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Abstract
This paper considers the problem of minimizing a nonlinear objective function
subject to a system of bipolar fuzzy relational equations with max-TL composition,
where TL is the Łukasiewicz triangular norm. It shows that the feasible domain, i.e., the
solution set of a system of bipolar fuzzy relational equations, can be reformulated as a
system of 0-1 mixed integer inequalities. Consequently, such a type of optimization
problems can be handled within the framework of 0-1 mixed integer optimization
requiring no particular solving techniques.

Keywords: fuzzy relational equations; nonlinear optimization; mixed integer
optimization

1 Introduction
Fuzzy relational equations have been intensively investigated as an important tool for
fuzzy modeling and approximate reasoning (see, e.g., [, ]). Among various types of fuzzy
relational equations, those with max-T compositions are most fundamental and have been
widely applied where T : [, ] → [, ] is a continuous triangular norm. A system of fuzzy
relational equations with max-T equations, max-T equations for short, can be formulated
as

A ◦ x = b, ()

where A = (aij)mn, b = (b, b, . . . , bm)T , and x = (x, x, . . . , xn)T are all defined over [, ].
More specifically, a system of max-T equations A ◦ x = b stands for

max
j∈N

T(aij, xj) = bi, i ∈ M, ()

where M = {, , . . . , m} and N = {, , . . . , n}, respectively. In the context of fuzzy rela-
tional equations, the commonly used triangular norms include the minimum TM(x, y) =
min(x, y), the product TP(x, y) = xy, and the Łukasiewicz t-norm TL(x, y) = max(x + y – , )
among which TP and TL are Archimedean.

For a system of max-T equations A◦x = b, it is well known that the solution set, denoted
by S(A, b), is nonempty if and only if its principal solution x̂ is indeed a solution which can
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be constructed and verified in polynomial time. Moreover, when S(A, b) is nonempty, the
principal solution x̂ becomes the maximum solution and S(A, b) can be determined by
the maximum solution and a finite number of minimal solutions. However, to obtain all
the minimal solutions to A ◦ x = b is in general a computationally difficult task because
the number of minimal solutions could be exponentially large with respect to the input
size. For a comprehensive discussion of fuzzy relational equations, the reader may refer
to the monograph by Peeva and Kyosev [] and the surveys by De Baets [] and Li and
Fang [].

When a particular solution to a system of max-T equations is desired, the associated
optimization problem is of concern. The problem of minimizing a linear objective function
subject to a system of max-T equations has been intensively investigated with respect to
various composition operations. It turns out that such an optimization problem can be
transformed into the set covering problem which is known to be NP-hard (see, e.g., [–]).
The linear fractional optimization constrained by a system of max-T equations was also
studied by Wu et al. [] and Li and Fang [] with respect to an Archimedean triangular
norm.

The problem of minimizing a general nonlinear objective function subject to a system of
max-T equations has been tackled by Lu and Fang [], Khorram and Hassanzadeh [],
and Hassanzadeh et al. [] using the genetic algorithm. It was pointed out by Li et al. []
that such an optimization problem can be in general reformulated into a - mixed integer
nonlinear optimization problem so that the traditional solving techniques, e.g., the branch-
and-bound method, may apply. However, when the objective function is max-separable
and monotone, the associated optimization problem can be solved in polynomial time
(see, e.g., [–] and references therein).

Recently, bipolar max-T equations have been considered in the literature as a gener-
alization of usual max-T equations. A system of bipolar max-T equations is formulated
as

max
j∈N

max
{

T
(
a+

ij , xj
)
, T

(
a–

ij ,¬xj
)}

= bi, i ∈ M, ()

where ¬xj is the logical negation of xj, i.e., ¬xj =  – xj, j ∈ N . In the matrix form, it can be
denoted as

A+ ◦ x ∨ A– ◦ ¬x = b, ()

with A+ = (a+
ij)mn, A– = (a–

ij)mn, b = (b, b, . . . , bm)T , and x = (x, x, . . . , xn)T all being de-
fined over [, ]. It is clear that A+ ◦ x ∨ A– ◦ ¬x = b would degenerate into A– ◦ ¬x = b
or A+ ◦ x = b, respectively, when A+ or A– is the zero matrix. Therefore, a system of bipo-
lar max-T equations can be viewed as a combination of two systems of max-T equations
containing both independent variables and their logical negations.

The bipolar max-TM equations and the associated linear optimization problem were
first investigated in Freson et al. []. By resolving each single equation of a system of
bipolar max-TM equations A+ ◦ x ∨ A– ◦ ¬x = b, Freson et al. [] figured out analyti-
cally that the whole solution set S(A+, A–, b) is the union of some interval-valued solu-
tions, each of which is determined by a pair of maximal and minimal solutions. As a di-
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rect consequence, the bipolar max-TM equation constrained linear optimization prob-
lem can be solved by examining these maximal and minimal solutions. An alternative
reformulation for bipolar max-TM equations was developed by Li and Jin [] so that
the associated linear optimization problem can be treated by integer optimization meth-
ods.

Besides, the bipolar max-TL equation constrained linear optimization problem was
studied by Li and Liu [] using an analogous approach developed by Li and Jin [, ].
It turns out that the Archimedean property of TL leads to a somewhat simpler structure
for bipolar max-TL equations, so that the associated linear optimization problem can be
reformulated as a - integer linear optimization problem. This motivates us to extend
this approach to nonlinear optimization scenarios.

In this paper, we aim to tackle the problem of minimizing a nonlinear objective function
subject to a system of bipolar max-TL equations, i.e.,

⎧
⎪⎨

⎪⎩

min Z = f (x)
subject to:

A+ ◦ x ∨ A– ◦ ¬x = b.
()

Due to the simultaneous appearance of x and ¬x, it was shown by Li and Jin [] and Li
and Liu [] that determining whether A+ ◦ x ∨ A– ◦¬x = b has a solution or not is an NP-
complete problem because it can be viewed as a disguised form of the Boolean satisfiabil-
ity problem. This implies that the optimization problem under consideration is inevitably
NP-hard. Following the ideas of Li and Jin [, ] and Li and Liu [], we demonstrate
that A+ ◦ x ∨ A– ◦ ¬x = b can be expressed equivalently as a system of - mixed integer
linear inequalities. Consequently, the bipolar max-TL equation constrained nonlinear op-
timization problem can be handled by those traditional techniques developed for solving
- mixed integer optimization problems.

The rest of this paper is organized as follows. In Section , the reformulation of a sys-
tem of bipolar max-TL equations is presented. The bipolar max-TL equation constrained
optimization problem is discussed in Section , and the conclusions are presented in Sec-
tion .

2 Bipolar max-TL equations and their reformulation
In this section, we reveal the critical features of a system of bipolar max-TL equations and
develop its equivalent representation.

For a system of bipolar max-TL equations A+ ◦ x ∨ A– ◦¬x = b, it is said to be consistent
if its solution set S(A+, A–, b) is nonempty. Otherwise, it is said to be inconsistent. Due to
the non-interactivity property of the maximum operation, i.e., max(a, b) ∈ {a, b}, if there
is a vector x ∈ S(A+, A–, b), we have

TL
(
a+

ij , xj
) ≤ bi, TL

(
a–

ij ,¬xj
) ≤ bi, ∀i ∈ M, j ∈ N . ()

Moreover, in order to fulfil the equality requirements, there must exist an index ji ∈ N for
each i ∈ M such that either TL(a+

iji , xji ) = bi or TL(a–
iji ,¬xji ) = bi holds. Consequently, we
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may first focus on the inequalities of the forms TL(a+, x) ≤ b and TL(a–,¬x) ≤ b for any
a+, a–, b ∈ [, ].

Lemma  For any a+, b ∈ [, ], TL(a+, x) ≤ b if and only if x ≤ SL(¬a+, b) where SL :
[, ] → [, ] is the Łukasiewicz t-conorm defined as SL(x, y) = min(x + y, ). Analogously,
TL(a–,¬x) ≤ b if and only if x ≥ TL(a–,¬b) for any a–, b ∈ [, ].

Lemma  can be verified directly. Moreover, if b ∈ (, ], TL(a+, x) = b if and only if a+ ≥ b
and x = SL(¬a+, b) while TL(a–,¬x) = b if and only if a– ≥ b and x = TL(a–,¬b). The only
exception occurs when b = , in which case, TL(a+, x) =  implies  ≤ x ≤ SL(¬a+, ) = ¬a+

and TL(a–,¬x) =  implies a– = TL(a–, ) ≤ x ≤ , respectively.
By Lemma , the lower and upper bound information of the solutions to a system of

max-TL equations A+ ◦ x ∨ A– ◦ ¬x = b can be retrieved. Let x̌ = (x̌, x̌, . . . , x̌n)T such that

x̌j = max
i∈M

TL
(
a–

ij ,¬bi
)
, ∀j ∈ N , ()

and x̂ = (x̂, x̂, . . . , x̂n)T such that

x̂j = min
i∈M

SL
(¬a+

ij , bi
)
, ∀j ∈ N . ()

It is clear that if S(A+, A–, b) 	= ∅, then x̌ ≤ x̂. It also holds that x̌ ≤ x ≤ x̂ for any x ∈
S(A+, A–, b). In other words, x̌ and x̂ are the lower and upper bounds of the solutions
to A+ ◦ x ∨ A– ◦ ¬x = b, respectively. However, as indicated by Li and Liu [], x̌ and x̂
themselves are not necessarily solutions to A+ ◦ x ∨ A– ◦ ¬x = b. Even if both x̌ and x̂ are
solutions, it does not mean that S(A+, A–, b) = {x|x̌ ≤ x ≤ x̂}.

Note that for the elements of x̌ and x̂ if x̌j = x̂j for some j ∈ N , the value of xj is fixed in
any possible solution. In such a case, the variable xj can be removed in further analysis as
well as those equations where either TL(a+

ij , x̂j) = bi or TL(a–
ij ,¬x̌j) = bi holds. Consequently,

A+ ◦ x ∨ A– ◦ ¬x = b can be reduced to a system of bipolar max-TL equations with fewer
variables such that the lower and upper bounds are strictly different. Hereafter, we assume
without loss of generality that x̌ and x̂ are strictly different for a system of bipolar max-TL

equations A+ ◦ x ∨ A– ◦ ¬x = b under consideration, i.e., x̌j < x̂j for all j ∈ N .
Moreover, as indicated by Li and Liu [], the equations with a zero right hand side

play no role once x̌ and x̂ have been obtained. Therefore, we may assume as well that
the right hand side vector b is strictly positive for a system of bipolar max-TL equations
A+ ◦ x ∨ A– ◦ ¬x = b under consideration.

When the equality requirements of A+ ◦ x ∨ A– ◦ ¬x = b are concerned, we need take a
close look on x̌ and x̂ because, according to Lemma , all the critical information for the
equality requirements is preserved in x̌ and x̂. Let Q+ = (q+

ij)mn be a - matrix such that

q+
ij =

{
, if TL(a+

ij , x̂j) = bi,
, otherwise,

∀i ∈ M, j ∈ N . ()

It is clear that Q+ records the information of those equations where the equalities hold at
the upper bound x̂. Analogously, the counterpart corresponding to x̌ is offered by the -
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matrix Q– = (q–
ij )mn such that

q–
ij =

{
, if TL(a–

ij ,¬x̌j) = bi,
, otherwise,

∀i ∈ M, j ∈ N . ()

The matrices Q+ and Q– are called the characteristic matrices of A+ ◦x ∨A– ◦¬x = b by Li
and Liu []. It turns out that a system of bipolar max-TL equations A+ ◦ x ∨ A– ◦ ¬x = b
can be equivalently represented in terms of its lower and upper bounds x̌ and x̂ and its
characteristic matrices Q+ and Q–.

Theorem  For a system of bipolar max-TL equations A+ ◦x∨A– ◦¬x = b, x ∈ S(A+, A–, b)
if and only if there exist two - vectors u+ and u– such that u+ + u– ≤ e, Q+u+ + Q–u– ≥ e,
and

V u+ + x̌ ≤ x ≤ –V u– + x̂, ()

where V = diag(x̂ – x̌) and e is the vector of all ones.

Proof If x ∈ S(A+, A–, b), denote u+ = (u+
 , u+

 , . . . , u+
n)T with

u+
j =

{
, if xj = x̂j,
, otherwise,

∀j ∈ N , ()

and u– = (u–
 , u–

 , . . . , u–
n)T with

u–
j =

{
, if xj = x̌j,
, otherwise,

∀j ∈ N , ()

respectively. It can be verified that u+ + u– ≤ e and V u+ + x̌ ≤ x ≤ –V u– + x̂. Furthermore,
because for each i ∈ M, there exists an index ji ∈ N such that either TL(a+

iji , xji ) = bi or
TL(a–

iji ,¬xji ) = bi, it implies that either xji = x̂ji , q+
iji =  or xji = x̌ji , q–

iji = . Therefore, Q+u+ +
Q–u– ≥ e. Conversely, if there are two - vectors u+ and u– such that u+ + u– ≤ e and
Q+u+ + Q–u– ≥ e, a vector x = (x, x, . . . , xn)T such that V u+ + x̌ ≤ x ≤ –V u– + x̂ has the
form

xj =

⎧
⎪⎨

⎪⎩

x̂j, if u+
j = ,

x̌j, if u–
j = ,

xj, otherwise,
∀j ∈ N . ()

Besides, for each i ∈ M there exists an index ji ∈ N such that either q+
iji u

+
ji =  or q–

iji u
–
ji = ,

which indicates that either TL(a+
iji , xji ) = bi or TL(a–

iji ,¬xji ) = bi. Consequently, x is a solu-
tion to A+ ◦ x ∨ A– ◦ ¬x = b. �

Theorem  demonstrates that a system of bipolar max-TL equations can be equivalently
expressed as a system of - mixed integer linear inequalities involving an additional pair
of - vectors. Although this alternative formulation has a relatively larger size, it elim-
inates the nonlinear structure in bipolar max-TL equations and allows us to tackle the
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associated optimization problem by the usual optimization techniques. Besides, Theo-
rem  implies that the solution set of a system of bipolar max-TL equations is a union of
some interval-valued vectors analogous to that of bipolar max-TM equations. Unfortu-
nately, determining all these interval-valued vectors requires an enumeration of all mini-
mal solutions to a system of - integer linear inequalities, the number of which could be
exponentially large.

Example  Consider the system of bipolar max-TL equations A+ ◦ x ∨ A– ◦ ¬x = b where

A+ =

(
. . .
. . .

)

, A– =

(
. . .
. . .

)

, b =

(
.
.

)

.

The lower and upper bounds of the solutions can be calculated, respectively, as

x̌ = (., ., )T , x̂ = (., , .)T .

Subsequently, the two - characteristic matrices can be constructed, respectively, as

Q+ =

(
  
  

)

, Q– =

(
  
  

)

.

According to Theorem , the system of bipolar max-TL equations under consideration can
be reformulated as

⎛

⎜
⎝

.  
 . 
  .

⎞

⎟
⎠

⎛

⎜
⎝

u+


u+


u+


⎞

⎟
⎠ +

⎛

⎜
⎝

.
.


⎞

⎟
⎠ ≤

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ ,

⎛

⎜
⎝

–.  
 –. 
  –.

⎞

⎟
⎠

⎛

⎜
⎝

u–


u–


u–


⎞

⎟
⎠ +

⎛

⎜
⎝

.


.

⎞

⎟
⎠ ≥

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ ,

(
  
  

)⎛

⎜
⎝

u+


u+


u+


⎞

⎟
⎠ +

(
  
  

)⎛

⎜
⎝

u–


u–


u–


⎞

⎟
⎠ ≥

(



)

,

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠

⎛

⎜
⎝

u+


u+


u+


⎞

⎟
⎠ +

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠

⎛

⎜
⎝

u–


u–


u–


⎞

⎟
⎠ ≤

⎛

⎜
⎝





⎞

⎟
⎠ ,

where u+ = (u+
 , u+

 , u+
 )T ∈ {, }, u– = (u–

 , u–
 , u–

 )T ∈ {, }, and x = (x, x, x)T ∈ [, ].
For this small size instance, the solution set can be figured out explicitly, which is the union
of three interval solutions, i.e.,

S(A+, A–, b) =
⋃

k=,,

{
x ∈ [, ]|v̌k ≤ x ≤ v̂k},
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with

v̌ =

⎛

⎜
⎝

.
.


⎞

⎟
⎠ , v̌ =

⎛

⎜
⎝

.
.


⎞

⎟
⎠ , v̌ =

⎛

⎜
⎝

.
.
.

⎞

⎟
⎠ ,

v̂ =

⎛

⎜
⎝

.
.
.

⎞

⎟
⎠ , v̂ =

⎛

⎜
⎝

.
.
.

⎞

⎟
⎠ , v̂ =

⎛

⎜
⎝

.
.
.

⎞

⎟
⎠ .

3 Bipolar max-TL equation constrained optimization
Based on the result in Section , the bipolar max-TL equation constrained optimization
problem

⎧
⎪⎨

⎪⎩

min Z = f (x)
subject to:

A+ ◦ x ∨ A– ◦ ¬x = b
()

is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Z = f (x)
subject to:

V u+ + x̌ ≤ x ≤ –V u– + x̂,
Q+u+ + Q–u– ≥ e,
u+ + u– ≤ e,
u+, u– ∈ {, }n, x ∈ [, ]n

()

which is a general - mixed integer nonlinear optimization problem. Therefore, we may
apply some well developed optimization techniques to handle the bipolar max-TL equa-
tions constrained optimization problem based on this alternative formulation. Further-
more, as indicated by Li and Liu [], such an optimization problem can be further re-
duced to a - integer linear optimization problem when it concerns a linear objective
function.

Besides, because the feasible domain S(A+, A–, b), when it is nonempty, is a union of sev-
eral interval-valued solutions as illustrated in Example , such an optimization problem
can also be viewed as a disjunctive optimization problem once S(A+, A–, b) has been ex-
plicitly determined. Consequently, the bipolar max-TL equation constrained optimization
problem can be theoretically decomposed into a series of box-constrained optimization
problems and be solved separately. This strategy works for small size problem instances,
but it would inevitably suffer some computational obstacles for large size problem in-
stances.

Example  Consider the system of bipolar max-TL equations in Example  with a
quadratic objective function

f (x) = x
 – (x – x).



Zhou et al. Journal of Inequalities and Applications  (2016) 2016:126 Page 8 of 10

According to Example , this instance can be reformulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f (x) = x
 – x

 – x
 + xx

subject to:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

–   .     
 –   .    
  –   .   
      .  
       . 
        .
   –  – –  
       – 
        
        
        

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

x

x

u+


u+


u+


u–


u–


u–


⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≤

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

–.
–.


.


.
–
–




⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

x, x, x ∈ [, ], u+
 , u+

 , u+
 , u–

 , u–
 , u–

 ∈ {, }.

It can be resolved by some nonlinear optimization solver, e.g., CPLEX, that it has an opti-
mal solution

x∗ = (., ., .)T , u+∗ = (, , )T , u–∗ = (, , )T ,

with the optimal objective value being f (x∗) = –.. Note that the optimal - vectors u+∗

and u–∗ are usually not unique.
However, for this simple instance, the feasible domain can be readily determined and

hence the considered optimization problem can be decomposed into three subproblems
as

⎧
⎪⎨

⎪⎩

min Z(x) = . – (. – x)

subject to:
x ∈ [, .],

⎧
⎪⎨

⎪⎩

min Z(x) = . – (. – x)

subject to:
x ∈ [, .],

⎧
⎪⎨

⎪⎩

min Z(x) = x
 – .

subject to:
x ∈ [., .].

By solving these three subproblems separately and comparing their results, the optimal
solution to the original problem can be obtained:

x∗ = (., ., .)T

with the optimal objective value being f (x∗) = –..
In general, the problem of minimizing a quadratic objective function subject to a sys-

tem of bipolar max-TL equations can be reformulated into a - mixed integer quadratic
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optimization problem, which has been intensively investigated in the literature and can be
numerically solved with the aid of some commercial software packages.

4 Conclusions
Following the ideas in Li and Jin [, ] and Li and Liu [], it is demonstrated that a
system of bipolar max-TL equations can be represented equivalently by a system of -
mixed integer linear inequalities. Consequently, the bipolar max-TL equation constrained
optimization problem can be handled within the framework of - mixed integer opti-
mization.
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