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1 Introduction
We have introduced many types of contractions. We give the definitions of three of them.
Define Φ as follows: ϕ ∈ Φ iff ϕ is a nondecreasing, right continuous function from [,∞)
into itself satisfying ϕ(t) < t for any t > . It is obvious that ϕ() =  holds.

Definition  Let T be a mapping on a metric space (X, d).
• T is said to be a (usual) contraction (C, for short) [, ] if there exists r ∈ [, ) such

that d(Tx, Ty) ≤ rd(x, y) for any x, y ∈ X .
• T is said to be a Browder contraction (BroC, for short) [] if there exists ϕ ∈ Φ such

that d(Tx, Ty) ≤ ϕ ◦ d(x, y) for any x, y ∈ X .
• T is said to be a CJM contraction (CJMC, for short) [–] if the following hold:

(j) For every ε > , there exists δ >  such that d(x, y) < ε + δ implies d(Tx, Ty) ≤ ε.
(jj) x �= y implies d(Tx, Ty) < d(x, y).

We know the following implications:

C �⇒ BroC �⇒ CJMC.

There are some conditions equivalent to BroC; see []. Lemma  in [] gives seven equiv-
alent conditions connected with BroC. See [] and the references therein for further in-
formation as regards contractions.

Branciari [] introduced contractions of integral type as follows: A mapping T on a
metric space (X, d) is a Branciari contraction if there exist r ∈ [, ) and a locally integrable
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function f from [,∞) into itself such that

∫ s


f (t) dt >  and

∫ d(Tx,Ty)


f (t) dt ≤ r

∫ d(x,y)


f (t) dt

for all s >  and x, y ∈ X.
We have studied contractions of integral type in [, ]. Very recently, Jleli and Samet

[] introduced the following new type of contractions.

Theorem  (Jleli and Samet []) Let (X, d) be a complete generalized metric space and
let θ be a function from (,∞) into (,∞) satisfying the following:

(θ) θ is nondecreasing.
(θ) For any sequence {tn} in (,∞), limn θ (tn) =  iff limn tn = .
(θ) There exist r ∈ (, ) and � ∈ (,∞] such that limt→+(θ (t) – )/tr = �.

Let T be a mapping on X. Assume that there exists k ∈ (, ) such that

Tx �= Ty implies θ ◦ d(Tx, Ty) ≤ (
θ ◦ d(x, y)

)k

for any x, y ∈ X. Then T has a unique fixed point.

Remark
• Considering the domain and range of θ and (θ), it is obvious that (θ) is equivalent to

inf{θ (t) : t ∈ (,∞)} = .
• The underlying space of Theorem  is a generalized metric space. This interesting

concept was introduced by Branciari []. See also [–] and others. However, we
omit the statement of the definition of a generalized metric space because it is not
essential in this paper.

In this paper, motivated by Theorem , we deepen the study of contractions of integral
type. We also give an alternative proof of Theorem .

2 Preliminaries
Throughout this paper we denote by N the set of all positive integers and by R the set of
all real numbers. For a function f , we denote by Dom(f ) the domain of f .

Let f be a function from a subset of R into R. Then f is said to satisfy (U)f if the following
holds:

(U)f For any t ∈ Dom(f ), there exist δ >  and ε >  such that f (s) ≤ t – ε holds for any
s ∈ (t – δ, t + δ) ∩ Dom(f ).

We list some further notation in order to simplify the statement of the results of this
paper:

(A) Let Y be an arbitrary set and let h be a function from Y into [,∞). Let S be a
mapping on Y satisfying that h(x) =  implies h(Sx) =  for any x ∈ Y .

(A) Let θ be a function from (,∞) into R. Put � = θ ((,∞)) and

�≤ =
⋃{

[t,∞) : t ∈ �
}

.
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The purpose of this study is to obtain the mathematical structure of contractions men-
tioned in Section . So, we simplify our setting as follows:

Definition  Assume (A).
• S is said to be a Browder contraction if there exists ϕ ∈ Φ such that

h(Sx) ≤ ϕ ◦ h(x)

for any x ∈ Y .
• S is said to be a CJM contraction if the following hold:

(j) For any ε > , there exists δ >  such that h(x) < ε + δ implies h(Sx) ≤ ε.
(jj) h(x) >  implies h(Sx) < h(x).

Remark Let (X, d) and T be as in Definition . Put Y = X × X and define h and S by
h((x, y)) = d(x, y) and S(x, y) = (Tx, Ty). Then the concept of Browder contraction in Defi-
nition  becomes that in Definition  and the concept of CJM contraction in Definition 
becomes that in Definition .

We give some lemmas concerning (U)f .

Lemma  Let f be a function from a subset of R into R. Then f satisfies (U)f iff

lim sup
[
f (u) : u → t, u ∈ Dom(f )

]
< t

holds for any t ∈ Dom(f ).

Remark We define lim sup[f (u) : u → t, u ∈ Dom(f )] = γ iff the following hold:
• There exists a sequence {un} in Dom(f ) such that {un} converges to t and {f (un)}

converges to γ .
• lim supn f (un) ≤ γ holds for any sequence {un} in Dom(f ) converging to t.

Note that we do not exclude the case of un = t.

Proof of Lemma  Obvious. �

Lemma  Let f be an upper semicontinuous function from a subset of R into R such that
f (t) < t for any t ∈ Dom(f ). Then f satisfies (U)f .

Proof Obvious. �

Lemma  Let ψ be a function from a subset D of R into R satisfying (U)ψ . Let M be a real
number with M > . Define a function ϕ from D into R by

ϕ(t) =
t


+



max
{

sup
{
ψ(u) : u ∈ D, u ≤ t

}
,

sup
{
ψ(u) + M(t – u) : u ∈ D, t ≤ u

}}

for t ∈ D. Then the following hold:
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(i) ϕ satisfies (U)ϕ .
(ii) ϕ is strictly increasing and Lipschitz continuous.

(iii) ψ(t) < ϕ(t) holds for any t ∈ D.

Proof In this proof, we always assume s, t, u ∈ D. Define a function ω from D into R by

ω(t) = max
{
sup

{
ψ(u) : u ≤ t

}
, sup

{
ψ(u) + M(t – u) : t ≤ u

}}
.

For each u, we define a function ψu from D into R by

ψu(t) =

⎧⎨
⎩

ψ(u) + M(t – u) if t ≤ u,

ψ(u) if t ≥ u.

Then from the definition of ω, we note

ω(t) = sup
{
ψu(t) : u

}
.

So it is obvious that ψ(t) ≤ ω(t). We can easily check that ψu is nondecreasing and
|ψu(s) – ψu(t)| ≤ M|s – t| holds. Hence ω is nondecreasing and

∣∣ω(s) – ω(t)
∣∣ ≤ M|s – t|

holds. Hence ω is continuous. Fix t; and choose δ and ε as in the definition of (U)f . We
have

ω(t) = max
{

sup
u≤t–δ

ψu(t), sup
t–δ<u≤t

ψu(t), sup
t≤u<t+δ

ψu(t), sup
t+δ≤u

ψu(t)
}

= max
{

sup
u≤t–δ

ψ(u), sup
t–δ<u≤t

ψ(u),

sup
t≤u<t+δ

(
ψ(u) + M(t – u)

)
, sup

t+δ≤u

(
ψ(u) + M(t – u)

)}

≤ max
{

sup
u≤t–δ

u, sup
t–δ<u<t+δ

ψ(u), sup
t+δ≤u

(
u + M(t – u)

)}

≤ max{t – δ, t – ε, t + δ – Mδ}
< t.

Hence by Lemma , ω satisfies (U)ω . It is obvious that

∣∣ϕ(s) – ϕ(t)
∣∣ ≤ M + 


|s – t| and ψ(t) ≤ ω(t) < ϕ(t) < t

hold. We can easily prove the remainders. �

Remark We use the method in the proof of Proposition  in []. Note that the domain
of ϕ is D. We cannot extend the domain of ϕ to

⋃{[t,∞) : t ∈ D}. See ψ in Example 
below.
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3 Browder contraction
In this section, we discuss Browder contractions.

Lemma  Assume (A). Let ψ be a function from (,∞) into [,∞) such that (U)ψ holds
and

h(Sx) ≤ ψ ◦ h(x)

for any x ∈ Y with h(x) >  and h(Sx) > . Then S is a Browder contraction.

Proof By Lemma , there exists a nondecreasing continuous function η from (,∞) into
[,∞) such that (U)η is satisfied and ψ(t) ≤ η(t) holds for any t ∈ (,∞). Define a function
ϕ from [,∞) into itself by

ϕ(t) =

⎧⎨
⎩

η(t) if t > ,

 if t = .

It is obvious that ϕ is nondecreasing continuous function such that ϕ(t) < t for any t ∈
(,∞). Thus, ϕ ∈ Φ . Fix x ∈ Y . We consider the following two cases:

• h(Sx) = ,
• h(Sx) > .

In the first case, h(Sx) ≤ ϕ ◦h(x) obviously holds. In the second case, we note that h(Sx) > 
implies h(x) > . So h(x) >  holds. We have

h(Sx) ≤ ψ ◦ h(x) ≤ η ◦ h(x) = ϕ ◦ h(x).

Therefore S is a Browder contraction. �

Proposition  Assume (A), (A) and the following:
(i) θ is nondecreasing and continuous.

(ii) There exists a function ψ from � into R satisfying (U)ψ and

θ ◦ h(Sx) ≤ ψ ◦ θ ◦ h(x) ()

for any x ∈ Y with h(x) >  and h(Sx) > .
Then S is a Browder contraction.

Proof Define a function θ–
+ from R into [,∞] by

θ–
+ (τ ) =

⎧⎨
⎩

sup{s ∈ (,∞) : θ (s) ≤ τ } if {s ∈ (,∞) : θ (s) ≤ τ } �= ∅,

 otherwise.

Put ϕ = θ–
+ ◦ ψ ◦ θ . We note

ϕ(t) = sup
{

s ∈ (,∞) : θ (s) ≤ ψ ◦ θ (t)
}

provided ϕ(t) > .
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Since ψ ◦ θ (t) < θ (t) ≤ θ (s) for any t, s ∈ (,∞) with t ≤ s, we have ϕ(t) ≤ t for any t ∈
(,∞). Thus, ϕ is a function from (,∞) into [,∞). Arguing by contradiction, we assume
that (U)ϕ does not hold. Then there exist t ∈ (,∞) and a sequence {tn} in (,∞) such that
{tn} converges to t and

ϕ(tn) > ( – /n)t

holds for n ∈ N. Since ϕ(tn) > ,

sup
{

s ∈ (,∞) : θ (s) ≤ ψ ◦ θ (tn)
}

> ( – /n)t

holds. Hence there exists a sequence {un} in (,∞) satisfying

θ (un) ≤ ψ ◦ θ (tn) < θ (tn) and un > ( – /n)t

for n ∈ N. Since θ is nondecreasing, un < tn holds for any n ∈ N. Thus {un} also converges
to t. Hence

θ (t) ≤ lim sup
n→∞

ψ ◦ θ (tn) ≤ lim sup
[
ψ(τ ) : τ → θ (t), τ ∈ �

]
,

because θ is continuous. This contradicts (U)ψ . Therefore (U)ϕ holds. For any x ∈ Y with
h(x) >  and h(Sx) > , we have by ()

h(Sx) ≤ sup
{

s ∈ (,∞) : θ (s) ≤ ψ ◦ θ ◦ h(x)
}

= ϕ ◦ h(x).

Therefore by Lemma , S is a Browder contraction. �

By Lemma , we obtain the following.

Corollary  Assume (A), (A), (i) in Proposition  and the following:
(ii) There exists an upper semicontinuous function ψ from � into R satisfying ψ(t) < t

for any t ∈ � and () for any x ∈ Y with h(x) >  and h(Sx) > .
Then S is a Browder contraction.

The following examples tell that the continuity of θ in Proposition  is needed. In Ex-
ample , θ is right continuous, however, it is not left continuous. On the other hand, in
Example , θ is left continuous, however, it is not right continuous.

Example  (Example . in []) Define a complete metric space (X, d) by

X = [, ] ∪ [,∞) and d(x, y) =

⎧⎨
⎩

min{x + y, } if x �= y,

 if x = y.

Define a mapping T on X and functions θ and ψ from (,∞) into itself by

Tx =

⎧⎨
⎩

 if x ≤ ,

 – /x if x ≥ ,
θ (t) =

⎧⎨
⎩

 if t < ,

 if t ≥ ,
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and ψ(t) = t/. Put Y = X × X and define h and S by h((x, y)) = d(x, y) and S(x, y) = (Tx, Ty)
for (x, y) ∈ Y . Then all the assumptions of Proposition  except the left continuity of θ are
satisfied. However, T is not a Browder contraction.

Example  (Example . in []) Define a complete metric space (X, d) by X = [,∞) and
d(x, y) = x + y for x, y ∈ X with x �= y. Define a mapping T on X and functions θ and ψ from
(,∞) into itself by

Tx =

⎧⎨
⎩

 if x ≤ ,

 if x > ,
θ (t) =

⎧⎨
⎩

t if t ≤ ,

 + t if t > ,

and ψ(t) = t/. Let Y , h, and S be as in Example . Then all the assumptions of Proposi-
tion  except the right continuity of θ are satisfied. However, T is not a Browder contrac-
tion.

4 CJM contraction
In this section, we discuss CJM contractions.

The following is a modification of Proposition . in [].

Proposition  Assume (A), (A), and the following:
(i) θ is nondecreasing.

(ii) For any ε ∈ �≤, there exists δ >  such that h(x) > , h(Sx) > , and θ ◦ h(x) < ε + δ

imply θ ◦ h(Sx) ≤ ε for all x ∈ Y .
(iii) h(x) >  and h(Sx) >  imply θ ◦ h(Sx) < θ ◦ h(x).

Then S is a CJM contraction.

Proof In order to show (jj), we fix x ∈ Y with h(x) > . Arguing by contradiction, we assume
h(Sx) ≥ h(x). Then h(Sx) >  obviously holds. We have from (iii),

θ ◦ h(Sx) < θ ◦ h(x),

which contradicts (i). Therefore we obtain h(Sx) < h(x). We have shown (jj). We shall
prove (j). Fix ε >  and put β = lim[θ (t) : t → ε + ]. We consider the following two cases:

• β < θ (ε + γ ) holds for any γ > .
• There exists δ >  such that β = θ (ε + δ).

In the first case, since θ (ε) ≤ β , β ∈ �≤ holds. From (ii), there exists α >  such that

h(x) > , h(Sx) >  and θ ◦ h(x) < β + α imply θ ◦ h(Sx) ≤ β .

We can choose δ >  satisfying θ (ε + δ) < β + α. Fix x ∈ Y with h(x) < ε + δ. Arguing by
contradiction, we assume h(Sx) > ε. Then we have h(Sx) >  and hence h(x) > . We have

θ ◦ h(x) ≤ θ (ε + δ) < β + α

and hence

β < θ ◦ h(Sx) ≤ β ,
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which is a contradiction. Therefore we obtain h(Sx) ≤ ε. In the second case, we also fix
x ∈ Y with h(x) < ε + δ. Arguing by contradiction, we assume h(Sx) > ε. Then we have
h(Sx) >  and hence h(x) > . By (iii), we have

β ≤ θ ◦ h(Sx) < θ ◦ h(x) ≤ θ (ε + δ) = β ,

which is a contradiction. Therefore we obtain h(Sx) ≤ ε. We have proven (j). �

The proof of the following is obvious, however, we give a proof in order to show how
differently � and �≤ work.

Corollary  Assume (A), (A), (i) in Proposition  and the following:
(ii) There exists a function ψ from �≤ into R satisfying (U)ψ and () for any x ∈ Y with

h(x) >  and h(Sx) > .
Then S is a CJM contraction.

Proof We first note that from (U)ψ , ψ(t) < t for any t ∈ Dom(ψ) = �≤. For x ∈ Y with
h(x) >  and h(Sx) > , we have

θ ◦ h(Sx) ≤ ψ ◦ θ ◦ h(x) < θ ◦ h(x).

We have shown (iii) in Proposition . Let us prove (ii) in Proposition . Fix ε ∈ �≤. Then
from (U)ψ , there exists δ >  such that ψ(s) < ε holds for any s ∈ [ε, ε + δ). Fix x ∈ Y with
h(x) > , h(Sx) > , and θ ◦ h(x) < ε + δ. Then if θ ◦ h(x) < ε, then we have

θ ◦ h(Sx) < θ ◦ h(x) < ε.

If θ ◦ h(x) ≥ ε, then we have

θ ◦ h(Sx) ≤ ψ ◦ θ ◦ h(x) < ε.

Therefore by Proposition , S is a CJM contraction. �

By Lemma , we obtain the following.

Corollary  Assume (A), (A), (i) in Proposition  and the following:
(ii) There exists an upper semicontinuous function ψ from �≤ into R satisfying ψ(t) < t

for any t ∈ �≤ and () for any x ∈ Y with h(x) >  and h(Sx) > .
Then S is a CJM contraction.

There is a counterexample if we replace �≤ with � in Corollary .

Example  Define a complete metric space (X, d) by

X = [,∞) and d(x, y) =

⎧⎨
⎩

 + /x + /y if x �= y,

 if x = y.
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Define a mapping T on X by Tx = x for x ∈ X. Define functions θ from (,∞) into R and
ψ from (, ] ∪ (,∞) into R by

θ (t) =

⎧⎨
⎩

t if t ≤ ,

 + t if t > ,
and ψ(t) =

⎧⎨
⎩

t/ if t ≤ ,

 + t/ if t > .

Let Y , h, and S be as in Example . Then all the assumptions of Corollary  except
Dom(ψ) = �≤ are satisfied. However, T is not a CJM contraction.

Remark We note that θ is left continuous, however, θ is not right continuous.

Proof For any x, y ∈ X with x �= y and Tx �= Ty, we have

ψ ◦ θ ◦ d(x, y) = ψ ◦ θ

(
 +


x

+

y

)
= ψ

(
 +


x

+

y

)
=  +


x

+


y

and

θ ◦ d(Tx, Ty) = θ ◦ d(x, y) = θ

(
 +


x

+


y

)
=  +


x

+


y
.

Thus, () holds. Since T has no fixed point, T is not a CJM contraction. �

We assume additionally that θ is right continuous. Then we can prove the following.

Proposition  Assume (A), (A), (iii) in Proposition  and the following:
(i) θ is nondecreasing and right continuous.

(ii) For any ε ∈ �, there exists δ >  such that h(x) > , h(Sx) > , and θ ◦ h(x) < ε + δ

imply θ ◦ h(Sx) ≤ ε for all x ∈ Y .
Then S is a CJM contraction.

Proof We will show (ii) in Proposition . Fix ε ∈ �≤ \�. Then there exists δ >  such that

[ε, ε + δ] ⊂ �≤ \ �.

If not so, then there exists a sequence {tn} in (,∞) such that {θ (tn)} is strictly decreas-
ing and converges to ε. Since θ is nondecreasing, {tn} is strictly decreasing. Since {tn} is
bounded from below, {tn} converges to some t ∈ [,∞). Since ε ∈ �≤, t >  holds. Since
θ is right continuous, we obtain θ (t) = ε, which implies ε ∈ �. This is a contradiction. Fix
x ∈ Y with h(x) > , h(Sx) > , and θ ◦ h(x) < ε + δ. Then we have θ ◦ h(x) < ε. Hence we
obtain from (iii) (in Proposition )

θ ◦ h(Sx) < θ ◦ h(x) < ε.

So all the assumptions in Proposition  are satisfied. Therefore S is a CJM contraction. �

Corollary  Assume (A), (A), (i) in Proposition  and (ii) in Proposition . Then S is
a CJM contraction.
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Proof We can prove (iii) in Proposition  (in Proposition ) as in the proof of Corol-
lary . Also, we can prove (ii) in Proposition  as in the proof of Corollary . Therefore
by Proposition , S is a CJM contraction. �

By Lemma , we also obtain the following.

Corollary  Assume (A), (A), (i) in Proposition  and (ii) in Corollary . Then S is a
CJM contraction.

Finally, using Corollary , we give an alternative proof of Theorem .

Proof of Theorem  Let Y , h, and S be as in Example . Define a function ψ from (,∞)
into (,∞) by ψ(t) = tk . Since ψ is continuous and ψ(t) < t for any t ∈ (,∞), all the as-
sumption of Corollary  are satisfied. So by Corollary , S is a CJM contraction. By The-
orem  in [], T has a unique fixed point z. Moreover, limn d(Tnx, z) =  for any x ∈ X. �

Remark
(i) We do not need (θ) and (θ) in Theorem .

(ii) If we assume additionally that θ is continuous, then T is a Browder contraction.

5 Some comments
As stated in Section , Lemma  in Jachymski [] gives seven equivalent conditions con-
nected with BroC. Finally, by Proposition  and Corollary  we can obtain the following,
which is similar to Lemma  in [].

Lemma  Let D be a subset of (,∞). Then the following statements are equivalent:
(i) There exists ϕ ∈ Φ such that for any (t, u) ∈ D, u ≤ ϕ(t).

(ii) There exist a nondecreasing, continuous function θ from (,∞) into R and a
function ψ from θ ((,∞)) into R satisfying (U)ψ such that for any (t, u) ∈ D,
θ (u) ≤ ψ ◦ θ (t).

(iii) There exist a nondecreasing, continuous function θ from (,∞) into R and an upper
semicontinuous function ψ from θ ((,∞)) into R satisfying ψ(t) < t such that for
any (t, u) ∈ D, θ (u) ≤ ψ ◦ θ (t).
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4. Ćirić, LjB: A new fixed-point theorem for contractive mappings. Publ. Inst. Math. (Belgr.) 30, 25-27 (1981)
5. Jachymski, J: Equivalent conditions and the Meir-Keeler type theorems. J. Math. Anal. Appl. 194, 293-303 (1995)
6. Matkowski, J: Fixed point theorems for contractive mappings in metric spaces. Čas. Pěst. Mat. 105, 341-344 (1980)



Suzuki Journal of Inequalities and Applications  (2016) 2016:111 Page 11 of 11

7. Jachymski, J: Around Browder’s fixed point theorem for contractions. J. Fixed Point Theory Appl. 5, 47-61 (2009)
8. Jachymski, J: Remarks on contractive conditions of integral type. Nonlinear Anal. 71, 1073-1081 (2009)
9. Kirk, WA: Contraction mappings and extensions. In: Kirk, WA, Sims, B (eds.) Handbook of Metric Fixed Point Theory,

pp. 1-34. Kluwer Academic, Dordrecht (2001)
10. Branciari, A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J.

Math. Math. Sci. 29, 531-536 (2002)
11. Suzuki, T: Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007,

Article ID 39281 (2007)
12. Suzuki, T, Vetro, C: Three existence theorems for weak contractions of Matkowski type. Int. J. Math. Stat. 6, 110-120

(2010)
13. Jleli, M, Samet, S: A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, Article ID 38 (2014)
14. Branciari, A: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math.

(Debr.) 57, 31-37 (2000)
15. Alamri, B, Suzuki, T, Khan, LA: Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in ν-generalized

metric spaces. J. Funct. Spaces 2015, Article ID 709391 (2015)
16. Suzuki, T: Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014, Article ID 458098

(2014)
17. Suzuki, T, Alamri, B, Khan, LA: Some notes on fixed point theorems in ν-generalized metric spaces. Bull. Kyushu Inst.

Technol., Pure Appl. Math. 62, 15-23 (2015)
18. Suzuki, T, Alamri, B, Kikkawa, M: Only 3-generalized metric spaces have a compatible symmetric topology. Open

Math. 13, 510-517 (2015)
19. Suzuki, T: Some notes on Meir-Keeler contractions and L-functions. Bull. Kyushu Inst. Technol., Pure Appl. Math. 53,

1-13 (2006)


	Comments on some recent generalization of the Banach contraction principle
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Browder contraction
	CJM contraction
	Some comments
	Competing interests
	Acknowledgements
	References


