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1 Introduction
Integral analogs of certain analytic inequalities in terms of continuous fields of operators
and positive linear maps were first established in []. In this work, we continue developing
integral inequalities involving continuous fields of operators related to Kantorovich and
Grüss type inequalities.

Recall that the scalar Kantorovich inequality [] is a reverse weighted arithmetic-
harmonic mean inequality. It says that, for positive real numbers ai and wi such that
 < m ≤ ai ≤ M and wi ≥  for all  ≤ i ≤ n, we have

( n∑
i=

wiai

)( n∑
i=

wi

ai

)
≤ (m + M)

mM

( n∑
i=

wi

)

. (.)

This inequality is useful in numerical analysis and statistics, especially in the method of
steepest descent. Over the years, various variations and extensions of this inequality have
been investigated by many authors in several contexts. In fact, this inequality is equiva-
lent to many inequalities, e.g. the Cauchy-Schwarz-Bunyakovsky inequality and Wielant’s
inequality; see also [, ]. An integral version of the Kantorovich inequality states that, for
any integrable function f : [α,β] → R with m ≤ f (x) ≤ M for all x ∈ [α,β], we have (see
e.g. [])

∫ β

α

f (x) dx ≤ (m + M)

mM

(∫ β

α

f (x) dx
)

. (.)

The inequality (.) is also called an additive version of the Grüss inequality.
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Many matrix versions of Kantorovich inequality were obtained in the literature, e.g. [–
]. Denote by Mk the algebra of k-by-k complex matrices. The Kantorovich inequality can
be regarded as a reverse of the Fiedler inequality (see []):

A ◦ A– ≥ I

for any positive definite matrix A, here the symbol ◦ stands for the Hadamard product (i.e.
the entrywise product). A matrix analog of inequality (.) involving Hadamard products
was established as follows.

Theorem . ([], Theorem .) For each i = , , . . . , n, let Ai ∈ Mk be a positive definite
matrix such that  < mI ≤ Ai ≤ MI . Let Wi ∈Mk be a positive semidefinite matrix. Then

n∑
i=

W



i AiW



i ◦
n∑

i=

W



i A–
i W




i ≤ m + M

mM

( n∑
i=

Wi ◦
n∑

i=

Wi

)
. (.)

Several operator extensions of Kantorovich and Grüss inequalities were also investi-
gated, for instance, in [–] and references therein. Kantorovich type inequalities where
the product is replaced by an operator mean were discussed in [, ].

In this paper, we establish various integral inequalities involving tensor products of con-
tinuous field of Hilbert space operators and positive linear maps. Our results can be viewed
as generalizations of Kantorovich and Grüss inequalities. In particular, we obtain operator
versions of Theorem . in which the Hadamard product is replaced by the tensor prod-
uct. Our results also include reverse Hölder-McCarthy integral inequalities. Moreover,
Kantorovich type inequalities involving Kubo-Ando operator means are also investigated.
Such integral inequalities include discrete inequalities as special cases.

This paper is organized as follows. We set up basic notations and preliminaries on con-
tinuous fields of operators and positive linear maps in Section . In Section , we establish
certain integral inequalities involving tensor product of continuous fields of operators.
These inequalities include inequalities of Kantorovich and Grüss types as special cases,
which are presented separately in Section . In Section , after setting up some prerequi-
sites about operator means, we derive certain integral inequalities involving positive linear
maps and operator means.

2 Continuous fields of operators and positive linear maps
In this section, we set up basic notations and provide fundamental facts about continuous
fields of operators and positive linear maps. Moreover, we establish the Bochner integra-
bility of certain operator-valued maps which is used in later discussions.

Throughout this paper, let H and K be complex separable Hilbert spaces. Let A and B

be two unital C∗-algebras of bounded linear operators acting on H and K, respectively.
The C∗-algebra of all bounded linear operators on H is denoted by B(H). The cone of
positive operators onH is expressed asB(H)+. The identity operator is denoted by I , where
the underlying space should be clear from the context. The spectrum of an operator A is
written as Sp(A).

Let � be a locally compact Hausdorff space endowed with a Radon measure μ. A field
(At)t∈� of operators in A is called a continuous field of operators if the parametrization
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t �→ At is norm continuous on �. If, in addition, the norm function t �→ ‖At‖ is Lebesgue
integrable on �, we can form the Bochner integral

∫
�

At dμ(t), which is the unique oper-
ator in A such that

φ

(∫
�

At dμ(t)
)

=
∫

�

φ(At) dμ(t)

for every bounded linear functional φ on A (see e.g. [], pp.-).
A linear map � : A → B is said to be positive if �(A) is positive whenever A ∈ A is

positive. It is well known that every positive linear map � between unital C∗-algebras is a
bounded linear operator with

‖�‖ =
∥∥�(I)

∥∥.

A field (�t)t∈� of positive linear maps from A to B is said to be a continuous field of positive
linear maps if the function t �→ �t(A) is continuous on � for every A ∈A.

From now on, assume that μ is a finite Radon measure on �.

Proposition . Let (At)t∈� be a bounded continuous field of positive operators in A. Let
(�t)t∈� be a continuous field of positive linear maps from A into B such that the function
t �→ ‖�t(I)‖ is Lebesgue integrable. Then

∫
�

�t(At) dμ(t) is a well-defined positive operator
in B.

Proof Recall that a vector-valued function defined on a finite measure space is Bochner
integrable if and only if its norm function is Lebesgue integrable (see e.g. [], p.).
To show that the map t �→ �t(At) is Bochner integrable on � with respect to the finite
measure μ, it suffices to show its continuity and boundedness. To show that this map is
continuous, let x ∈ �. Since t �→ �t(I) is continuous at x, there is a neighborhood U of x
such that

∥∥�t(I) – �x(I)
∥∥ <  ∀t ∈ U .

Since the maps t �→ At and t �→ �t(Ax) are continuous at x, there is a neighborhood V of
x such that V ⊆ U and

‖At – Ax‖ <
ε

( + ‖�x(I)‖)
,

∥∥�t(Ax) – �x(Ax)
∥∥ <

ε


∀t ∈ V .

It follows that, for each t ∈ V ,

∥∥�t(At) – �x(Ax)
∥∥ =

∥∥�t(At – Ax) + �t(Ax) – �x(Ax)
∥∥

≤ ∥∥�t(At – Ax)
∥∥ +

∥∥�t(Ax) – �x(Ax)
∥∥

≤ ‖�t‖‖At – Ax‖ +
∥∥�t(Ax) – �x(Ax)

∥∥
=

∥∥�t(I)
∥∥‖At – Ax‖ +

∥∥�t(Ax) – �x(Ax)
∥∥

≤ (
 +

∥∥�x(I)
∥∥)‖At – Ax‖ +

∥∥�t(Ax) – �x(Ax)
∥∥

< ε.
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Hence t �→ �t(At) is continuous. To see that t �→ �t(At) is bounded, note that, for each
t ∈ �,

∥∥�t(At)
∥∥ ≤ ‖�t‖‖At‖ =

∥∥�t(I)
∥∥‖At‖.

Since t �→ ‖�t(I)‖ is Lebesgue integrable and t �→ At is bounded on �, we obtain the
boundedness of the family (�t(At))t∈� as desired. The resulting integral is a positive op-
erator since each At is positive and each �t preserves positivity. �

For each fixed X ∈ B, the map A �→ A⊗ X is a bounded linear operator from A to A⊗B.
It follows that

∫
�

At dμ(t) ⊗ X =
∫

�

(At ⊗ X) dμ(t). (.)

Moreover, this map preserves positivity when the multiplier is a positive operator.

3 Operator integral inequalities involving tensor products and positive linear
maps

The main result in this section is an integral inequality concerning positive linear maps
and tensor products of a continuous field of operators. Then, putting a positive linear
map in suitable forms, we obtain many interesting inequalities including reverse Hölder-
McCarthy integral inequalities. These results includes discrete inequalities as special
cases.

We start with the following lemma.

Lemma . For any positive operators A, B ∈ A such that Sp(A), Sp(B) ⊆ [m, M] ⊆ (,∞)
and for any positive linear maps �,� : A → B, we have

�(A) ⊗ �
(
B–) + �(B) ⊗ �

(
A–) ≤ m + M

mM
‖�‖‖�‖I. (.)

Moreover, the constant bound (m + M)/(mM) is best possible.

Proof Note first that, for all real numbers x, y such that x, y ∈ [m, M], we have

x
y

+
y
x

≤ m
M

+
M
m

.

Moreover, the constant bound (m/M) + (M/m) is the minimal possibility.
Since Sp(A), Sp(B) ⊆ [m, M], we have ‖A‖,‖B‖ ∈ [m, M] and ‖A–‖,‖B–‖ ∈ [M–, m–].

The previous claim implies that

∥∥�(A) ⊗ �
(
B–) + �(B) ⊗ �

(
A–)∥∥

≤ ∥∥�(A) ⊗ �
(
B–)∥∥ +

∥∥�(B) ⊗ �
(
A–)∥∥

=
∥∥�(A)

∥∥∥∥�
(
B–)∥∥ +

∥∥�(B)
∥∥∥∥�

(
A–)∥∥

≤ ‖�‖‖A‖‖�‖
∥∥B–∥∥ + ‖�‖‖B‖‖�‖

∥∥A–∥∥
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≤ ‖�‖‖�‖
(
Mm– + mM–)

=
m + M

mM
‖�‖‖�‖.

Thus, we arrive at inequality (.). The best possibility for the constant (m/M) + (M/m)
comes from the scalar case A = xIH, B = yIH and �, � preserve the identity IH. �

Theorem . Let (At)t∈� be a continuous field of positive operators inA such that Sp(At) ⊆
[m, M] ⊆ (,∞) for each t ∈ �. Let (�t)t∈� be a continuous field of positive linear maps
from A into B such that the function t �→ ‖�t(I)‖ is Lebesgue integrable. Then

∫
�

�t(At) dμ(t) ⊗
∫

�

�t
(
A–

t
)

dμ(t) ≤ K(m, M)
(∫

�

‖�t‖dμ(t)
)

I. (.)

Here, K(m, M) := m+M

mM is the best possible constant.

Proof Since ‖At‖ ≤ M for all t ∈ �, the field (At)t∈� is bounded. It follows from Propo-
sition . that

∫
�

�t(At) dμ(t) is a well-defined positive operator. By using property (.)
and Fubini’s theorem for Bochner integrals (see e.g. []), we have

∫
�

�t(At) dμ(t) ⊗
∫

�

�t
(
A–

t
)

dμ(t)

=
∫

�

�t(At) ⊗
(∫

�

�s
(
A–

s
)

dμ(s)
)

dμ(t)

=
∫∫

�
�t(At) ⊗ �s

(
A–

s
)

dμ(s) dμ(t)

=
∫∫

�
�s(As) ⊗ �t

(
A–

t
)

dμ(s) dμ(t).

Hence,

∫
�

�t(At) dμ(t) ⊗
∫

�

�t
(
A–

t
)

dμ(t)

=



∫∫
�

[
�t(At) ⊗ �s

(
A–

s
)

+ �s(As) ⊗ �t
(
A–

t
)]

dμ(s) dμ(t).

By making use of Lemma . and property (.), we obtain

∫
�

�t(At) dμ(t) ⊗
∫

�

�t
(
A–

t
)

dμ(t)

≤ 


∫
�

∫
�

K(m, M)‖�t‖‖�s‖I dμ(s) dμ(t)

= K(m, M)
(∫

�

‖�t‖dμ(t)
)

I.

Therefore, we arrive at the desired inequality (.). The best possibility of the constant
K(m, M) follows from the discussion in Lemma .. �
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Note that K(m, M) is the ratio between the arithmetic mean and the geometric mean
of m and M. As a special case of Theorem ., we obtain a discrete version of integral
inequality (.) as follows.

Corollary . For each i = , , . . . , n, let Ai ∈ A be a positive operator such that Sp(Ai) ⊆
[m, M] ⊆ (,∞) and let �i : A → B be a positive linear map. Then we have

n∑
i=

�i(Ai) ⊗
n∑

i=

�i
(
A–

i
) ≤ K(m, M)

( n∑
i=

‖�i‖
)

I. (.)

Proof Set μ to be the counting measure on � = {, , . . . , n} in Theorem .. �

Corollary . Let (At)t∈� be a continuous field of positive operators in A such that
Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Let (Tt)t∈� be a continuous field of positive oper-
ators in B such that the function t �→ ‖Tt‖ is Lebesgue integrable on �. Then

∫
�

Tt ⊗ At dμ(t) ⊗
∫

�

Tt ⊗ A–
t dμ(t) ≤ K(m, M)

(∫
�

‖Tt‖dμ(t)
)

I, (.)

∫
�

At ⊗ Tt dμ(t) ⊗
∫

�

A–
t ⊗ Tt dμ(t) ≤ K(m, M)

(∫
�

‖Tt‖dμ(t)
)

I. (.)

Proof For each t ∈ �, consider the positive linear map

�t : A → B⊗A, X �→ Tt ⊗ X.

Since the map t �→ Tt is continuous, so is the map t �→ �t . Note that

‖�t‖ =
∥∥�t(I)

∥∥ = ‖Tt ⊗ I‖ = ‖Tt‖.

Then t �→ ‖�t(I)‖ is Lebesgue integrable on �. Hence, the family (�t)t∈� satisfies the hy-
pothesis of Theorem . and inequality (.) follows. To prove another inequality, consider
�t : A →A⊗B, X �→ X ⊗ Tt for each t ∈ �. �

Our next result concerns the Hadamard product of operators. Recall that the Hadamard
product of A and B in B(H) is defined to be the operator A ◦ B ∈ B(H) satisfying

〈
(A ◦ B)ej, ej

〉
= 〈Aej, ej〉〈Bej, ej〉 for all j ∈N.

Here, {ej}j∈N is an orthonormal basis for H. Equivalently, it was shown in [] that

A ◦ B = U∗(A ⊗ B)U , (.)

where U : H →H⊗H is the isometry defined by Uej = ej ⊗ ej for all j ∈N.

Corollary . Let (At)t∈� and (Tt)t∈� be two continuous fields of positive operators in A

such that Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ � and the function t �→ ‖Tt‖ is Lebesgue
integrable on �. Then
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∫
�

Tt ◦ At dμ(t) ⊗
∫

�

Tt ◦ A–
t dμ(t) ≤ K(m, M)

(∫
�

‖Tt‖dμ(t)
)

I. (.)

Proof For each t ∈ �, consider the positive linear map

�t : A → B(H), X �→ Tt ◦ X.

Then the map t �→ �t is continuous. By (.), we have

∥∥�t(I)
∥∥ = ‖Tt ◦ I‖ =

∥∥U∗(Tt ⊗ I)U
∥∥ ≤ ∥∥U∗∥∥‖Tt ⊗ I‖‖U‖ = ‖Tt‖.

It follows that the function t �→ ‖�t(I)‖ is Lebesgue integrable on �. Now, the desired
inequality follows from Theorem .. �

Now, recall the Hölder-McCarthy type inequalities for operators.

Proposition . ([] or [], pp.-) Let A be a positive operator on H and x ∈H a
unit vector. Then

. 〈Aαx, x〉 ≥ 〈Ax, x〉α for any α ≥ ,
. 〈Aαx, x〉 ≤ 〈Ax, x〉α for any α ∈ [, ].

If A is invertible, then 〈Aαx, x〉 ≥ 〈Ax, x〉α for any α < .

The next result is a reverse Hölder-McCarthy type integral inequality.

Corollary . Let (At)t∈� be a continuous field of positive operators in A such that
Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. For each t ∈ �, let ut be a unit vector inH. Assume
that μ is a probability measure on �. For any λ >  or λ ≤ –, we have

∫
�

〈
Aλ

t ut , ut
〉
dμ(t) ≤ K

(
mλ, Mλ

)(∫
�

〈
A–λ

t ut , ut
〉
dμ(t)

)–

(.)

≤ K
(
mλ, Mλ

)(∫
�

〈Atut , ut〉–λ dμ(t)
)–

. (.)

Proof For each t ∈ �, consider the positive linear map

�t : A →C, X �→ 〈Xut , ut〉.

We have ‖�t‖ = |〈ut , ut〉| =  for each t ∈ �. It is easy to see that the field (�t)t∈� satisfies
the hypothesis of Theorem . and thus

∫
�

〈Atut , ut〉dμ(t)
∫

�

〈
A–

t ut , ut
〉
dμ(t) ≤ K(m, M).

Since
∫
�
〈Atut , ut〉dμ(t) ≥ ∫

�
m dμ(t) = m > , we get

∫
�

〈
A–

t ut , ut
〉
dμ(t) ≤ K(m, M)

(∫
�

〈Atut , ut〉dμ(t)
)–

.
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The inequality (.) is now done by replacing At with A–λ
t in the above inequality. Note

that K(M–λ, m–λ) = K(m–λ, M–λ) = K(mλ, Mλ). The inequality (.) comes from Proposi-
tion .. �

In finite-dimensional setting, we identify B(Ck) with the matrix algebra Mk . In this case,
we obtain the following.

Corollary . Let (At)t∈� be a continuous field of positive definite matrices in Mk such
that Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Let μ be a probability measure on �. Then

∫
�

tr
(
A–

t
)

dμ(t) ≤ kK(m, M)
(∫

�

tr(At) dμ(t)
)–

. (.)

Proof For each t ∈ �, consider the positive linear functional

�t : Mk →C, A �→ tr(A).

Then �t(I) = k for all t ∈ �. From Theorem ., we have

∫
�

tr(At) dμ(t) ·
∫

�

tr
(
A–

t
)

dμ(t) ≤ kK(m, M).

Since
∫

�

tr(At) dμ(t) =
∫

�

∑
λ∈Sp(At )

λdμ(t) ≥ mk > ,

we obtain inequality (.). �

4 Kantorovich and Grüss type integral inequalities
In this section, we extract some interesting consequences of Theorem ., namely, integral
inequalities of Kantorovich and Grüss types. The next corollary is an operator extension
of Theorem . in which the Hadamard product is replaced by the tensor product.

Corollary . Let (At)t∈� be a continuous field of positive operators in A such that
Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Let (Wt)t∈� be a continuous field of positive op-
erators in A such that the function t �→ ‖Wt‖ is Lebesgue integrable on �. Then

∫
�

W



t AtW



t dμ(t) ⊗
∫

�

W



t A–
t W




t dμ(t) ≤ K(m, M)
(∫

�

‖Wt‖dμ(t)
)

I. (.)

Proof For each t ∈ �, consider �t : A → A, X �→ W



t XW



t . It is straightforward to
verify that (�t)t∈� is a continuous field of positive linear maps such that the function
t �→ ‖�t(I)‖ = ‖Wt‖ is Lebesgue integrable on �. Now, inequality (.) follows from The-
orem .. �

Corollary . Let (At)t∈� and (Bt)t∈� be continuous fields of positive operators in A such
that
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(i) Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �,
(ii) the function t �→ ‖Bt‖ is Lebesgue integrable on �, and

(iii) AtBt = BtAt for each t ∈ �.
Then

∫
�

AtBt dμ(t) ⊗
∫

�

A–
t Bt dμ(t) ≤ K(m, M)

(∫
�

‖Bt‖dμ(t)
)

I. (.)

Proof Set Wt = Bt for each t ∈ � in Corollary .. �

Example . Let f ,φ : � → [,∞) be continuous functions. Assume that Range(f ) ⊆
[m, M] ⊆ (,∞) and φ is a weight function, that is, φ integrable with

∫
�

φ dμ = . Then
we have the following bound for the weighted integral of f :

∫
�

φf dμ ≤ K(m, M)
(∫

�

φ

f
dμ

)–

.

Proof Set A = C in Corollary .. Note that
∫
�

(φ/f ) dμ > . �

The next result is an operator version of additive Grüss inequality.

Corollary . Let (At)t∈� be a continuous field of positive operators in A such that
Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Suppose that μ is a probability measure on �.
Then

∫
�

A
t dμ(t) ≤ K(m, M)

(∫
�

‖At‖dμ(t)
)

I. (.)

Proof Set Wt = At for each t ∈ � in Corollary .. Note that t �→ ‖At‖ is Lebesgue inte-
grable on � since it is continuous and bounded. �

5 Integral inequalities involving tensor products and operator means
In this section, we establish certain integral inequalities involving continuous fields of op-
erators and operator means. To begin with, recall some prerequisites from Kubo-Ando
theory of operator means []; see also [], Section  and [], Chapter .

A (Kubo-Ando) connection is a binary operation σ assigned to each pair of positive op-
erators such that, for all A, B, C, D ≥ ,

(M) monotonicity: A ≤ C, B ≤ D �⇒ A σ B ≤ C σ D,
(M) transformer inequality: C(A σ B)C ≤ (CAC) σ (CBC),
(M) upper semi-continuity: for any sequences (An)∞n= and (Bn)∞n= in B(H)+, if An ↓ A

and Bn ↓ B, then An σ Bn ↓ A σ B. Here, Xn ↓ X indicates that (Xn) is a decreasing
sequence converging strongly to X .

From these axioms, every connection attains the following properties:

X(A σ B)X = (XAX) σ (XBX), (.)

(A + B) σ (C + D) ≥ (A σ C) + (B σ D), (.)

for any A, B, C, D ≥  and X > .
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A (Kubo-Ando) mean is a connection σ satisfying

A σ A = A for all A ≥ . (.)

A major core of Kubo-Ando theory is the one-to-one correspondence between connec-
tions and operator monotone functions. Recall (e.g. [], Chapter ) that a continuous
function f : [,∞) →R is said to be operator monotone if

A ≤ B �⇒ f (A) ≤ f (B)

holds for any positive operators A and B.

Proposition . ([], Theorem .) Given an operator connection σ , there is a unique
operator monotone function f : [,∞) → [,∞) such that

f (A) = I σ A, A ≥ . (.)

In fact, the map σ �→ f is a bijection. In addition, σ is a mean if and only if f () = .

Such a function f is called the representing function of σ . It follows that there is a one-
to-one correspondence between the connections on B(H)+ and the connections on B(K)+

where H and K are any different Hilbert spaces. A connection σ and its corresponding
connection on a different space have the same formula, and thus can be written in the
same notation.

In order to prove the main result in this section, recall the following fact.

Lemma . ([], Proposition ) For any connection σ and positive operators A and B, we
have

‖A σ B‖ ≤ ‖A‖ σ ‖B‖.

We say that a linear map � : B(H) → B(K) is strictly positive if �(A) >  for any A > .
By continuity, every strictly positive linear map is positive.

Lemma . ([]) If � : B(H) → B(K) is a positive linear map, then for any connection σ

and for each A, B ≥ ,

�(A σ B) ≤ �(A) σ �(B). (.)

We say that a function f : [,∞) → R is super-multiplicative if f (xy) ≥ f (x)f (y) for all
x, y ≥ .

Lemma . (See e.g. [], Chapter ) Let σ be a connection associated with an operator
monotone function f : [,∞) → [,∞). If f is super-multiplicative, then

(A σ C) ⊗ (B σ D) ≤ (A ⊗ B) σ (C ⊗ D)

for any A, B, C, D ≥ .



Chansangiam Journal of Inequalities and Applications  (2016) 2016:121 Page 11 of 13

The next theorem is the main result in this section.

Theorem . Let (At)t∈� and (Bt)t∈� be two continuous fields of positive operators inB(H)
such that Sp(At), Sp(Bt) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Let (�t)t∈� be a continuous field
of positive linear maps from B(H) into B(K) such that the function t �→ ‖�t(I)‖ is Lebesgue
integrable. Let σ be a mean with a super-multiplicative representing function. Then

∫
�

�t(At σ Bt) dμ(t) ⊗
∫

�

�t
(
A–

t σ B–
t

)
dμ(t) ≤ K(m, M)

(∫
�

‖�t‖dμ(t)
)

I. (.)

Proof The assumption and the norm estimate in Lemma . together imply that
∫

�

∥∥�t(At σ Bt)
∥∥dμ(t) ≤

∫
�

‖�t‖ · ‖At σ Bt‖dμ(t)

≤
∫

�

‖�t‖ · (‖At‖ σ ‖Bt‖
)

dμ(t)

≤
∫

�

‖�t‖ · (M σ M) dμ(t)

= M
∫

�

∥∥�t(I)
∥∥dμ(t)

< ∞.

This shows that the function t �→ �t(At σ Bt) is Bochner integrable since (�,μ) is a finite
measure space. Similarly, the function t �→ �t(A–

t σ B–
t ) is Bochner integrable. It follows

that ∫
�

�t(At σ Bt) dμ(t) ⊗
∫

�

�t
(
A–

t σ B–
t

)
dμ(t)

≤
∫

�

�t(At) σ �t(Bt) dμ(t) ⊗
∫

�

�t
(
A–

t
)
σ �t

(
B–

t
)

dμ(t) (by Lemma .)

≤
[∫

�

�t(At) dμ(t)σ
∫

�

�t(Bt) dμ(t)
]

⊗
[∫

�

�t
(
A–

t
)

dμ(t)σ
∫

�

�t
(
B–

t
)

dμ(t)
]

(by property (.))

≤
[∫

�

�t(At) dμ(t) ⊗
∫

�

�t
(
A–

t
)

dμ(t)
]

σ

[∫
�

�t(Bt) dμ(t) ⊗
∫

�

�t
(
B–

t
)

dμ(t)
]

(by Lemma .)

≤
[

K(m, M)
(∫

�

‖�t‖dμ(t)
)

I
]

σ

[
K(m, M)

∫
�

(‖�t‖dμ(t)
)I

]

(by Theorem .)

= K(m, M)
(∫

�

‖�t‖dμ(t)
)

I (by property (.)). �

Theorem . can be reduced to Theorem . by setting At = Bt for all t ∈ �.

Corollary . Let (At)t∈� be a continuous field of positive operators in B(H) such that
Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Let (�t)t∈� be a continuous field of positive
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linear maps from B(H) into B(K) such that the function t �→ ‖�t(I)‖ is Lebesgue inte-
grable. Suppose that  ∈ [m, M]. For any super-multiplicative operator monotone function
f : [,∞) → [,∞) such that f () = , we have

∫
�

�t
(
f (At)

)
dμ(t) ⊗

∫
�

�t
(
f
(
A–

t
))

dμ(t) ≤ K(m, M)
(∫

�

‖�t‖dμ(t)
)

I. (.)

Proof By Proposition ., there is a mean σ such that f (A) = I σ A for any A ≥ . The
desired result now follows from Theorem . by considering I σ At instead of At σ Bt . �

Corollary . Let (At)t∈� be a continuous field of positive operators in B(H) such that
Sp(At) ⊆ [m, M] ⊆ (,∞) for each t ∈ �. Let (Wt)t∈� be a continuous field of operators in
B(H) such that the function t �→ ‖Wt‖ is square integrable on �. Suppose that  ∈ [m, M].
For any α ∈ [–, ], we have

∫
�

W ∗
t Aα

t Wt dμ(t) ⊗
∫

�

W ∗
t A–α

t Wt dμ(t) ≤ K(m, M)
(∫

�

‖Wt‖ dμ(t)
)

I. (.)

Proof Let α ∈ [, ] and consider the operator monotone function f (x) = xα . Note that
this function is super-multiplicative and satisfies f () = . The desired inequality (.) now
follows by setting

�t : B(H) → B(H), �t(X) = W ∗
t XWt

in Corollary .. Note that the function t �→ ‖�t(I)‖ = ‖Wt‖ is integrable on �. For
α ∈ [–, ], replace At by A–

t in the previous claim and use the fact that K(M–, m–) =
K(M, m). �

Example . Under the hypothesis of Corollary ., we have an interesting operator in-
equality. For each λ ∈ R, putting Wt = A

λ

t in (.) yields

∫
�

Aλ+α
t dμ(t) ⊗

∫
�

Aλ–α
t dμ(t) ≤ K(m, M)

(∫
�

‖At‖λ dμ(t)
)

I. (.)

Discrete versions for every inequality in this paper can be obtained by considering � to
be a finite space equipped with the counting measure.
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