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Abstract
In this paper, we discuss generalized hierarchical minimax theorems with four
set-valued mappings and we propose some scalar hierarchical minimax theorems
and generalized hierarchical minimax theorems in topological spaces. Some
examples are given to illustrate our results.
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1 Introduction
It is well known that minimax theorems are important in the areas of game theory, and
mathematical economical and optimization theory (see [–]). Within recent years, many
generalizations of minimax theorems have been successfully obtained. On the one hand,
the minimax theorem of two functions has been studied based on the two-person non-
zero-sum games (see [, ]); on the other hand, with the development of vector optimiza-
tion, there are many authors paying their attention to minimax problems of vector-valued
mappings (see [–]).

Since Kuroiwa [] investigated minimax problems of set-valued mappings in ,
many authors have devoted their efforts to the study of the minimax problems for set-
valued mappings. Li et al. [] proved some minimax theorems for set-valued by using
section theorem and separation theorem. Some other minimax theorems for set-valued
mappings can be found in [–]. Zhang et al. [] established some minimax theorems
for two set-valued mappings, which improved the corresponding results in [, ]. Lin et
al. [, ] investigated some bilevel minimax theorems and hierarchical minimax theo-
rems for set-valued mappings by using nonlinear scalarization function.

Recently, Balaj [] proposed some minimax theorems for four real-valued functions
by using some new alternative principles. Inspired by [–] we shall study some gener-
alized hierarchical minimax theorems for set-valued mappings. The imposed conditions
involve four set-valued mappings. In the second section, we introduce some notions and
preliminary results. In the third section, we prove the hierarchical minimax theorem for
scalar set-valued mappings. In the fourth section, we show some hierarchical minimax
theorems for set-valued mappings in Hausdorff topological vector spaces by using the re-
sults obtained in the previous section.

2 Preliminary
In this section, we recall some notations and some known facts.
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Let X, Y be two nonempty sets in two local convex Hausdorff topological vector spaces,
respectively, Z be a local convex Hausdorff topological vector space, S ⊂ Z be a closed
convex pointed cone with int S �= ∅, and let Z∗ denote the topological dual space of Z.
A set-valued mapping F : X → Z are associated with other two mappings F– : Z → X ,
the inverse of F and F∗ : Z → X the dual of F , defined as F–(z) = {x ∈ X : z ∈ F(x)} and
F∗(z) = X \ F–(z).

Definition . ([]) Let A ⊂ Z be a nonempty subset.
(i) A point z ∈ A is called a minimal point of A if A ∩ (z – S) = {z}, and Min A denotes

the set of all minimal points of A.
(ii) A point z ∈ A is called a weakly minimal point of A if A ∩ (z – int S) = ∅, and Minw A

denotes the set of all weakly minimal points of A.
(iii) A point z ∈ A is called a maximal point of A if A ∩ (z + S) = {z}, and Max A denotes

the set of all maximal points of A.
(iv) A point z ∈ A is called a weakly maximal point of A if A ∩ (z + int S) = ∅, and

Maxw A denotes the set of all weakly maximal points of A.

For a nonempty compact subset A ⊂ Z, it follows from [] that ∅ �= Min A ⊂ Minw A;
A ⊂ Min A + S and ∅ �= Max A ⊂ Maxw A; A ⊂ Max A – S. We note that, when Z = R, Min A
and Max A are equivalent to Minw A and Maxw A, respectively.

Definition . ([]) Let F : X → Z be a set-valued mapping with nonempty values.
(i) F is said to be upper semicontinuous (shortly, u.s.c.) at x ∈ X , if for any

neighborhood N(F(x)) of F(x), there exists a neighborhood N(x) of x such that
F(x) ⊂ N(F(x)), ∀x ∈ N(x). F is u.s.c. on X if F is u.s.c. at any x ∈ X .

(ii) F is said to be lower semicontinuous (shortly, l.s.c.) at x ∈ X , if for any open
neighborhood N in Z satisfying F(x) ∩ N �= ∅, there exists a neighborhood N(x)
of x such that F(x) ∩ N �= ∅, ∀x ∈ N(x). F is l.s.c. on X if F is l.s.c. at any x ∈ X .

(iii) F is said to be continuous at x ∈ X , if F is both u.s.c. and l.s.c. at x. F is
continuous on X if F is continuous at any x ∈ X .

(iv) F is said to be closed if the graph of F is closed subset of X × Z.

Definition . ([]) Let X be a nonempty subset of a topological vector space, F : X → Z

be a set-valued mapping.
(i) F is said to be S-concave (respectively, S-convex) on X , if for any x, x ∈ X and

λ ∈ [, ],

λF(x) + ( – λ)F(x) ⊂ F
(
λx + ( – λ)x

)
– S

(
respectively, F

(
λx + ( – λ)x

) ⊂ λF(x) + ( – λ)F(x) – S
)
;

(ii) F is said to be properly S-quasiconcave (respectively, properly S-quasiconvex) on X ,
if for any x, x ∈ X and λ ∈ [, ],

either F(x) ⊂ F
(
λx + ( – λ)x

)
– S or F(x) ⊂ F

(
λx + ( – λ)x

)
– S

(
respectively, either F

(
λx + ( – λ)x

) ⊂ F(x) – S or

F
(
λx + ( – λ)x

) ⊂ F(x) – S
)
;
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(iii) F is said to be naturally S-quasiconcave (respectively, naturally S-quasiconvex) on
X , if for any x, x ∈ X and λ ∈ [, ]

co
(
F(x) ∪ F(x)

) ⊂ F
(
λx + ( – λ)x

)
– S

(
respectively, F

(
λx + ( – λ)x

) ⊂ co
(
F(x) ∪ F(x)

)
– S

)
.

Remark .
() Obviously, any S-concave (S-convex) mapping F is naturally S-quasiconcave

(naturally S-quasiconvex); any properly S-quasiconcave (properly S-quasiconvex)
mapping F is naturally S-quasiconcave (naturally S-quasiconvex).

() One should note that the S-concave (respectively, S-convex, properly
S-quasiconcave, properly S-quasiconvex, naturally S-quasiconcave, naturally
S-quasiconvex) mapping is defined as above S-concave (respectively, above
S-convex, above properly S-quasiconcave, above properly S-quasiconvex, above
naturally S-quasiconcave, above naturally S-quasiconvex) mapping in [, ].

Lemma . ([]) Let F : X → Z be a set-valued mapping. If X is compact and F is u.s.c.
with compact values, then F(X) =

⋃
x∈X F(x) is compact.

Lemma . ([]) Let F : X → Z be a continuous set-valued mapping with compact val-
ues. Then the set-valued mapping

�(x) = Maxw F(x)

is nonempty closed and upper semicontinuous.

In the sequel we need the following alternative theorem which is a variant form of Balaj
[].

Lemma . ([]) Let X, Y be two nonempty compact convex subsets in two local con-
vex Hausdorff topological vector spaces. The set-valued mappings Fi : X → Z, i = , , , ,
satisfy the following conditions:

(i) for each x ∈ X , coF(x) ⊂F(x) ⊂F(x);
(ii) F(co A) ⊂F(A) for any finite subset A ⊂ X ;

(iii) F and F∗
 are u.s.c.;

(iv) F and F∗
 have compact values.

Then at least one of the following assertions holds:
(a) There exists x ∈ X such that F(x) = ∅.
(b)

⋂
x∈X F(x) �= ∅.

3 Hierarchical minimax theorems for scalar set-valued mappings
In this section, we first establish the following hierarchical minimax theorems for scalar
set-valued mappings.

Theorem . Let X, Y be two nonempty compact convex subsets of local convex Haus-
dorff topological vector spaces, respectively. Let Fi : X × Y → R, i = , , ,  be set-valued
mappings such that Fi(x, y) ⊂ Fi+(x, y) – R+. Assume that
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(i) (x, y) → F(x, y) is u.s.c. with nonempty closed values, and (x, y) → F(x, y) is l.s.c.
(ii) y → F(x, y) is naturally R+-quasiconcave on Y for each x ∈ X , and x → F(x, y) is

naturally R+-quasiconvex on X for each y ∈ Y .
(iii) y → F(x, y) is closed for all x ∈ X , and x → F(x, y) is l.s.c. for all y ∈ Y .
Then either there is x ∈ X such that F(x, y) ⊂ (–∞,α) for all y ∈ Y or there is y ∈ Y

such that F(x, y) ∩ [β , +∞) �= ∅ for all x ∈ X.
Furthermore, assume that the sets

⋃
y∈Y F(x, y) and

⋃
x∈X F(x, y) are compact for all

y ∈ Y and x ∈ X, respectively. Assume the following condition holds:
(iv) for each w ∈ Y , there exists xw ∈ X such that

Max F(xw, w) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

F(x, y). ()

Then

Min
⋃

x∈X

Max
⋃

y∈Y

F(x, y) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

F(x, y). ()

Proof For any real numbers α,β ∈ R with α > β , we define the mappings Fi : X → Y ,
i = , , ,  by

F(x) =
{

y ∈ Y : ∃f ∈ F(x, y), f ≥ α
}

, F(x) =
{

y ∈ Y : ∃f ∈ F(x, y), f ≥ α
}

,

F(x) =
{

y ∈ Y : ∃f ∈ F(x, y), f > β
}

, F(x) =
{

y ∈ Y : ∃f ∈ F(x, y), f > α
}

.

Then we can see that F(x) ⊂ F(x) ⊂ F(x) ⊂ F(x), ∀x ∈ X. For any x ∈ X, if y ∈ F(x),
there exists f ∈ F(x, y) such that f ≥ α. Since F(x, y) ⊂ F(x, y) – R+, there are f ∈ F(x, y)
and r ∈ R+ such that f = f + r ≥ α. Then y ∈ F(x), and so F(x) ⊂ F(x). Noticing that
α > β , one can show F(x) ⊂F(x) ⊂F(x) by using similar deduction.

For any x ∈ X, we see thatF(x) is convex valued. In fact, for any y, y′
 ∈F(x), there exist

f ∈ F(x, y) and f ′
 ∈ F(x, y′

) such that f ≥ α and f ′
 ≥ α. Since y → F(x, y) is naturally R+-

quasiconcave, we have λf +(–λ)f ′
 ∈ λF(x, y)+(–λ)F(x, y′

) ⊂ co(F(x, y)∪F(x, y′
)) ⊂

F(x,λy + ( – λ)y′
) – R+, ∀λ ∈ [, ]. Then there exist f ∈ F(x,λy + ( – λ)y′

) and r ∈ R+

such that f ∈ λf + ( – λ)f ′
 + r ≥ α. Therefore, λy + ( – λ)y′

 ∈ F(x), i.e. F(x) is convex
valued. Thus coF(x) ⊂ coF(x) = F(x), ∀x ∈ X.

Let y ∈ F(co A) for a finite subset A ⊂ X. Without loss of generality, we suppose that
y ∈ F(λx + ( – λ)x) for some x, x ∈ A and λ ∈ [, ]. Then there exists f ∈ F(λx +
( – λ)x, y) such that f > β . Since x → F(x, y) is naturally R+-quasiconvex for each y ∈ Y ,
there exists f ′ ∈ co(F(x, y)∪F(x, y)) such that f ∈ f ′ –R+. Therefore, there exist μ ∈ [, ]
and f, f ∈ F(x, y) ∪ F(x, y) and r ∈ R+ such that f = f ′ – r = μf + ( – μ)f – r > β . Then
at least one of the assertions f > β and f > β holds. Hence, y ∈ (F(x) ∪F(x)) ⊂F(A).
Therefore, F(co A) ⊂F(A) ⊂F(A).

For any sequence (xn, yn) ∈ graphF = {(x, y) : ∃f ∈ F(x, y), f ≥ α} with (xn, yn) → (x, y),
there exist fn ∈ F(xn, yn) such that fn ≥ α. We can take subsequence {fnk } such that
limk→∞ fnk = lim infn→∞ fn = f. Then f ≥ α. Since F is u.s.c. with closed values, Then
F is closed. Thus f ∈ F(x, y), and so (x, y) ∈ graphF. This implies that F is closed.
From compactness of Y it follows that F is upper semicontinuous.
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Now, we show that graphF∗
 = {(x, y) : ∀f ∈ F(x, y), f ≤ β} is closed. Let (xn, yn) ∈

graphF∗
 with (xn, yn) → (x, y). From lower semicontinuity of F, it follows that for

any f ∈ F(x, y), there exists fn ∈ F(xn, yn) such that fn → f. Then f ≤ β . Therefore
graphF∗

 is closed. Noticing the compactness of Y , we see that F∗
 is upper semicontinu-

ous.
Since y → F(x, y) is closed for all x ∈ X, F is closed valued. In fact, for any sequence

yn ⊂ F(x) with yn → y, there exists fn ∈ F(x, yn) such that fn ≥ α. We can take subse-
quence {fnk } such that limk→∞ fnk = lim infn→∞ fn = f. Then f ≥ α. It follows from the
closedness of F(x, ·) that f ∈ F(x, y), and so F has closed values. Next, we claim that F∗



has closed values. For any sequence xn ⊂ F∗
 (y) that converges to some point x ∈ X, we

see that y /∈ F(xn). Then f ≤ β for any f ∈ F(xn, y). Since x → F(x, y) is lower semicon-
tinuous for all y ∈ Y , for any y ∈ F(x, y) there exists fn ∈ F(xn, y) such that fn → f. Then
f ≤ β and hence x ∈ F∗

 (y). This proves that F∗
 has closed values. It follows from the

compactness of X and Y that both F and F∗
 have compact values.

Then from Lemma ., it follows that either there is x ∈ X such that F(x) = ∅, or
⋂

x∈X F(x) �= ∅. That is, for any real numbers α,β ∈ R with α > β , either there is x ∈ X
such that F(x, y) ⊂ (–∞,α) for all y ∈ Y or there is y ∈ Y such that F(x, y)∩ [β , +∞) �= ∅
for all x ∈ X.

Furthermore, the compactness of
⋃

x∈X F(x, y) implies that Min
⋃

x∈X F(x, y) is
nonempty for all y ∈ Y . Since (x, y) → F(x, y) is lower semicontinuous, it follows
that y → ⋃

x∈X F(x, y) is lower semicontinuous. By the compactness of Y and the
proof of Lemma . [], the set

⋃
y∈Y Min

⋃
x∈X F(x, y) is nonempty and compact,

and so Max
⋃

y∈Y Min
⋃

x∈X F(x, y) �= ∅. Set any real numbers α,β ∈ R with α > β >
Max

⋃
y∈Y Min

⋃
x∈X F(x, y). From (iv), we see that, for each w ∈ Y , there exists xw ∈ X

such that F(xw, w) ∩ [β , +∞) = ∅. Therefore, there is x ∈ X such that F(x, y) ⊂ (–∞,α)
for all y ∈ Y . Hence

Min
⋃

x∈X

Max
⋃

y∈Y

F(x, y) ≤ Max
⋃

y∈Y

F(x, y) ≤ α.

By the arbitrariness of α and β , () holds. �

Example . Let X = Y = [, ] ⊂ R. Define four mappings Fi : X × Y → R, i = , , , , as

F(x, y) =
[
x –  + y, x

]
; F(x, y) =

[
x –




+ y, x +



]
;

F(x, y) =
[
x + y, x + 

]
; F(x, y) =

[
x + y, x + 

]
.

We can see that Fi(x, y) ⊂ Fi+(x, y) – R+ for all (x, y) ∈ X × Y and conditions (i)-(iii) of
Theorem . hold. It is obvious that

⋃
x∈X F(x, y) and

⋃
y∈Y F(x, y) are compact for all

y ∈ Y and x ∈ X, respectively. Now, we show condition (iv) of Theorem . is true. One can
calculate that Min

⋃
x∈X F(x, y) = {y}, ∀y ∈ Y , and Max

⋃
y∈Y Min

⋃
x∈X F(x, y) = . Taking

x = , we have

Max F(, y) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

F(x, y), ∀y ∈ Y .
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Then all of the conditions of Theorem . valid. So, the conclusion of Theorem . holds.
In fact, Min

⋃
x∈X Max

⋃
y∈Y F(x, y) =  <  = Max

⋃
y∈Y Min

⋃
x∈X F(x, y).

When F(x, y) = F(x, y) = F(x, y) and F(x, y) = F(x, y) = G(x, y) in Theorem ., we state
the special case of Theorem . as follows.

Theorem . Let X, Y be two nonempty compact convex subsets of local convex Hausdorff
topological vector spaces, respectively. The set-valued mappings F , G : X × Y → R with
F(x, y) ⊂ G(x, y) – R+. Assume that

(i) (x, y) → F(x, y) is u.s.c. with nonempty closed values, and (x, y) → G(x, y) is l.s.c.
(ii) y → F(x, y) is naturally R+-quasiconcave on Y for each x ∈ X , and x → G(x, y) is

naturally R+-quasiconvex on X for each y ∈ Y .
Then either there is x ∈ X such that F(x, y) ⊂ (–∞,α) for all y ∈ Y or there is y ∈ Y

such that G(x, y) ∩ [β , +∞) �= ∅ for all x ∈ X.
Furthermore, assume that the sets

⋃
y∈Y F(x, y) and

⋃
x∈X G(x, y) are compact for all y ∈ Y

and x ∈ X, respectively. Assume the following condition holds:
(iii) for each w ∈ Y , there exists xw ∈ X such that

Max G(xw, w) ≤ max
⋃

y∈Y

Min
⋃

x∈X

F(x, y).

Then

Min
⋃

x∈X

Max
⋃

y∈Y

F(x, y) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

G(x, y).

Proof Since F is u.s.c. with nonempty closed values, it follows that y → F(x, y) is closed
for all x ∈ X by Proposition  in [], p. . From Theorem ., it is easy to show the
conclusion holds. �

Remark . It is obvious that F(x, y) ⊂ G(x, y) implies F(x, y) ⊂ G(x, y) – R+. So Theo-
rem . generalizes Theorem . in [].

It is well known that both sets
⋃

y∈Y F(x, y) and
⋃

x∈X G(x, y) are compact for any y ∈ Y
and x ∈ X whenever the mappings F and G are upper semicontinuous with nonempty
compact values. Hence we can deduce the following result.

Corollary . Let X, Y be two nonempty compact convex subsets of local convex Hausdorff
topological vector spaces, respectively. The set-valued mappings F , G : X × Y → R come
with nonempty compact values and F(x, y) ⊂ G(x, y) – R+. Assume that

(i) (x, y) → F(x, y) is u.s.c., and (x, y) → G(x, y) is continuous.
(ii) y → F(x, y) is naturally R+-quasiconcave on Y for each x ∈ X , and x → G(x, y) is

naturally R+-quasiconvex on X for each y ∈ Y .
(iii) For each w ∈ Y , there exists xw ∈ X such that

Max G(xw, w) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

G(x, y).
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Then

Min
⋃

x∈X

Max
⋃

y∈Y

F(x, y) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

G(x, y).

Remark . Corollary . generalizes Theorem . in [] and weakens the continuity
of F in Theorem . in []. It also generalizes Theorem . in [] from one set-valued
mapping to two set-valued mappings.

4 Generalized hierarchical minimax theorem
In this section, we will discuss some generalized hierarchical minimax theorems for set-
valued mappings valued in a complete locally convex Hausdorff topological vector space.

Lemma . Let X, Y be two nonempty compact convex subsets of local convex Hausdorff
topological vector spaces, respectively. The set-valued mapping F : X × Y → Z comes with
nonempty compact values. If (x, y) → F(x, y) is u.s.c., and x → F(x, y) is l.s.c. for each y ∈ Y ,
then the set-valued mapping

A(x) = Maxw
⋃

y∈Y

F(x, y)

is u.s.c. with nonempty compact values.

Proof Define a set-valued mapping T : X → Z as

T(x) =
⋃

y∈Y

F(x, y).

It follows from Lemma . in [] that T is continuous. By Lemma . and compactness of
Y , T is compact-valued. Then, by Lemma ., we see that A is nonempty closed and u.s.c.
on X. By compactness of X, it follows that A(x) is compact for each x ∈ X. �

Theorem . Let X, Y be two nonempty compact convex subsets of local convex Hausdorff
topological vector spaces, respectively, Z be a complete locally convex Hausdorff topological
vector space. The set-valued mappings Fi : X × Y → Z , i = , , ,  come with nonempty
compact values and Fi(x, y) ⊂ Fi+(x, y) – S. Assume that

(i) (x, y) → F(x, y) is u.s.c., x → F(x, y) is l.s.c. for each y ∈ Y , and (x, y) → F(x, y) is
continuous;

(ii) y → F(x, y) is naturally S-quasiconcave on Y for each x ∈ X , and x → F(x, y) is
naturally S-quasiconvex on X for each y ∈ Y ;

(iii) y → F(x, y) is u.s.c. for all x ∈ X , and x → F(x, y) is l.s.c. for all y ∈ Y ;
(iv) for each w ∈ Y , there exists xw ∈ X such that

Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y) – F(xw, w) ⊂ S;

(v) for each w ∈ Y

Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y) ⊂ Minw
⋃

x∈X

F(x, w) + S.
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Then

Max
⋃

x∈X

Minw
⋃

y∈Y

F(x, y) ⊂ Min

(
co

⋃

y∈Y

Maxw
⋃

x∈X

F(x, y)
)

+ S. ()

Proof Let L(x) := Maxw
⋃

y∈Y F(x, y). By Lemma ., L(x) is u.s.c. with nonempty com-
pact values. From Lemma ., it follows that L(X) =

⋃
x∈X L(x) is compact, and so is

co(L(X)). Then co(L(X)) + S is a closed set with nonempty interior. Suppose that v ∈ Z
and v /∈ co(L(X)) + S. By the separation theorem, there exist ξ ∈ Z∗ and α,α ∈ R such
that

ξ (v) < α < α < ξ (u + s), ∀u ∈ co
(
L(X)

)
,∀s ∈ S. ()

By using a similar discussion to Theorem . in [], we have ξ ∈ S∗ and ξ (S) = R+. From
assumptions (i) and (iii), it is easy to see that (x, y) → ξ (F(x, y)) is u.s.c., (x, y) → ξ (F(x, y))
is l.s.c., y → ξ (F(x, y)) is closed for all x ∈ X, and x → ξ (F(x, y)) is l.s.c. for all y ∈ Y .
From condition (ii), applying Proposition . and Proposition . in [], we see that
y → ξ (F(x, y)) is naturally R+-quasiconcave on Y for each x ∈ X, and x → ξ (F(x, y)) is
naturally R+-quasiconvex on X for each y ∈ Y . By the condition (iv), for each w ∈ Y , there
exists xw ∈ X such that

Max ξ
(
F(xw, w)

) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

ξ
(
F(x, y)

)
.

Since F and F are u.s.c. and come with compact values, we see that
⋃

x∈X ξ (F(x, y)) and
⋃

y∈Y ξ (F(x, y)) are compact for all y ∈ Y and x ∈ X, respectively. Then for set-valued
mappings ξ (Fi), i = , , , , all conditions of Theorem . hold. Therefore we see that

Min
⋃

x∈X

Max
⋃

y∈Y

ξ
(
F(x, y)

) ≤ Max
⋃

y∈Y

Min
⋃

x∈X

ξ
(
F(x, y)

)
. ()

Since Y is compact and F has nonempty compact values, for any x ∈ X, there exist yx and
f (x, yx) ∈ F(x, yx) with f (x, yx) ∈ L(x) such that

ξ
(
F(x, yx)

)
= Max

⋃

y∈Y

ξ
(
F(x, y)

)
.

From (), choosing s =  and u = f (x, yx), it follows that

ξ (v) < ξ
(
f (x, yx)

)
= Max

⋃

y∈Y

ξ
(
F(x, y)

)

for all x ∈ X. Then

ξ (v) < Min
⋃

x∈X

Max
⋃

y∈Y

ξ
(
F(x, y)

)
.

By (),

ξ (v) < Max
⋃

y∈Y

Min
⋃

x∈X

ξ
(
F(x, y)

)
.
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Since Y is compact, there exists y′ ∈ Y such that

ξ (v) < Min
⋃

x∈X

ξ
(
F

(
x, y′)) = Max

⋃

y∈Y

Min
⋃

x∈X

ξ
(
F(x, y)

)
.

From ξ (s) ≥  for all s ∈ S, it follows that v /∈ ⋃
x∈X(F(x, y′)) + S, and then

v /∈ Minw
⋃

x∈X

(
F

(
x, y′)) + S.

Combined with the assumption (v), we have

v /∈ Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y).

That is, for any v ∈ Max
⋃

y∈Y Minw
⋃

x∈X F(x, y),

v ∈ co
(
L(x)

)
+ S.

Hence

Max
⋃

y∈Y

Minw
⋃

x∈X

(
F(x, y)

) ⊂ co
(
L(x)

)
+ S.

Since co(L(X)) = co(
⋃

x∈X L(x)) = co(
⋃

x∈X Maxw
⋃

y∈Y F(x, y)) is compact, we have

co

(⋃

x∈X

Maxw
⋃

y∈Y

F(x, y)
)

⊂ Min

(
co

(⋃

x∈X

Maxw
⋃

y∈Y

F(x, y)
))

+ S.

Therefore, () holds. �

Example . Let X = Y = [, ], Z = R, and S = R
+. Define set-valued mappings Fi : X ×

Y → Z , i = , , , , as

F(x, y) =
[
x –  + y, x

] × {–}, F(x, y) =
[

x –



+ y, x +



]
×

{
x –




}
,

F(x, y) =
[
x + y, x + 

] ×
{

y +



}
, F(x, y) = {x + } × [y + , ].

For all (x, y) ∈ X × Y , we can see that the Fi(x, y), i = , , , , are compact and

Fi(x, y) ⊂ Fi+(x, y) – S.

It is easy to show that the conditions (i)-(iii) hold in Theorem .. We explain conditions
(iv) and (v) are valid. We can calculate that

Minw
⋃

x∈X

F(x, y) = {} × [y + , ] ∪ [, ] × {y + },

Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y) =
{

(, )
}

.
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For each w ∈ Y , let xw = . Then

Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y) – F(xw, w) =
{

(, )
}

– {} × [y + , ] ⊂ S.

The condition (iv) holds. We can see that

Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y)

=
{

(, )
} ⊂ {} × [y + , ] ∪ [, ] × {y + } + S

= Minw
⋃

x∈X

F(x, y) + S.

Then all of the assumptions of Theorem . are valid. So, the conclusion of Theorem .
holds. In fact,

Min

(
co

⋃

x∈X

Maxw
⋃

y∈Y

F(x, y)
)

=
{

(, –)
}

.

Then

Max
⋃

y∈Y

Minw
⋃

x∈X

F(x, y)

=
{

(, )
} ⊂ {

(, –)
}

+ S

= Minw Min

(
co

(⋃

x∈X

Maxw
⋃

y∈Y

F(x, y)
))

+ S.

When F(x, y) = F(x, y) = F(x, y) and F(x, y) = F(x, y) = G(x, y) in Theorem ., we state
the special case of Theorem . as follows.

Corollary . Let X, Y be two nonempty compact convex subsets of local convex Hausdorff
topological vector spaces, respectively, Z be a complete locally convex Hausdorff topological
space. The set-valued mappings F , G : X × Y → Z come with nonempty compact values
and F(x, y) ⊂ G(x, y) – S. Assume that

(i) (x, y) → F(x, y) is u.s.c., x → F(x, y) is l.s.c. for each y ∈ Y , and (x, y) → G(x, y) is
continuous;

(ii) y → F(x, y) is naturally S-quasiconcave on Y for each x ∈ X , and x → G(x, y) is
naturally S-quasiconvex on X for each y ∈ Y ;

(iii) for each w ∈ Y , there exists xw ∈ X such that

Max
⋃

y∈Y

Minw
⋃

x∈X

G(x, y) – G(xw, w) ⊂ S;

(iv) for each w ∈ Y

Max
⋃

y∈Y

Minw
⋃

x∈X

G(x, y) ⊂ Minw
⋃

x∈X

G(x, w) + S.
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Then

Max
⋃

x∈X

Minw
⋃

y∈Y

G(x, y) ⊂ Min

(
co

⋃

y∈Y

Maxw
⋃

x∈X

F(x, y)
)

+ S. ()

Remark .
() Corollary . generalizes Theorem . in [] and weakens the continuity if F .
() Corollary . also generalizes Theorem . in [] since F(x, y) ⊂ G(x, y) implies

F(x, y) ⊂ G(x, y) – S.

5 Concluding remarks
We have proven some hierarchical minimax theorems for scalar set-valued mappings and
generalized hierarchical minimax theorems for set-valued mappings valued in a complete
locally convex Hausdorff topological vector space. The imposed conditions involved four
set-valued mappings. The main tools to prove our results have been an alternative princi-
ple and separation theorems. Some examples have been provided to illustrate our results.
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