣ n!|ϕ(z)|n+

(n + )( – |ϕ(z)|)n+

� sup
|a|>rN

∥∥∥∥Dn
ϕ,u

(
fa –

(n + )ga

(n + )(n + )
+

ha

(n + )(n + )

)∥∥∥∥
Z

� sup
|a|>rN

∥∥Dn
ϕ,u(fa)

∥∥
Z +

n + 
(n + )(n + )

sup
|a|>rN

∥∥Dn
ϕ,u(ga)

∥∥
Z

+


(n + )(n + )
sup

|a|>rN

∥∥Dn
ϕ,u(ha)

∥∥
Z . (.)

Taking the limit as N → ∞ we obtain

lim sup
j→∞

S � lim sup
|a|→

∥∥Dn
ϕ,u(fa)

∥∥
Z + lim sup

|a|→

∥∥Dn
ϕ,u(ga)

∥∥
Z

+ lim sup
|a|→

∥∥Dn
ϕ,u(ha)

∥∥
Z

= A + B + C.

Similarly, we have lim supj→∞ S � A + B + C, i.e., we get

Q � A + B + C � max{A, B, C}. (.)

From (.), we see that

lim sup
j→∞

S � lim sup
|ϕ(z)|→

( – |z|)|u′(z)ϕ′(z) + u(z)ϕ′′(z)|
( – |ϕ(z)|)n+ = E.
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Similarly we have lim supj→∞ S � E. Therefore

Q � E. (.)

Next we consider Q. We have Q ≤ lim supj→∞(S + S), where

S := sup
|ϕ(z)|>rN

(
 – |z|)∣∣f (n)(ϕ(z)

)∣∣∣∣u′′(z)
∣∣

and

S := sup
|ϕ(z)|>rN

(
 – |z|)rn

j
∣∣f (n)(rjϕ(z)

)∣∣∣∣u′′(z)
∣∣.

After some calculation, we have

S = sup
|ϕ(z)|>rN

(
 – |z|)∣∣f (n)(ϕ(z)

)∣∣∣∣u′′(z)
∣∣

× ( – |ϕ(z)|)n( + (n + )(n + ))
n!|ϕ(z)|n


 + (n + )(n + )

n!|ϕ(z)|n
( – |ϕ(z)|)n

� n( + (n + )(n + ))
n!

‖f ‖B sup
|ϕ(z)|>rN

(
 – |z|)∣∣u′′(z)

∣∣

× 
 + (n + )(n + )

n!|ϕ(z)|n
( – |ϕ(z)|)n

� sup
|ϕ(z)|>rN

n!
 + (n + )(n + )

( – |z|)|u′′(z)||ϕ(z)|n
( – |ϕ(z)|)n

� sup
|a|>rN

∥∥Dn
ϕ,u(fa)

∥∥
Z +

(n + )
 + (n + )(n + )

sup
|a|>rN

∥∥Dn
ϕ,u(ga)

∥∥
Z

+


 + (n + )(n + )
sup

|a|>rN

∥∥Dn
ϕ,u(ha)

∥∥
Z

� sup
|a|>rN

∥∥Dn
ϕ,u(fa)

∥∥
Z + sup

|a|>rN

∥∥Dn
ϕ,u(ga)

∥∥
Z + sup

|a|>rN

∥∥Dn
ϕ,u(ha)

∥∥
Z . (.)

Taking the limit as N → ∞ we obtain

lim sup
j→∞

S � lim sup
|a|→

∥∥Dn
ϕ,u(fa)

∥∥
Z + lim sup

|a|→

∥∥Dn
ϕ,u(ga)

∥∥
Z

+ lim sup
|a|→

∥∥Dn
ϕ,u(ha)

∥∥
Z

= A + B + C.

Similarly, we have lim supj→∞ S � A + B + C, i.e., we get

Q � A + B + C � max{A, B, C}. (.)

From (.), we see that

lim sup
j→∞

S � lim sup
|ϕ(z)|→

( – |z|)β |u′′(z)|
( – |ϕ(z)|)n = F .
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Similarly we have lim supj→∞ S � F . Therefore

Q � F . (.)

Finally we consider Q. We have Q ≤ lim supj→∞(S + S), where

S := sup
|ϕ(z)|>rN

(
 – |z|)∣∣f (n+)(ϕ(z)

)∣∣∣∣ϕ′(z)
∣∣∣∣u(z)

∣∣

and

S := sup
|ϕ(z)|>rN

(
 – |z|)rn+

j
∣∣f (n+)(rjϕ(z)

)∣∣∣∣ϕ′(z)
∣∣∣∣u(z)

∣∣.

After some calculation, we have

S �
n+‖f ‖B

n!
sup

|ϕ(z)|>rN

(
 – |z|)∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣ n!|ϕ(z)|n+

( – |ϕ(z)|)n+

� n+

n!
sup

|ϕ(z)|>rN

(
 – |z|)∣∣ϕ′(z)

∣∣∣∣u(z)
∣∣ n!|ϕ(z)|n+

( – |ϕ(z)|)n+

� sup
|a|>rN

∥∥∥∥Dn
ϕ,u

(
fa –


n + 

ga +


(n + )(n + )
ha

)∥∥∥∥
Z

� sup
|a|>rN

∥∥Dn
ϕ,u(fa)

∥∥
Z +


n + 

sup
|a|>rN

∥∥Dn
ϕ,u(ga)

∥∥
Z +


(n + )(n + )

sup
|a|>rN

∥∥Dn
ϕ,u(ha)

∥∥
Z

≤ sup
|a|>rN

∥∥Dn
ϕ,u(fa)

∥∥
Z + sup

|a|>rN

∥∥Dn
ϕ,u(ga)

∥∥
Z + sup

|a|>rN

∥∥Dn
ϕ,u(ha)

∥∥
Z . (.)

Taking the limit as N → ∞ we obtain

lim sup
j→∞

S � lim sup
|a|→

∥∥Dn
ϕ,u(fa)

∥∥
Z + lim sup

|a|→

∥∥Dn
ϕ,u(ga)

∥∥
Z

+ lim sup
|a|→

∥∥Dn
ϕ,u(ha)

∥∥
Z

= A + B + C.

Similarly, we have lim supj→∞ S � A + B + C, i.e., we get

Q � A + B + C � max{A, B, C}. (.)

From (.), we see that

lim sup
j→∞

S � lim sup
|ϕ(z)|→

( – |z|)|ϕ′(z)||u(z)|
( – |ϕ(z)|)n+ = G.

Similarly we have lim supj→∞ S � G. Therefore

Q � G. (.)
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Hence, by (.), (.), (.), (.), (.), (.), (.), (.), (.), and (.) we get

lim sup
j→∞

∥∥Dn
ϕ,u – Dn

ϕ,uKrj

∥∥
B→Z

= lim sup
j→∞

sup
‖f ‖B≤

∥∥(
Dn

ϕ,u – Dn
ϕ,uKrj

)
f
∥∥
Z

= lim sup
j→∞

sup
‖f ‖B≤

∥∥u · (f – frj )
(n) ◦ ϕ

∥∥∗ � max{A, B, C}. (.)

Similarly, by (.), (.), (.), (.), (.), (.), (.), (.), (.), and (.) we get

lim sup
j→∞

∥∥Dn
ϕ,u – Dn

ϕ,uKrj

∥∥
B→Z � max{E, F , G}. (.)

Therefore, by (.), (.), and (.), we obtain

∥∥Dn
ϕ,u

∥∥
e,B→Z � max{A, B, C} and

∥∥Dn
ϕ,u

∥∥
e,B→Z � max{E, F , G}.

This completes the proof of Theorem .. �

3 New characterization of Dn
ϕ,u : B →Z

In this section, we give a new characterization for the boundedness, compactness, and
essential norm of the operator Dn

ϕ,u : B →Z . For this purpose, we present some definitions
and some lemmas which will be used later.

The weighted space, denoted by H∞
v , consists of all f ∈ H(D) such that

‖f ‖v = sup
z∈D

v(z)
∣∣f (z)

∣∣ < ∞,

where v : D→ R+ is a continuous, strictly positive, and bounded function. H∞
v is a Banach

space under the norm ‖ · ‖v. The weighted v is called radial if v(z) = v(|z|) for all z ∈ D. The
associated weight ṽ of v is as follows:

ṽ =
(
sup

{∣∣f (z)
∣∣ : f ∈ H∞

v ,‖f ‖v ≤ 
})–, z ∈D.

When v = vα(z) = ( – |z|)α ( < α < ∞), it is well known that ṽα(z) = vα(z). In this case, we
denote H∞

v by H∞
vα

.

Lemma . [] For α > , we have limk→∞ kα‖zk–‖vα = ( α
e )α .

Lemma . [] Let v and w be radial, non-increasing weights tending to zero at the bound-
ary of D. Then the following statements hold.

(a) The weighted composition operator uCϕ : H∞
v → H∞

w is bounded if and only if
supz∈D

w(z)
ṽ(ϕ(z)) |u(z)| < ∞. Moreover, the following holds:

‖uCϕ‖H∞
v →H∞

w = sup
z∈D

w(z)
ṽ(ϕ(z))

∣∣u(z)
∣∣.
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(b) Suppose uCϕ : H∞
v → H∞

w is bounded. Then

‖uCϕ‖e,H∞
v →H∞

w = lim
s→–

sup
|ϕ(z)|>s

w(z)
ṽ(ϕ(z))

∣∣u(z)
∣∣.

Lemma . [] Let v and w be radial, non-increasing weights tending to zero at the bound-
ary of D. Then the following statements hold.

(a) uCϕ : H∞
v → H∞

w is bounded if and only if supk≥
‖uϕk‖w
‖zk‖v

< ∞, with the norm
comparable to the above supremum.

(b) Suppose uCϕ : H∞
v → H∞

w is bounded. Then

‖uCϕ‖e,H∞
v →H∞

w = lim sup
k→∞

‖uϕk‖w

‖zk‖v
.

Theorem . Let n be a positive integer, u ∈ H(D), and ϕ be an analytic self-map of D.
Then the operator Dn

ϕ,u : B →Z is bounded if and only if

⎧
⎪⎨

⎪⎩

supj≥ jn+‖(u′ϕ′ + uϕ′′)ϕj–‖v < ∞,
supj≥ jn‖u′′ϕj–‖v < ∞,
supj≥ jn+‖uϕ′ϕj–‖v < ∞.

(.)

Proof By [], Dn
ϕ,u : B →Z is bounded if and only if

⎧
⎪⎪⎨

⎪⎪⎩

supz∈D
(–|z|)|u′(z)ϕ′(z)+u(z)ϕ′′(z)|

(–|ϕ(z)|)n+ < ∞,

supz∈D
(–|z|)|u′′(z)|

(–|ϕ(z)|)n < ∞,

supz∈D
(–|z|)|u(z)||ϕ′(z)|

(–|ϕ(z)|)n+ < ∞.

(.)

By Lemma ., the first inequality in (.) is equivalent to the weighted composition op-
erator (u′ϕ′ + uϕ′′)Cϕ : H∞

vn+ → H∞
v is bounded. By Lemma ., this is equivalent to

sup
j≥

‖(u′ϕ′ + uϕ′′)ϕj–‖v

‖zj–‖v+n
< ∞.

The second inequality in (.) is equivalent to the operator u′′Cϕ : H∞
vn → H∞

v is bounded.
By Lemma ., this is equivalent to

sup
j≥

‖u′′ϕj–‖v

‖zj–‖vn
< ∞.

The third inequality in (.) is equivalent to the operator uϕ′Cϕ : H∞
vn+ → H∞

v is bounded.
By Lemma ., this is equivalent to

sup
j≥

‖uϕ′ϕj–‖v

‖zj–‖vn+
< ∞.

By Lemma ., we see that Dn
ϕ,u : B →Z is bounded if and only if

sup
j≥

jn+∥∥(
u′ϕ′ + uϕ′′)ϕj–∥∥

v
≈ sup

j≥

jn+‖(u′ϕ′ + uϕ′′)ϕj–‖v

jn+‖zj–‖v+n
< ∞,
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sup
j≥

jn∥∥u′′ϕj–∥∥
v

≈ sup
j≥

jn‖u′′ϕj–‖v

jn‖zj–‖vn
< ∞,

and

sup
j≥

jn+∥∥uϕ′ϕj–∥∥
v

≈ sup
j≥

jn+‖uϕ′ϕj–‖v

jn+‖zj–‖vn+
< ∞.

The proof is completed. �

Theorem . Let n be a positive integer, u ∈ H(D), and ϕ be an analytic self-map of D
such that Dn

ϕ,u : B →Z is bounded. Then
∥∥Dn

ϕ,u
∥∥

e,B→Z ≈ max{M, M, M},

where

M := lim sup
j→∞

j+n∥∥(
u′ϕ′ + uϕ′′)ϕj–∥∥

v
,

M := lim sup
j→∞

jn∥∥u′′ϕj–∥∥
v

, M := lim sup
j→∞

jn+∥∥u
(
ϕ′)

ϕj–∥∥
v

.

Proof From the proof of Theorem . we know that the boundedness of Dn
ϕ,u : B → Z

is equivalent to the boundedness of the operators (u′ϕ′ + uϕ′′)Cϕ : H∞
v+n → H∞

v , u′′Cϕ :
H∞

vn → H∞
v , and uϕ′Cϕ : H∞

vn+ → H∞
v .

The upper estimate. By Lemmas . and ., we get

∥∥(
u′ϕ′ + uϕ′′)Cϕ

∥∥
e,H∞

v+n →H∞
v

= lim sup
j→∞

‖(u′ϕ′ + uϕ′′)ϕj–‖v

‖zj–‖v+n

= lim sup
j→∞

j+n‖(u′ϕ′ + uϕ′′)ϕj–‖v

j+n‖zj–‖v+n

≈ lim sup
j→∞

j+n∥∥(
u′ϕ′ + uϕ′′)ϕj–∥∥

v
,

∥∥u′′Cϕ

∥∥
e,H∞

vn →H∞
v

= lim sup
j→∞

‖u′′ϕj–‖v

‖zj–‖vn
= lim sup

j→∞
jα+n–‖u′′ϕj–‖v

jα+n–‖zj–‖vn

≈ lim sup
j→∞

jn∥∥u′′ϕj–∥∥
v

,

and

∥∥uϕ′Cϕ

∥∥
e,H∞

vn+ →H∞
v

= lim sup
j→∞

‖uϕ′ϕj–‖v

‖zj–‖vn+
= lim sup

j→∞
jn+‖uϕ′ϕj–‖v

jn+‖zj–‖vn+

≈ lim sup
j→∞

jn+∥∥uϕ′ϕj–∥∥
v

.

It follows that
∥∥Dn

ϕ,u
∥∥

e,B→Z �
∥∥(

u′ϕ′ + uϕ′′)Cϕ

∥∥
e,H∞

v+n →H∞
v

+
∥∥u′′Cϕ

∥∥
e,H∞

vn →H∞
v

+
∥∥uϕ′Cϕ

∥∥
e,H∞

vn+ →H∞
v

� max{M, M, M}.
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The lower estimate. From Theorem ., and Lemmas . and ., we have

∥∥Dn
ϕ,u

∥∥
e,B→Z � E =

∥∥(
u′ϕ′ + uϕ′′)Cϕ

∥∥
e,H∞

v+n →H∞
v

= lim sup
j→∞

‖(u′ϕ′ + uϕ′′)ϕj–‖v

‖zj–‖v+n

≈ lim sup
j→∞

jα+n∥∥(
u′ϕ′ + uϕ′′)ϕj–∥∥

v
,

∥∥Dn
ϕ,u

∥∥
e,B→Z � F =

∥∥u′′Cϕ

∥∥
e,H∞

vn →H∞
v

= lim sup
j→∞

‖u′′ϕj–‖v

‖zj–‖vn

≈ lim sup
j→∞

jα+n–∥∥u′′ϕj–∥∥
v

,

and

∥∥Dn
ϕ,u

∥∥
e,B→Z � G =

∥∥uϕ′Cϕ

∥∥
e,H∞

vn+ →H∞
v

= lim sup
j→∞

‖uϕ′ϕj–‖v

‖zj–‖vn+

≈ lim sup
j→∞

jn+∥∥uϕ′ϕj–∥∥
v

.

Therefore ‖Dn
ϕ,u‖e,B→Z � max{M, M, M}. This completes the proof. �

From Theorem ., we immediately get the following result.

Theorem . Let n be a positive integer, u ∈ H(D), and ϕ be an analytic self-map of D
such that Dn

ϕ,u : B →Z is bounded. Then Dn
ϕ,u : B →Z is compact if and only if

lim sup
j→∞

j+n∥∥(
u′ϕ′ + uϕ′′)ϕj–∥∥

v
= , lim sup

j→∞
jn∥∥u′′ϕj–∥∥

v
= ,

and

lim sup
j→∞

jn+∥∥u
(
ϕ′)

ϕj–∥∥
v

= .

4 Conclusion
The boundedness and compactness of Dn

ϕ,u : B → Z were characterized in [] and [].
In this paper, we give a new characterization for the boundedness and compactness of
Dn

ϕ,u : B → Z . Moreover, using the method in [], we completely characterize the essen-
tial norm of Dn

ϕ,u : B →Z .
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6. Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math.
Soc. Simon Stevin 16, 623-635 (2009)
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